Starting [URTH

Starting [ORTH

An Introduction to the FORTH
Language and Operating System
for Beginners and Professionals

Leo Brodie,
FO~TH.Inc.

1

With a foreword by
Charles H. Moore

Prentice-Hall, Inc., Englewood Cliffs, NJ 07632

Library of Congress Cataloging in Publication Data

BRODIE. LEO.
Starting FORTH.

t. FORTH (Computer program language) 1. Title.
QA76.73.F24B76 001.64'24 81-11837
ISBN 0-13-842930-8 AACR2
ISBN 0-13-842922-7 (pbk.)

Publisher's credits:

Editorial/production supervision: Kathryn Gollin Marshak
Manufacturing buyer: Gordon Osbourne

Paper cover design: FORTH, Inc. and Alon Jaediker

Case cover design: Edsal Enterprises

The pages of this book were reproduced
Sfrom camera ready copy
designed and prepared by FORTH, Inc.

© 1981 by FORTH, Inc., Hermosa Beach, CA 90254

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

19 18 17 16 15 14 13 12

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Ltd., Toronto
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

FOREWORD

The FORTH community can celebrate a significant event with the
publication of 8*-~*ing F"™™H. A greater effort, talent, and
commitment have yuae into Jhis book than into any previous
introductory manual. I, particularly, am pleased at this evidence
of the growing popularity of FORTH, the language.

I developed FORTH over a period of some years as an interface
between me and the computers I programmed. The traditional
languages were not providing the power, ease, or flexibility that
I wanted. I disregarded much conventional wisdom in order to
inclué¢ exactly the capabilities needed by a productive
programmer. The most important of these is the ability to add
whatever capabilities later become necessary.

The first time I combined the ideas I had been developing into a
single entity, I was working on an IBM 1130, a "third-generation"
computer. The result seemed so powerful that I considered it a
“fourth-generation computer language." I would have called it
FOURTH, except that the 1130 permitted only five~character
identifiers. So FOURTH became FORTH, a nicer play on words
anyway.

One principle that guided the evolution of FORTH, and continues
to guide its application, is bluntly: KReep It Simple. A simple
solution has elegance. It is the result of exacting effort to
understand the real problem and is recognized by its compelling
sense of rightness. I stress this point because it contradicts
the conventional view that power increases with complexity.
Simplicity provides confidence, reliability, compactness, and
speed.

“+--ting FORTH was written and illustrated by Leo Brodie, a
Lemalkably capable person whose insight and imagination will
become apparent. This book is an original and detailed
prescription for learning. It deftly guides the novice over the
thresholds of understanding that all FORTH programmers must
cross.

Although I am the only person who has never had to learn FORTH,
I do know that its study is a formidable one. As with a human
language, the usage of many words must be memorized. For
beginners, Leo's droll comments and superbly cast characters
appear to make this study easy and enjoyable. For those like
myself who already know FORTH, a quick reading provides a

vii

ABOUT THIS BOOK

Welcome tc "“ar*“~3 F~™™H, your introduction to an exciting and
powerful compute. .anguaye called FORTH.

If you'ré a beginner who wants to learn more about computers,
FORTH is a great way to learn. FORTH is more fun to write
programs with than any language that I know of. (See the
"Introduction for Beginners.")

If you are a seasoned professional who wants to learn FORTH, this
book is just what you need. FORTH is a very different approach
to computers, so different that everyone, from newcomers to old
hands, learns FORTH best from the ground up. If you're adept at
other computer languages, put them out of your mind, and remember
only what you know about ~~m~—*-"s. (See the "Introduction for
Professionals.")

Since many people with different backgrounds are interested in
FORTH, I've arranged this book so that you'll only have to read
what you need to know, with footnotes addressed to different
kinds of readers. The first half of Chap. 7 provides a background
in computer arithmetic for beginners only.

This book explains how to write simple applications in FORTH. It
includes all standard FORTH words that you need to write a
high-level, single-task application. This word set is an
extremely powerful one, including everything from simple math
operators to compiler-controlling words. (See Appendix 3,
"FORTH-79 Standard.")

Excluded from this book are all commands that are related to the
assembler, multiprogrammer, printing and disking utilities, and
target compiler. These commands are available on some versions
of FORTH such as polyFORTH. (See Appendix 2, "Further Features
of polyFORTH.")

I've chosen examples that will actually work at a FORTH system
with a terminal and disk. Don't infer from this that FORTH is

limited to batch or string-handling tasks, since there is really
no limit to FORTH's usefulness.

Here are some features of this book that will make it easy to use:

All commands are listed twice: first, in the section in which the

ix

word is introduced, and second, in the summary at the end of that
chapter. Appendix 4 provides an index to the tables.

Each chapter also has a review of terms and a set of exercise
problems. Appendix 1 lists the answers.

Several "Handy Hints" have been included to reveal procedural
tips or optional routines that are useful for learners but that
don't merit an explanation as to how or why they work.

A personal note: FORTH is a very unusual language. It violates
many cardinal rules of programming. My first reaction to FORTH
was extremely skeptical, but as I tried to develop complicated
applications I began to see its beauty and power. You owe it to
yourslf to keep an open mind while reading about some of its
peculiarities. I'll warn you now: few programmers who learn
FORTH ever go back to other languages.

Good luck, and enjoy learning!

Leo Brodie
FORTH, Inc.

TABLE OF CONTENTS

ABOUT THE AUTHOR

FOREWORD by Charles H. Moore
ABOUT THIS BOOK
ACKNOWLEDGEMENTS

INTRODUCTIONS
Introduction for Beginners
Introduction for Professionals

1 FUNDAMENTAL FORTH
A Living Language
All This and ... Interactivel
The Dictionary
Say What?
The Stack: FORTH's Worksite for Arithmetic
Postfix Power
Keep Track of Your Stack
Review of Terms
Problems

2 HOW TO GET RESULTS
FORTH Arithmetic--Calculator Style
For Adventuresome Newcomers Sitting at a Terminal
Postfix Practice Problems (Quizzie 2-a)
FORTH Arithmetic -—— Definition Style
Definition-style Practice Problems (Quizzie 2-b)
The Division Operators
Stack Maneuvers
Stack Manipulation and Math Definitions (Quizzie 2-c)
Playing Doubles
Review of Terms
Problems

3 THE EDITOR (AND STAFF)
Another Look at the Dictionary
How FORTH Uses the Disk
Dear EDITOR
Character Editing Commands
The Find Buffer and the Insert Buffer
Line Editing Commands

Miscell-----3 EDITOR Commands
Getting led

Review uL ier

Problems

xiii

vii

4 DECISIONS, DECISIONS, ... 89

The Conditional Phrase 89
The Alternative Phrase 92
Nested [IF]...[THEN| Statements 93
A Closer Look at ™™ 95
A Little Logic 97
Two Words with Built-in [IF]s 101
Review of Terms 104
Problems 105
5 THE PHILOSOPHY OF FIXED POINT 107
Quickie Operators 107
Miscellaneous Math Operators 108
The Return Stack 109
An Introduction to Floating-Point Arithmetic 113
Why FORTH Programmers Advocate Fixed-Point 114
Star-slash the Scalar 116
Some Perspective on Scaling 119
Using Rational Approximations 121
Review of Terms 124
Problems 125
6 THROW IT FOR A LOOP- 127
Definite Loops ~~ [DO.. 127
Getting [IF]fy 131
Nested Loops 132
+LO0D , 133
DOJing It -~ FORTH Style 135
Indefinite Loops 138
The Indefinitely Definite Loop 140
Review of Terms 144
Problems 145
7 A NUMBER OF KINDS OF NUMBERS 149
I. FOR BEGINNERS 150
Signed vs. Unsigned Numbers 150
Arithmetic Shift 153
An Introduction to Double-length Numbers 154
Other Number Bases 155
The ASCII Character Set 156
Bit Logic 158
II. FOR EVERYBODY 160
Signed and Unsigned Numbers 160
Number Bases 162
Double~length Numbers 164
Number Formatting -- Double~length Unsigned 166
Number Formatting -— Signed and Single-length 170
Double-length Operators 173
Mixed-length Operators 174
Numbers in Definitions 176
Review of Terms 180
Problems 181

xiv

8 VARIABLES, CONSTANTS, AND ARRAYS 183

Variables 183
A Closer Look at Variables 186
Using a Variable as a Counter 188
Constants 190
Double~length Variables and Constants 193
Arrays 195
Another Example —- Using an Array for Counting 199
Factoring Definitions 202
Another Example —— "Looping" through an Array 204
Byte Arrays 206
Initializing an Array 207
Review of Terms 211
Problems 212
9 UNDER THE HOOD 215
Inside I’“"‘“'.SE““"“ 215
Vectoreu wa&CuciOn 217
The Structure of a Dictionary Entry 220
The Basic Structure of a Colon Definition 224
Nested Levels of Execution 225
One Step Beyond 228
Abandoning the Nest 229
FORTH Geography 231
The Geography of a Multi-tasked FORTH System 238
User Variables 240
Vocabularies 242
Review of Terms 248
Problems 251
10 I/O AND YOU 253
Block Buffer Basics 253
Output Operators 258
Outputting Strings from Disk 261
Internal String Operators 266
Single-character Input 268
String Input Commands, from the Bottom up 270
Number Input Conver~*-1s 277
A Closer Look at [WCm, 280
String Comparisons 281
Review of Terms 286
Problems 287

Xxv

11 EXTENDING THE COMPILER:
DEFINING WORDS AND COMPILING WORDS
Just a Question of Time
How to Define a Defining Word

Defining Words You Can Define Yourself

How to Control the Colon Compiler
More Compiler—controlling Words

An Introduction to FORTH Flowcharts
Curtain Calls

Review of Terms

Problems

12 THREE EXAMPLES
Game
File Away!
No Weighting
Review of Terms
APPENDICES
1. Answers to Problems
2. Further Features of polyFORTH
3. FORTH~-79 Standard

4. Summary of FORTH Words

TABLE OF HANDY HINTS

A Non-Destructive Stack Print

When a Block Won't

A Better Non-Destructive Stack Print
How to Clear the Stack

Wandm

a o2finiti ' BINARY —- or Any-ARY
How to [LOC a Source Definition

A Random Mhuwwo<. Generator
Two Convenient Additions to the Editor

Entering Long Definitions from Your Terminal

xvi

289
289
290
293
299
303

309
314
315

317
318
328
341
348

50

82

83
137
142
163
245
265
269
306

Starting FORTH

INTRODUCTIONS

'r_trodu_A__'A_ . H-_.‘_..E - - - - - - Lang.>_‘__—\
At first, when beginners hear
the term "computer language,"
they wonder, "What kind of
language could a computer
possibly speak? It must be
awfully hard for people to
understand. It probably looks
like:
9764 1@NX714&+

if it looks like anything at
all.”

Actually, a computer language
should not be difficult to
understand. Its purpose is
simply to serve as a convenient
compromise for communication
between person and computer.

Consider the marionette. You
can make a marionette "walk"
simply by working the wooden
control, without even touching
the strings. You could say that
rocking the control means
"walking" in the language of the
marionette. The puppeteer 2+
guides the marionette in a way
that the marionette can
understand and that the
puppeteer can easily master. . d

Computers are machines just like
the marionette. They must be
told exactly what to do, in
specific language. And so we
need a language which possesses
two seemingly opposite traits:

2 Starting FORTH

On the one hangd, it must be precise in its meaning to the
computer, conveying all the information that the computer needs
to know to perform the operation. On the other hand, it must be
simple and easy-to-use by the programmer.

Many languages have been developed since the birth of computers:
FORTRAN is the elder statesman of the field; COBOL is the
standard language for business data processing; BASIC was
designed as a beginner's language along the road toward
languages like FORTRAN and COBOL. This book is about a very
different kind of language: FORTH. FORTH's popularity has been
gaining steadily over the past several years, and its popularity
is shared among programmers in all fields.

All the languages mentioned above, including FORTH, are called
"high-level" languages. It's important for beginners to
recognize the difference between a high-level language and the
computer it runs on. A high-level language looks the same to a
programmer regardless of which make or model of computer it's
running on. But each make or model has its own internal
language, or "machine language." To explain what a machine
language is, let's return to the marionette.

Imagine that there is no wooden control and that the puppeteer
has to deal directly with the strings. Each string corresponds to
exactly one part of the marionette's body. The harmonious
combinations of movements of the individual strings could be
called the marionette's "machine language.”

Now tie the strings to a control. The
control is like a high-level language.

With a simple turn of the wrist, the . a high-level

symbol used in

puppeteer can move many strings L your program
simultaneously.
So it is with a high-level computer ‘.

language, where the simple and familiar -
symbol "+" causes many internal high-level I
functions to be performed in the process language

of addition.

Here's a very clever thing about a .

computer: it can be programmed to macnme'l
translate high-level symbols (such as instruction
"+") into the computer's own machine

language. Then it can proceed to carry in';zfl:’clt"i%n)
out the machine instructions. A ;‘::g:::e
high-level language is a computer _ machine
program that translates humanly | 1="ietion
understandable words and symbols into machine

the machine language of the particular instruction

make and model of computer.

Starting FORTH 3

What's the difference between FORTH and other high-level
languages? To put it very briefly: it has to do with the
compromise between man and computer. A language should be
desigr 1 for the convenience of its human users, but at the same
time for compatibility with the operation of the computer.

FORTH is unique among languages because its solution to this
problem is unigque. This book will explain how.

Introduction for Professionals: FORTH in the Real World

FORTH has enjoyed a rising tide of popularity in recent years,
perhaps most visibly among enthusiasts and hobbyists. But this
development is only a new wrinkle in the history of FORTH.
FORTH has been in use for over ten years in critical scientific
and industrial applications. In fact, if you use a mini- or
microcomputer professionally, chances are that FORTH can run
your application--more efficiently than the language you're
presently using.

Now you'll probably ask rhetorically, "If FORTH is so efficient,
how come I'm not using it?" The answer is that you, like most
people, don't know what FORTH is.

To really get an understanding of FORTH, you should read this
book and, if possible, find a FORTH system and try it for
yourself. For those of you who are still at the bookstore
browsing, however, this section will answer two questions: "What
is FORTH?" and "What is it good for?2" ’

FORTH is many things:

-—a high-level language

—an assembly language

——an operating system

—a set of development tools
-—a software design philosophy

As a language, FORTH begins with a powerful set of standard
commands, then provides the mechanism by which you can define
your own commands. The structured process of building
definitions upon previous definitions is FORTH's equivalent of
high-level coding. Alternatively, words may be defined directly
in assembler mnemonics, using FORTH's assembler. All commands
are interpreted by the same interpreter and compiled by the same
compiler, giving the language tremendous flexibility.

The highest level of your code will resemble an English-language

4 Starting FORTH

description of your application. FORTH has been called a
"meta-application language"--a language that you can use to
create problem-oriented languages.

As an operating system, FORTH does everything that traditional
operating systems do, including interpretation, compilation,
assembling, virtual memory handling, I/O, text editing, etc.

But because the FORTH operating system is much simpler than its
traditional counterparts due to FORTH's design, it runs much more
quickly, much more conveniently, and in far less memory.

What is FORTH good for? FORTH offers a simple means to maximize
a processor's efficiency. For example:

FORTH is fast. High-level FORTH executes faster than other
high-level languages and between 20 and 75% slower than
equivalent assembly-language programs, while time-critical code
may be written in assembler to run at full processor speed.
Without a traditional operating system, FORTH eliminates
redundancy and needless run-time error checking.

FORTH compiled code is compact. FORTH applications require less
memory than their equivalent --sembly ~ age programs!
Written in FORTH, the entire op...fing Syoecewm w..d its standard
word set reside in less than 8K bytes. Support for a target
application may require less than 1K bytes.

FORTH is transportable. It has been implemented on just about
every mini- and microcomputer known to the industry.

FORTH has been known to cut program development time by a factor
of ten for equivalent assembly-language programming and by a
factor of two for equivalent high-level programming.
Productivity increases because FORTH epitomizes "structured
programming” and because it is interactive and modu .

Here are a few samples of FORTH in the real world:

hidaaiens 'S Control--FORTH is being used to steer the robot
muwron-picture cameras to create the special effects used in
the film "Battle Beyond the Stars." FORTH was chosen

because of its speed and its flexibility in providing an
interface by which the operator can describe the camera
motion. Other process—control applications range from a
baggage handler for a major U.S. airline to a peach sorter
for a California cannery.

P~~+t-+7- In' "ligent Devices—-The variety of applications
wurcw run 1oo.TH internally include a heart monitor for
outpatients, an automotive ignition analyzer, a hand-held
instrument to measure relative moisture in different types of
grain, and the Craig Language Translator.

Starting FORTH 5

M~di~~1--0n a single PDP-11 at a major hospital, FORTH
sumuitaneously maintains a large patient database; manages
thirty-two terminals and an optical reader; performs
statistical analysis on the database to correlate physical
types, diseases, treatments, and results; and analyzes blood
samples and monitors heartbeats in real time.

D~*~ Accri-irio= o= Re-7--=f-—_] single PDP-11/34 running
W T Fluiis vonirvis i ciein observatory, including an
extraordinarily accurate telescope, the dome, several CRTs,
a clock, a line printer, and a floppy disk drive--and still
has time for taking data on infrared emissions from space,
analyzing the data, and displaying the results on a graphics
monitor. Applications of this type often make use of Fast
Fourier and Walsh Transforms, numerical integration, and
other math routines written in FORTH.

There's a catch, we must admit. It is that FORTH makes you
responsible for your computer's efficiency. To draw an analogy:
a manual transmission is tougher to master than an automatic, yet
for many drivers it offers improved control over the vehicle.

Similarly, FORTH is tougher to master than traditional high-level
languages, which essentially resemble one another (i.e., after
learning one, it is not difficult to learn another). Once
mastered, however, FORTH gives you the capability to minimize
CPU time and memory space, as well as an organizing philosophy
by which you can dramatically reduce project development time.

And remember, all of FORTH's elements enjoy the same protocol,
including operating system, compiler, interpreters, text editor,
virtual memory, assembler, and multiprogrammer. The learning
curve for FORTH is much shorter than that for all these separate
elements added together.

If any of this sounds exciting to you, turn the page and start
FORTH.

1 FUNDAMENTAL FORTH

In this chapter we'll acquaint you with some of the unique
properties of the FORTH language. After a few introductory pages
we'll have you sitting at a FORTH terminal. If you don't have a
FORTH terminal, don't worry. We'll show you the result of each
step along the way.

Tivinc T-ngqu

Imagine that you're an office manager and you've just hired a
new, eadger assistant. On the first day, you teach the assistant
the proper format for typing correspondence. (The assistant
already knows how to type.) By the end of the day, all you have
to say is "Please type this.”

On the second day, you explain the filing system. It takes all
morning to explain where everything goes, but by the afternoon
all you have to say is "Please file this."

By the end of the week, you can communicate in a kind of
shorthand, where "Please send this letter" means "Type it, get me
to sign it, photocopy it, file the copy, and mail the original."
Both you and your assistant are free to carry out your business
more pleasantly and efficiently.

Good organization and effective communication require that you
1. define useful tasks and give each task a name, then

2. group related tasks together into larger tasks and give
each of these a name, and so on.

FORTH lets you organize your own procedures and communicate them
to a computer in just this way (except you don't have to say
"Please").

As an example, imagine a microprocessor-controlled washing
machine programmed in FORTH. The ultimate command in your
example is named WASHER. Here is the definition of WASHER, as
written in FORTH:

8 Starting FORTH

: WASHER WASH SPIN RINSE SPIN ;

In FORTH, the colon indicates the beginning of a new definition.
The first word after the colon, WASHER, is the name of the new
procedure. The remaining words, WASH, SPIN, RINSE, and SPIN,
comprise the "definition" of the new procedure. Finally, the
semicolon indicates the end of the definition.

AWASHER :

Each of the words comprising the definition of WASHER has
already been defined in our washing-machine application. For
example, let's look at our definition of RINSE:

: RINSE FILL AGITATE DRAIN ;

As you can see, the definition of RINSE consists of a group of
words: FILL, AGITATE, and DRAIN. Once again, each of these
words has been already defined elsewhere in our washing-machine
application. The definition of FILL might be

: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

In this definition we are referring to t**--s (faucets) as well as
to actions (open and close). The Wuv.u TILL-FULL has been
defined to create a "delay loop" which does nothing but mark
time until the water-level switch has been activated, indicating
that the tub is full.

If we were to trace these definitions back, we would eventually
find that they are all defined in terms of a group of very useful
commands that form the basis of all FORTH systems. For example,
PolyFORTH includes about 300 such commands. Many of these
commands are themselves "colon definitions" just like our example
words; others are defined directly in the machine language of the
particu%ar computer. In FORTH, a defined command is called a
'lword.ll

t For 01d Hands

This meaning of "word" is not to be associated with a 16-bit
value, which in the FORTH community is referred to as a "cell.”

1 FUNDAMENTAL FORTH 9

The ability to define a word in terms of other words is called
"extensibility." Extensibility leads to a style of programming
that is extremely simple, naturally well-organized, and as
powerful as you want it to be.

Whether your application runs an assembly line, acquires data for
a scientific environment, maintains a business application, or
plays a game, you can create your own "living language" of words
that relate to your particular need.

In this book we'll cover the most useful of the standard FORTH
commands.

naa rnl.‘_'_ -~ e 7_LA,,§_LJ,7el

One of FORTH'sS many unigue features is that it lets you
"execute"t a word by simply naming the word. If you're working
at a terminal keyboard, this can be as simple as typing in the
word and pressing the RETURN key.

Of course, you can also use the same word in the definition of
any other word, simply by putting its name in the definition.

FORTH is called an "interactive" language because it carries out
your commands the instant you enter them.

We're going to give an example that you can try your: £, showing
the process of combining simple commands into more powerful
commands. We'll use some simple FORTH words that control your
terminal screen or printer. But first, let's get acqguainted with
the mechanics of "talking" to FORTH through your terminal's
keyboard.

Take a seat at your real or
imaginary FORTH terminal.
We'll assume that someone
has been kind enough to
set everything up for you,
or that you have followed
all the instructions given
for loading your particular
computer.

t For Beginners

To "execute" a word is to order the computer to carry out a
command.

10 Starting FORTH

Now press the key labeled:
RETURNT
The computer will respond by saying

ok
The RETURN key is your way of telling FORTH to acknowledge your
request, The ~» is FORTH's way of saying that it's done
everything you a...d it to do without any hangups. In this case,
you didn't ask it to do anything, so FORTH obediently did nothing
and said ok. (The ok may be either in upper case or in lower
case, depending on your terminal.)

Now enter this:
15 SPACES

If you make a typing mistake, you can correct it by hitting the
"backspace" key. Back up to the mistake, enter the correct
letter, then continue. When you have typed the line correctly,
press the RETURN key. (Once you press RETURN, it's too late to
correct the line.)

In this book, we use the symbol to mark the point where you
must press the RETURN key. We also underline the computer's
output (even though the computer does not) to indicate who is
typing what.

Here's what has happened:

15 SPACE(_ ok
As soon as you pressed the return key, FORTH printed fifteen
blank spaces and then, having processed your request, it
responded ok (at the end of the fifteen spaces).
Now enter this:

42 EMITGEIGD *ok

The phrase "42 EMIT" tells FORTH to print an asterisk (we'll

tFor People at Terminals

RETURN may have a different name on your terminal. Other
possible names are NEW LINE and ENTER.

Backspace may also have a different name on your terminal, such
as DEL or RUBOUT.

1 FUNDAMENTAL FORTH 11

discuss this command later on in the book.) Here FORTH printed
the asterisk, then responded ok.

We can put more than one command on the same line. For example:

15 SPACES 42 EMIT 42 EMITE **ok

This time FORTH printed fifteen spaces and two asterisks. A note
about entering words and/or numbers: we can separate them from
one another by as many spaces as we want for clarity. But they
must be separated by at '~-~* one space for FORTH to be able to
recognize them as words auw,.r numbers.

Instead of entering the phrase

42 EMIT
over and over, let's define it as a word called "STAR."
Enter this

: STAR 42 EMIT ;GBI -

Here "STAR" is the name; "42 EMIT" is the definition. Notice
that we set off the colon and semicolon from adjacent words with
a space. Also, to make FORTH definitions easy for human beings
to read, we conventionally separate the name of a definition
from its contents with three spaces.

After you have entered the above definition and pressed RETURN,
FORTH responds oK, signifying that it has recognized your
definition and will remember it. Now enter

STARQE *ok

Voila! FORTH executes your definition of "STAR" and prints an
asterisk.

There is no difference between a word such as STAR that you
define yourself and a word such as that is al: dy defined.
In this book, however, we will put boxes around those words that
are already defined, so that you can more easily tell the
difference.

Another system-defined word is [CR], which performs a carriage
return and line feed at your terminal.T For example, enter this:

tFor Beginners

Be sure to distinguish between the key labeled RETURN and the
FORTH word ™.

12 Starting FORTH

CREE_

ok

As you can see, FORTH executed a carriage return, then printed an
ok (on the next line).

Now try this:
CR STAR CR STAR CR STARGAD
*

x
*ok

Let's put a in a definition, like this:
: MARGIN CR 30 SPACES ;@ue) Ok
Now we can enter
MARGIN STAR MARGIN STAR MARGIN STARGEILD

and get three stars lined up vertically, thirty spaces in from the
left.

Our MARGIN STAR combination will be useful for what we intend to
do, so let's define

: BLIP MARGIN STAR ;G...J ok

We will also need to print a horizontal row of stars. So let's
enter the following definition (we'll explain how it works in a
later chapter):

: STARS 0 DO STAR LOOP D ok
Now we can say

5 STARSEEILD) *****ok

or

35 STARsm_ "'"'*_1"*""" ******** Thhhhkkhkhkhkhkkhhhhhhhol

or any number of stars imaginable!

We will need a word which performs MARGIN, then prints five
stars. Let's define it like this:

: BAR MARGIN 5 STARS ;@ ok
Now we can enter

BAR BLIP BAR BLIP BLIP CR

1 FUNDAMENTAL FORTH 13

and get a letter "F" (for FORTH) made up of stars. It should look
like this:

*kkkk
*
xkkkk
*
*

The final step is to make this new procedure a word. Let's call
the word "F":

: F BAR BLIP BAR BLIP BLIP CR :GEE™ -

You've just seen an example of the way simple FORTH commands can
become the foundation for more complex commands. A FORTH
application, when listed,T consists of a series of increasingly
powerful definitions rather than a sequence of instructions to be
executed in order.

To give you a sample of what a FORTH application really looks
like, here's a listing of our experimental application:

LARGE LETTER-F)

STAR 42 EMIT 3

STARS B DO STAR LOOP ;

MARGIN CR 38 SPRCES ;

¢ BLIP MARGIN STAR

: BAR MARGIN 5 STARS

: F BAR BLIP BAR BLIP BLIP CR ?

¢ 45 58

DNOUNDWNE-®

tFor Beginners

We'll explain more about listing, as it applies to FORTH, in
Chapter 3.

14

The Dic** -~~~

Each word and its definition are
entered into FORTH's "dictionary."
The dictionary already contained
many words when you started, but
your own words are now in the
dictionary as well.

When you define a new word, FORTH
translates your definition into
dictionary form and writes the

Starting FORTH

entry in the dictionary. This

process is called "compiling."t

: STAR 42 EMIT 3

ﬁtat‘ v

Print an
asterisk.

For example, when you enter
the line

: STAR 42 EMIT ; RN]

the compiler compiles the new
definition into the dictionary.
The compiler does not print
the asterisk.

Once a word is in the dictionary, how is it executed? Let's say
you enter the following line directly at your terminal (not inside

a definition):

STAR 30 SPACESCEILD

This will activate a word called ™™"""RET|, also known as the

"text interpreter."

tFor Beginners

Compilation is a general computer term which normally means the
translation of a high-level program into machine code that the
computer can understand. In FORTH it means the same thing, but
specifically it means writing in the dictionary.

16 Starting FORTH

What happens when you try to execute a word that is not in the
dictionary? Enter this and see what happens:

When the text interpreter cannot fin® YLERB in the dictionary, it
tries to pass it off on [NUMBER|. [NU....R| shines it on. Then the
interpreter returns the string to you with a question mark.

In some versions of FORTH, including polyFORTH, the compiler
does not copy the entire name of the definition into the
dictionary—only the first three characters and the number of
characters. For example, in polyFORTH, the text interpreter
cannot distinguish between STAR and STAG because both words are
four characters in length and both begin S-T-A.T

While many professional programmers prefer the three-character
rule because it saves memory, certain programmers and many
hobbyists enjoy the freedom to choose any name. The FORTH-79
Standard allows up to thirty-one characters of a name to be
stored in the dictionary.

To summarize: when you type a pre-defined word at the terminal,
it gets interpreted and then executed.

%ow remember we said that EI is a word? When you type the word
, as in

: STAR 42 EMIT ;Qun.

T For polyFORTH Users
The trick to avoiding conflicts is to
a) be conscious of your name choices, and
b) when naming a series of similar words, put the

distinguishing character up front, like this:

1LINE 2LINE 3LINE etc.

18 Starting FORTH

Say *--42

In FORTH, a word is a character or group of characters that have
a definition. Almost any characters can be used in naming a
word. The only characters that cannot be used are:

return because the computer thinks you've
finished entering,t

backspace because the computer thinks you're trying
to correct a typing error,

space because the computer thinks it's the end of
the word, and

caret (T or %) because the editor (if you're using it)
thinks you mean something else. We'll
discuss the editor in Chap. 3.

Here is a FORTH word whose name consists of two punctuation
marks. The word is [["] and is pronounced “-* guote. You can use
™ inside a definition! to type a "st...J" Of text at your
ve.Minal. Here's an example:

: GREET ." HELLO, I SPEAK FORTH " ;GELD_ok

We've just defined a word called GREET. Its definition consists
of just one FORTH word, El, followed by the text we want typed.
The quotation mark at the -~ 1 of the text will not be typed; it
marks the end of the text. .. s called a "delimiter."

tFor Philosophers

No, the computer doesn't "think." Unfortunately, there's no
better word for what it really does. We say "think" on the
grounds that it's all right to say, "the lamp needs a new light
bulb." Whether the lamp really ne~<3 a bulb depends on whether
it nee¢”~ to provide light (that is, .ncandescence is its karma).
So 1et - Just say the computer thinks.

{FORTH-79 Standard

In systems that conform to the Standard, [["] will execute outside
of a colon definition as well.

20 Starting FORTH

BOX A Box B Name of Next
5 ‘ Operation

——the number 4 is stored into a second place (called Box B).

Box B Name of Next

Box A Operation

7

—the calculator performs the operation that is stored in the
"Next Operation" Box on the contents of the number boxes and
leaves the result in Box A.

Many calculators and computers approach arithmetic problems in a
way similar to what we've just described. You may not be aware
of it, but these machines are actually storing numbers in various
locations and then performing operations on them.

In FORTH, there is one central location where numbers are
temporarily stored before being operated on. That location is
called the "stack." Numbers are "pushed onto the stack," and
then operations work on the numbers on the stack.

The best way to explain the stack is to illustrate it. If you
enter the following line at your terminal:

34+.@Q

here's what happens, key by key.

Recall that when you enter a number -* -rour terminal, the text
interpreter hands it over to ™7"M___, who runs it to some
location. That location, it calL uuw be told, is the stack. In
short, when you enter the number three from the terminal, you
push it onto the stack.

22 Starting FORTH

The next word, E], is also found in the dictionary. It has been
previously defined to take the number off the stack and print it
at the terminal.

Postfix Power

Now wait, you say. Why does FORTH want you to type
34+

instead of
3+4

which is more familiar to most people?

FORTH uses "postfix" notation (so called because the operator is
affixed ¢~ ¢ the numbers) rather than "infix" notation (so

called because the operator is affixed *- “-*---- the numbers) so
that all words which "need" numberS Cau. yev wicw rom the stack.?

tFor Pocket-calculator Experts

Hewlett-Packard calculators feature a stack and postfix arithmetic.

1 FUNDAMENTAL FORTH 23

For example:
the word gets two numbers from the stack and adds them;
the word [] gets one number from the stack and prints it;

the word |SPACES| gets one number from the stack and prints
that many spaces;

the word ™™ gets a number that represents a character and
prints th.. c.aracter;

even the word STARS, which we defined ourselves, gets a
number from the stack and prints that many stars.

When ~'" operators are defined to work on the values that are
alreawy on the stack, interaction between many operations
remains simple even when the program gets complex.
Earlier we pointed out that FORTH lets you execute a word in
either of two ways: by simply naming it, or by putting it in the
definition of another word and naming that word. Postfix is part
of what makes this possible.
Just as an example, let's suppose we wanted a word that will
always add the number 4 to whatever number is on the stack (for
no other purpose than to illustrate our point). Let's call the
word

FOUR-MORE
We could define it this way:

: FOUR-MORE 4 + ;MM
and test it this way:

3 FOUR-MORE .)7 ~v

and again:

-10 FOUR-MORE .GEI) k
The "4" *‘--‘2~ the definition goes onto the stack, just as it

would if .. we.c outside a definition. Then the adds the two
numbers on the stack. Since ™ always works on the stack, it
doesn't care that the "4" came ..um inside the definition and the
three from outside.

As we begin to give some more complicated examples, the value of
the stack and of postfix arithmetic will become increasingly
apparent to you. The more operators that are involved, the more
important it is that they all be able to "communicate” with each
other,

24 Starting FORTH

Keep Track ¢¥ Your £*--k

We've just begun to demonstrate the philosophy behind the stack
and postfix notation. Before we continue, however, let's look
more closely at the stack in action and get accustomed to its
peculiarities.

FORTH's stack is described as "last-in, first-out" (LIFO). You can
see from the earlier illustration why this is so. The three was
pushed onto the stack first, then the four pushed on top of it.
Later the adding machine took the four off first because it was
on top. Hence "last-in, first-out.”

In general, the only accessible value at any given time is the
top value. Let's use another operation, the E] to further
demonstrate. Remember that each removes one number from the
stack and prints it. Four dots, therefore, remove four numbers

and print them.

2468(8a@Ix "~ " * "

SEC

The system reads input from left to right and executes each word
in turn.

For input, the rightmost value on the screen will end up on
top of the stack.

For output, the rightmost value on the screen came from the
bottom of the stack.

Let's see what kind of trouble we can get outselves into. Type:
10 2030 . . . &

(that's four dots) then RETURN. What you get is:

1 FUNDAMENTAL FORTH 25

10 20 30 « + - coanad 30 20 I 7R mrpDyE

Each dot removes one value. The fourth dot found that there was
no value left on the stack to send to the terminal, and it told

you so.
\\ (STACK EMPTY ’

This error is called "stack underflow." (Notice that a stack
underflow is ~-* "ok.")

The opposite condition, when the stack completely fills up, is
called "stack overflow." The stack is so deep, however, that this
condition should never occur except when you've done something
terribly wrong.

It's important to keep track of new words' "stack effects"; that
is, the sort of numbers a word needs to have on the stack before
you execute it, and the sort of numbers it will leave on the stack
afterwards.

If you maintain a list of your newly created words with their
meanings as you go, you or anyone else can easily understand the
words' operations. In FORTH, such a list is called a "glossary."

To communicate stack effects in a visual way, FORTH programmers
conventionally use a special stack notation in their glossaries
or tables of words. We're introducing the stack notation now so
that you'll have it under your belt when you begin the next
chapter.

tFor the Curious

Actually, dot always prints whatever is on the top, so if there is
nothing on the stack, it prints whatever is just below the stack,
which is usually zero. Only then is the error detected; the
offending word (in this case dot) is returned to the screen,
followed by the "error message."

26 Starting FORTH

Here's the basic form:
{(before — after)

The dash separates the things that should be on the stack (before
you execute the word) from the things that will be left there
'a_\|fterwards. For example, here's the stack notation for the word

. (n -)

(The letter "n" stands for "number.") This shows that [J] expects
one number on the stack (before) and leaves no number on the
stack (after).

Here's the stack notation for the word .
+ (nl n2 -~ sum)

When there is more than one n, we number them nl, n2, n3, etc.,
consecutively. The numbers 1 and 2 do not refer to position on
the stack. Stack position is indicated by the order in which the
items are written; the rightmost item on either side of the arrow
is the topmost item on the stack. For example, in the stack
notation of [4], the n2 is on top:

+ (nl n2 -- sum)

You're the top

Since you probably have the hang of it by now, we'll be leaving
out the GEITD symbol except where we feel it's needed for clarity.
You can usually tell where to press "return" because the
computer's response is always underlined.

1 FUNDAMENTAL FORTH 27

Here's a list of the FORTH words you've learned so far, including
their stack notations ("n" stands for number; "c" stands for
character):

t XXX YyY i (—) Creates a new definition with
the name xxx, consisting of
word or words yyy.

CR (—) Performs a carriage return and
line feed at your terminal.

SPACES (n -~) Prints the given number of
blank spaces at your terminal.

SPACE (-) Prints one blank space at your
terminal.

EMIT (c -) Transmits a character to the

output device.

LMoxxx" (—) Prints the character string
xxx at your terminal. The "
character terminates the

string.
+ (nl n2 — sum) Adds.
(n —) Prints a number, followed by

one space.

In the next chapter we'll talk about getting the computer to
perform some fancier arithmetic.

Review - ° ™-—-

Compile to generate a dictionary entry in computer
memory from source text (the written-out form
of a definition). Distinct from "execute."

Dictionary in FORTH, a list of words and definitions

including both "system" definitions
(predefined) and "user" definitions (which vou
invent). A dictionary resides in compul
memory in compiled form.

28

Execute

Extensibility

Glossary

Infix notation

Input stream

Interpret

LIFO

Postfix notation

Stack

Stack overflow

Stack underflow

Word

Starting FORTH

to perform. Specifically, to execute a word is
to perform the operations specified in the
compiled definition of the word.

a characteristic of a computer language which
allows a programmer to add new features or
modify existing ones.

a list of words defined in FORTH, showing their
stack effects and an explanation of what they
do, which serves as a reference for
programmers.

the method of writing operators between the
operands they affect, as in "2 + 5.,"

the text to be read by the text interpreter.
This may be text that you have just typed in at
your terminal, or it may be text that is stored
on disk.

(when referring to FORTH's text interpreter) to
read the input stream, then to find each word
in the dictionary or, failing that, to convert
it to a number.

(Last—-in, first-out) the type of stack which
FORTH uses. A can of tennis balls is a LIFO
structure; the last ball you drop in is the one
you must remove first.

the method of writing operators after the
operands they affect, as in "2 5 +" for "2 + 5."
Also known as Reverse Polish Notation.

in FORTH, a region of memory which is
controlled in such a way that data can be
stored or removed in a last-in, first-out (LIFO)
fashion.

the error condition that occurs when the entire
area of memory allowed for the stack is
completely filled with data.

the error condition that occurs when an
operation expects a value on the stack, but
there is no valid data on the stack.

in FORTH, the name of a definition.

1 FUNDAMENTAL FORTH 29

Pe~-Tems Chapter 1

Note: before you work these problems, remember these simple

rules:
Every (i needs a [j].
and
Every [."] needs a ["].
1. Define a word called GIFT which, when executed, will type

out the name of some gift. For example, you might try:
: GIFT ." BOOKENDS " ;

Now define a word called GIVER which will print out a
person's first name. Finally, define a word called THANKS
which includes the new FORTH words GIFT and GIVER, and
prints out a message something like this:

mTAT™ AmTnrTAATTT

BOOT’"“"" ‘|S_

Define a word called TEN.LESS which takes a number on the

stack, subtracts ten, and returns the answer on the stack.
(Hint: you can use .)

After entering the words in Prob. 1, enter a new definition
for GIVER to print someone else’s name, then execute THANKS
again. Can you explain why THANKS still prints out the first
giver's name?

2 HOW TO GET RESULTS

In this chapter, we'll dive right into some specifics that you
need to know before we go on. Specifically, we'll introduce some
of the arithmetic instructions besides "' and some special
operators for rearranging the order of nuwocts on the stack, so
that you'll be able to write mathematical equations in FORTH.

Fremyq Aritt~etf- . ~-"-ulator S+ -

Here are the four simplest integer—-arithmetic operators in
FORTH:*

i _ nranounced:
+ (nl n2 -— sum) Adds.
- (nl n2 — d4iff) Subtracts (nl-n2).
* (nl n2 — prod) Multiplies.
/ (nl n2 -~ quot) Divides (nl/n2).

Unlike calculators, computer terminals don't have
special keys for multiplication and division.
Instead we use [*] and [/.

tI1f Math Is Not Your Thing

Don't worry if this chapter looks a little like an algebra
textbook. Solving math problems is only one of the things you
can do with FORTH. Later we'll explore some of the other things
FORTH can do.

Meanwhile, we'd like to remind you that integers are whole
numbers, such as:

wee =3, =2, -1, 0, 1, 2, 3, ...
Integer arithmetic (logically enough) is arithmetic that concerns

itself only with integers, not with decimal-point numbers, such as
2.71.

31

32 Starting FORTH

In the first chapter, we learned that we can add two numbers by
putting them both on the stack, then executing the word , then
finally executing the word D (dot) to get the result printed at
our terminal.

17 5 + . 22 ok
We can use this method with all of FORTH's arithmetic operators.
In other words, we can use FORTH like a calculator to get
answers, even without writing a "program.”™ Try a multiplication
problem:

78 * &€~k

By now we've seen that the operator comes after the numbers. 1In
the case of subtraction and division, though, we must also
consider the order ¢ -'r~--s ("7 - 4" is not the same as "4 - 7").

Just remember this rule:

To convert to postfix, simply move the operator to the end
of the expression:

Infix it
3+4 374 +

-~ [
500 - 300 500 “5uww -~
6 X5 6 75 *
20 / 4 2072 7/

So to do this subtraction problem:
7-4=

simply type in
74-.3 ok

2 HOW TO GET RESULTS 35

(191
[17

=

17 and 12 go onto the stack. [¥] multiplies them and returns the
result.

Then the four goes onto the stack, on top of the 204. rolls out
the adding machine and adds them together, returning only the
result,

Or suppose you want to add five numbers. You can do it in FORTH
like this:

38 Starting FORTH

rommq Arithr-+ic — Defini*?~1 Style

In Chap. 1 we saw that we could
define new words in terms of . C‘d: .
numbers and other pre-defined

words. Let's explore some further . I%’ ’
possibilities, using some of our

newly-learned math operators.

Let's say we want to convert various measurements to inches. We
know that

1 yard = 36 inches

and

1 foot = 12 inches

so we can define these two words:

: YARDS>IN 36 * ; ok

: FT>IN 12 * ; ok

where the names symbolize "yards-to-inches" and "feet-to-
inches." Here's what they do:

10 YARDS>IV °°" -™
2 FT>IN . &

If we always want our result to be in inches, we can define:

: YARDS 36 * - -
: FEET 12 * HIRELS
: INCHES ; ok

so that we can use the phrase
10 YARDS 2 FEET + 9 INCHES + ., 2% -*

Notice that the word INCHES doesn't do anything except remind
the human user what the nine is there for. If we really want to
get fancy, we can add these three definitions:

YARD YARDS ; ok
FOOT FEET - ~%1
: INCH ; ok

so that the user can enter the singular form of any of these
nouns and still get the same result:

40 Starting FORTH

17 20 132 3 9 5#suM . "o -~

If we were going to keep 5#SUM for future use, we could enter it
into our ever-growing glossary, along with a note that it
"expects five arguments"! on the stack, which it will add
together.

+
Here's another equation to write a definition for:+
(a+b) *c

As we saw in Quizzie 2-a, this expression can be written in
postfix as

cab+*
Thus we could write our definition
: SOLUTION + * ; ok

as long as we make sure that we enter the arguments in the proper
order:

c a b SOLUTION

TFor Semantic Freaks

In mathematics, the word "argument" refers to an independent
variable of a function. Computer linguists have borrowed this
term to refer to numbers being operated on by operators. They
have also borrowed the word "parameters" to describe pretty much
the same thing.

IFor Beginners Who Like
Word-problems

If a jet plane flies at an 7@

averade air speed of 600 mph and =

if it flies with a tail wind of 25 Vi

mph, how far will it travel in

five hours?)ﬂ’;ﬂ'

If we define

: FLIGHT-DISTANCE + * ;

we could enter

5 600 25 FLIGHT-DISTANCE ~~F -

Try it with different values, including head winds (negative
values).

42 Starting FORTH

M.~ ni--igion Operators

The word [/ is FORTH's simplest division operator. M-~ supplies
only the quotient; any remainder is lost. If you type.

24 /.5 ok

you get only the gqguotient five, not the remainder two.

If you're thinking of a pocket calculator's per-cent 7
operator, then five is not the full answer. (-]
But [/ is only one of several division operators suppiiea by
FORTH to give you the flexibility to tell the computer exactly
what you want it to do.

For example, let's say you want to solve this problem: "How many
dollar bills can I get in exchange for 22 guarters?" The real
answer, of course, is exactly 5, not 5.5. A computerized money
changer, for example, would not know how to give you 5.5 dollar
bills.

Here are two more FORTH division operators:

pronounced:
o B
/MOD (ul u2 - Divides. Returns leash-mod
u-rem u-quot) the remainder
and quotient.
MOD (ul u2 -- u-rem) Returns the mod
remainder from
division.

The "u" stands for "unsigned." We'll see what this
means in the chapter on computer numbers. For now
though, it means that the numbers can't be negative.

7*~D| gives both the re~-‘-~-: and the quotient; [MOD] gives the
.<wainder only.t (For ,....,, the stack notation in the table
indicates that the guotient will be on the top of the stack, and
the remainder below. Remember, the . represents the

topmost.)

tPor the Curious

MOD refers to the term "modulo," which basically means
"remainder."

44 Starting FORTH

Stack Maneuvers

If you worked Prob. 6 in the last set, you discovered that the
infix equation

a->b
C

cannot be solved with a definition unless there is some way to
rearrange values on the stack.

Well, tt--- is a way: by using a "stack manipulation operator"
called | -
SWAP

The word is defined to switch the order of the top two
stack items:

A~ -*th the other stack manipulation operators, you can test
.. at your terminal in "calculator style"; that is, it doesn't
have to be contained within a definition.

2 HOW TO GET RESULTS 45

First enter
12..”" -~

then again, this time with ™ &P|:
12SWAP .. 1"~ -~

Thus Prob. 6 can be solved with this phrase:
- SWAP /

with (c a b =~) on the stack.

Let's give a, b, and ¢ these test values:
a=10 b 4 c=2
then put them on the stack and execute the phrase, like so:

2104 -5swAaP / " N

Here is a list of several stack manipulation operators, including

SWAP (nl n2 —— n2 nl) Reverses the top
two stack items. 5“’“
|
DUP (n =— nn Duplicates the top Aype

stack item.

OVER (nl n2 -—— nl n2 nl) Makes a copy of
the second item
and pushes it on
top.

ROT (nl n2 n3 =- n2 n3 nl) Rotates the third
item to the top.

DROP (n —) Discards the top
stack item.

46 Starting FORTH

The next stack manipulation operator on the list, [DUP|, simply
makes a second copy (duplicate) of the top stack item.

\1
12

For example, if we have "a" on the stack, we can compute:
a2

as follows:
DUP *

in which the following steps occur:

Contents
9 . of "tack
a
DUP a a
| -

2 HOW TO GET RESULTS 47

[
Now somebody tells you to evaluate the expression:
a* (a+ b

given the following stack order:

fab—)
But, you say, I'm going to need a new manipulation operator: I
want two copies of *-- "- " and the "a" is under the "b." Here's
the word you need: OVER| simply makes a copy of the "a"

and leapfrogs it ove. cuc "b":

(ab--a b‘a)

Now the expression:

a* (a+ b
can easily be written: ’q
—, ~. =
oveR + * 2 2\35&;4
— .

Here's what happens:

=

Contents
n of Stack

o YRR I R

ab
OVER aba
+ a (b+a)
* a*(b+ta)

When writing equations in FORTH, it's best to "factor them out”
first. For example, if somebody asks you to evaluate:

a + ab
in FORTH, you'll find it quite complicated (and maybe even
impossible) using the words we've introduced so far ... unless you
factor out the expression to read:

a* (a+ b

which is the expression we just evaluated so easily.

48 Starting FORTH

The fourth stack manipulator on the list is __TI (pronounced
rote), which is short for "rotate." Here's what does to the
top three stack values:

0T Q

For example, if we need to
evaluate the expression:

ab - bc
we should first factor out the "b"s:
b * (a-c)
Now if our starting-stack order is this:
(cba-~--)
we can use:
ROT - *

in which the following steps will occur:

2 HOW TO GET RESULTS

49
Contents
n~~ration of Stack
cba
ROT bac
- b (a-c)
* (b*(a-c))
The final stack manipulation operator on the list is] all

it does is discard the top stack value.

Pretty simple, huh? We'll see some good uses for ,..JP| later on.

50 Starting FORTH

A Handy Hint

= ‘v.‘! J__._ructive SL_-IS— n_._'_E

Beginners who are just learning to manipulate numbers on the
stack in useful ways very often find themselves typing a series of
dots to see what's on the stack after their manipulations. The
problem with dots, though, is that they don’'t leave the numbers
on the stack for future manipulations.

Here is the definition of a very useful word for such beginners.
.S prints out all the values that happen to be on the stack
"non-destructively"; that is, without removing them. Type the
definition in as shown here, and don't worry about how it works.

:.S CR 'Ss0@2-DO I@. -2+LOOP ; ok

Let's test it, first with nothing on the stack:
.S
0 ok

As you can see, in this version of .S, we always see at least one
number as a reference for the bottom of the stack; that is, the
same number we see when we type a [] and get

M RETUAEEEES “TACK EMPTY
Now let's try it with numbers on the stack:

123.8
0 2 “~ —1-

[UEN

2 HOW TO GET RESULTS 51

Stack Manipul-*ion_and Math De“'-***--- (Quizzie 2-c)

1. Write a phrase which flips three items on the stack, leaving
the middle number in the middle; that is,

abc becomes cba

2. Write a phrase that does what [v...] does, without using

3. Write a definition called <ROT, which rotates the top three
stack items in the opposite direction from ™7™ that is,

abc becomes cab

Write definitions for the following equations, given the stack
effects shown:

4. n K (n - result)
5. X(7x + 5) (x = result)
6. 9aZ - ba (a b — result)

! x - dUMS x 6 MIAO 90T 9

!y +G xLdna 61Z: °¢
!/ aYMs 41 dna ¥07 ¢
10 {/ daUMS + T ana ¥z : %

{109 109 LOo¥> : 't
d¥MS 109 40d JUMS 4

I09 d¥MSs °T

ol

52 Starting FORTH

™ 3ving ~-ublest

The next four stack manipulation operators should look vaguely
familiar:

2SWAP (dl 42 -- a2 4au Reverses the top two-swap
two pairs of num-
bers.

2DUP (@ — 4 a) Duplicates the top two-dupe

pair of numbers.

20VER (dl d2 -- d1 d2 d1) Makes a copy of two-over:

the second pair of
numbers and pushes
it on top.

2DROP (d@d —) Discards the top
pair of numbers.

The prefix "2" indicates that these
stack manipulatign operators handle
numbers in pairs.+ The letter "d" in
the stack effects column stands for
"double." "Double" has a special
significance that we will discuss when
we discuss "n” and "u."

The "2"-manipulators listed above are
so straightforward, we won't even bore
you with examples.

One more thing: there are still some
stack manipulators we haven't talked
about yet, so don't go crazy by trying
too much fancy footwork on the stack.

Guess who.

TFORTH-79 Standard

These words are part of the Standard's ""~+-le Number Word Set,"
which is optional in a Standard system. |c...] is included.

¥ For 01d Hands

They can also be used to handle double-length (32-bit) numbers.

2 HOW TO GET RESULTS

53

Here's a list of the FORTH words we've covered in this chapter:

/MOD

MOD

SWAP

DUP

OVER

ROT

DROP

2SWAP

2DUP

20VER

2DROP

(nl n2 -— sum)

(nl n2 — 4iff)
(nl n2 - prod)
(nl n2 -- quot)

(ul u2 -
u-rem u—quot)

(ul u2 -~ u-rem)
(nl n2 -~ n2 nl)
(n —— n n)
(nl n2 ~

nl n2 nl)
(nl n2 n3 —

n2 n3 nl)

(n -)

(dl 42 -- 42 4l)

(d— 4 q)

(dl az —-
dl 4z d1)

(@ —)

Adds.

Subtracts (nl-n2).
Multiplies.
Divides (nl/n2).

Divides. Returns the
remainder and quotient.

Returns the remainder from
division.

Reverses the top two stack
items.

Duplicates the top stack
item.

Makes a copy of the second
item and pushes it on top.

Rotates the third item to
the
top.

Discards the top stack
item.

Reverses the top two pairs
of numbers.

Duplicates the top pairs of
numbers.

Makes a copy of the second
pair of numbers and pushes
it on top.

Discards the top pair of
numbers.

I———

54

Rev'~--- ~f T rms
Double-length

numbers

Single-length
numbers

Starting FORTH

integers which encompass a range of over -2
billion to +2 billion (and which we'll
introduce officially in Chap. 7).

integers which fall within the range of -3276§
to +32767: the only numbers which are valid as
the arguments or results of any of the
operators we've discussed so far. (This
seemingly arbitrary range comes from the way
computers are designed, as we'll see later on.)

2 HOW TO GET RESULTS 55

Probl~~~ -~ Chapter 2

{answers in the back of the book)

1.

2,

3.

What is the difference between and 2

Write a phrase which will reverse the order of the top four
items on the stack; that is,

1234-—-4321)

Write a definition called 3DUP which will duplicate the top
three numbers on the stack; for example,

123-123123)

Write definitions for the following infix equations, given the
stack effects shown:

4.

5.

6.

a2 + ab + ¢ (c a b =- result)
- =-b (a b — result)
« + b

Write a set of words to compute prison sentences for
hardened criminals such that the judge can enter:

CONVICTED-OF ARSON HOMICIDE TAX-EVASION ok
WILL-SERV™ 2t wmama op

or any series of crimes beginning with the word
CONVICTED-OF and ending with WILL-SERVE. Use these
sentences:

HOMICIDE 20 years
ARSON 10 years
BOOKMAKING 2 years
TAX-EVASION 5 years

You're the inventory programmer at Maria's Egg Ranch.
Define a word called EGG.CARTONS which expects on the stack
the total number of eggs laid by the chickens today and
prints out the number of cartons that can be filled with a
dozen each, as well as the number of left-over eggs.

3 THE EDITOR (AND STAFF)

Up till now you've been compiling new definitions into the
dictionary by typing them at your terminal. This chapter
introduces an alternate method, using disk storage.

Let's begin with some observations that specifically concern the
dictionary.

Anotl - T Tt

If you've been experimenting at a real live terminal, you may
have discovered some things we haven't mentioned yet. In any
case, it's time to mention them.

Discovery One: You can define the same word more than once
in different ways--only the most recent definition will be
executed.

For example, if you have entered:
¢ GREET ." HELLO., I SPEAK FORTH. " ; ok
then you should get this result:

GREET HELL” I SPEAK FORTH. ok

and if you redefine:
: GREET ." HI THERE! " ; ok

you get the most recent definition:

GREE"’I ITT MIITDT1 Al

Has the first GREET been erased? No, it's still there, but the
most recent GREET is executed because of the search order. The
text interpreter always starts at the "back of the dictionary"
where the most recent entry is. The definition he fi-*- <*-~* is
the one you defined last. This is the one he shows to

57

58 Starting FORTH

We can prove that the old GREET is still there. Try this:
FORGET GREET ok
and

GREET _HI'" "~ I SPF*¥ ¥ORTH. ok

(the 0ld GREET again!)

The word ™~~~ looks up the given word in the dictionary and,
in effect, rcwouves it from the dictionary along with anything you
may have defined since that word. , like the interpreter,
searches starting from the back; he only removes the most
recently defined version of the word (along with any words that
follow). So now when you type GREET at the terminal, the
interpreter finds the original GREET.

GET] is a good word to know; he helps you to weed out your
uscilionary so it won't overflow. (The dictionary takes up memory

space, so as with any other use of memory, you want to conserve
it.)

Discovery Two: When you enter definitions from the terminal
(as you have been doing), your source text? is not saved.

Only the compiled form of your definition is saved in the dic-

tFor Beginners

The "source text" is the original version of the definition, such
as:

: FOUR-MORE 4 + ;

which the compiler translates into a dictionary entry.

3 THE EDITOR (AND STAFF) 59

tionary. So, what if you want to make a minor change to a word
you've already defined? This is where the EDITOR comes in. With
the EDITOR, you can save your source text and modify it if you
want to.

The EDITOR stores your source text on disk. So before we can
really discuss the EDITOR, we'd better introduce the disk and the
way the FORTH system uses it.

e TIATMIT T o~ Ll - W™l

Nearly all FORTH systems use disk memory. Even though disk
memory is not absolutely necessary for a FORTH system, it's
difficult to imagine FORTH without it.

To understand what
disk memory does,
compare it with com-
puter memory (RAM).
The difference 1is
analogous to the dif-
ference between a
filing cabinet and a
rolling card-index.

So far you've been
using computer mem-
ory, which is like the
card index. The com-
puter can access this
memory almost instan-
taneously, so pro-
grams that are stored
in RAM can run very
fast. Unfortunately, p
this kind of memory is

limited and rela-

tively expensive.

On the other hand, the disk is called a "bulk memory" device
because, like a filing cabinet, it can store a lot of information
at a much cheaper price per unit of information than the memory
inside the computer.

Both kinds of memory can be written to and read from.

The compiler compiles all dictionary entries into computer
memory so that the definitions will be quickly accessible. The

60 Starting FORTH

perfect place to store source text, however, is on the disk, which
is what FORTH does. You can either send source text directly
from the keyboard to the interpreter (as you have been doing), or
you can save your source text on the disk and then later read it
off the disk and send it to the text interpreter.

SOURCE TEXT

- —

DICT-
IONARY
(comPuUTER
‘ MEMORY)
DISK ﬁ)
MEMORY

|

Disk memory is divided into units called "blocks."
Many professional FORTH development systems have 500
blocks available (250 from each disk drive). Each cH
block holds 1,024 characters of source text. The 1,024 9 L6
characters are divided for display into 16 lines of 64 -3—#1
characters each, to fit conveniently on your terminal ’g_wﬂ

screen. /0
180 LIST
B (LARGE LETTER-F)
1 ¢ STAR 42 EMIT ;
2 ! STARS 8 DO STAR LOOP
3 ¢ MARGIN CR 30 SPACES ;
4 ! BLIP MARGIN STAR 3
S ! BAR MARGIN S5 STARS ;
6 : F BAR BLIP BAR BLIP BLIP CR ;
7
8
9 F
b1%)
11
12
13
14

3 THE EDITOR (AND STAFF) 61

This is what a block looks like when it's listed on your terminal.
To lis* 1 block for yourself, simply type the block-number and the
word [___T|, as in:

180 LIST

To give you a better idea of how the disk is used, we'll assume
that your block 180 contains the sample definitions shown above.
Except for line 0, everything should look familiar: these are the
definitions you used to print a large letter "F" at your terminal.

Now if you were to type:
180 LOAD

you would send block 180 to the input stream and then on to the
text interpreter. The text interpreter does not care where his
text comes from. Recognizing the colons, he will have all the
definitions compiled.

Notice that we've put our new word F on line 9. We've done this
to show that when you load a block, you execute its contents.
Simply by typing:

180 LOAD

all the definitions will be compiled and a letter "F" will be
printed at your terminal.

Now for the unfinished
business: 1line 0. The
words inside the paren-
theses are for humans only;
they are neither compiled
nor executed. The word
(left p~~-1thesis) tells the
text iu.crpreter to skip
all the following text up
to the terminating right
parenthesis. Because [_T_? is
a word, it must be set off
with a space.¥

It's good programming practice to identify your application
blocks with comments, so that fellow programmers will understand
them.

tFor Beginners

The closing parenthesis is not a word, it is simply a character
that is looked for by [, called a delimiter. (Recall that the
delimiter for [."] is the closing quote mark.)

62 Starting FORTH

Here are a few additional ways to make your blocks easy to read:

1. Separate the name from the contents of a definition by
three spaces.

2. Break definitions up into phrases, separated by double
spaces.

3. If the definition takes more than one line, indent all
but the first line.

4. Don't put more than one definition on a single line
unless the definitions are very short and logically
related.

To summarize, the three commands we've learned so far that
concern disk blocks are:

: -

LIST (n —) Lists a disk block.
LOAD (n ——) Loads a disk block
{(compiles or executes).
(xxX) (-—) Causes the string xxx
to be ignored by the text feft

interpreter. The character) paren
is the delimiter.

3 THE EDITOR (AND STAFF) 63

Dear EDITO™*

Now you're ready to learn how to put your text on the disk.
First find an empty block? and list it, using the form:

180 LIST
When you list an empty block, you'll see sixteen line numbers (0 -
15) running down the side of the screen, but nothing on any of
the lines. The "ok" on the last line is the signal that the text
interpreter has obeyed your command to list the block.

By listing a block, you also select that block as the one you're
going to work on.

180 LIST
U~ [l -

[TcumrenT
BLO

| Ligo

A "pointer" in computer

i

The terminal

memory (RAM).

Now that you've made a block "current,"” you can list it by simply
typing the word

L

Unlike [LT™™, does not want to be preceded by a block number;
instead, 1. .ists the current block.

tFor Those Whose EDITOR Doesn't Follow These Rules

The FORTH-79 Standard does not specify editor commands. Your
system may use a different editor; if so, check your system
documentation.

iFor People at Terminals
If you're using someone else's system, ask them which blocks are

available. If you're using your own system, try 180. It should be
free (empty).

3 THE EDITOR (AND STAFF) 65

Now that your sights are fixed, you can put some text in the
current line by using [P].

P HERE IT ISCEILD ok
@ puts the string that follows it (up to the carriage return) on
the current line. It does not type out the line. If you don't
believe the string is really there, you can type:

3T

or simply:

L /80

)

HEREIT I8

[
i
”
I
[
13 ok

Remember that your current position remains the same, so if you
were to now type

AL AT RN R

P THERE IT WENTGELD ok

followed by , you'd see that the latter string had replaced the
former on line 3.

Similarly, entering [P] followed by at least two blank spaces (one
to separate the [P] from the string, the other as the string itself)
causes the former string to be replaced by a blank space; in
other words, it blanks the line.

In this chapter the symbol "J" means that you type a blank space.
So to blank a line, type:

PY CETED

66 Starting FORTH

~--rart-~_Editi-~ “or—--1is

In this section, we'll show you how to insert and delete text
within a line.

Before you can insert or delete text, you must be able to
position the EDITOR's cursor to the point of insertion or
deletion. Suppose line 3 now contains:

IF MUSIC BE THE FOD OF LOVE

and you want to insert the second "O" in "FOOD," you must first
position the cursor after the "FO" like this:

IF MUSIC BE THE FO"D OF LOVE

To position the cursor, use the command [F], followed by a string,
as in

F FOGAIRD
searches forward from the current position of the cursor until

it finds the given string (in this case "FO"), then places the
cursor right after it.

F FOGEIRD

“IF MUSIC BE THE FOD OF LOVE

&

IF MUSIC BE THE FOD OF LOVE

IF MUSIC BE THE FOID OF LOVE

If you don't know the starting position of the cursor, first type
"3 T" to reset the cursor to the start of the line. then types
the line, showing where the cursor is:

IF “7SIC BE TF™ *°" O™ "~E_ 3 ok

3 THE EDITOR (AND STAFF) 67

Now that the cursor is positioned where you want it, simply enter:

I OGED
and [T will *

then types the corrected line, including the cursor:

T MYTITATA T MTIT TIAANT™ ATI T ATTTY D Al

E

To -~--~- a string (using the command [E]), you must first ©*-“ the
stiiuy, using ['_—Fj For example, if you want to erase tune word
"MUSIC," first reset the cursor with:

3T
then type:

F MUSICGEILD
TT arraTAAN n-r:l-:zgn ﬂOOD OF LOVE 3 Ok

and then simply:
EGELD

@l erases the string you just found with IE

.

IF M4SIC BE THE FOOD OF LOVE
IE then types the line, including the cursor:

IF ©~ rw mue ©nQp OF LOVE 3 ok

The cursor is now in a position where you can insert another
word:

68 Starting FORTH

IF [-YaVal "Zal -3] THE FON™ A% rntrm 2 Al

[

The comm¢~ " [D] finds and "-'-%es a string. It is a combination
of [F] and u, giving you Lwe .ummands for the price of one. For
example, if your cursor is here:

IF ROCK"™ BE THE FOOD OF LOVE
then you can delete "FOOD" by simply typing:
D FOODGlanas

Te BAAL BT T A mem v mrre -~

Once again, you can insert text at the new cursor position:

I CHEESEBURGERS ™ LD

T DAAY DD MUL . - JRDCTRTIIDATDCSY AL T AL e BN

Using [D] is a little more dangerous than using [F] and then [E.
With the two-step method, you know exactly what you're going to
erase before you erase it.

R

The command [E replaces a string that you've already found. It

is a combination of [E and [I. For instance:
F NEED A&
govemrmTmes NPT nA mmmaeTan AL 2 ok
R MY LR R
COMP‘-vmnnn MANT TN TERMI\-H\r LI
[lil is great when you want to make an insertion *- “---* -< g

certain string. For example, if your line 0 is misSiuy au s &

(saM~T™ ™P™TNITIONS) MPTY 0 ok

then it's not easy to your way through all those spaces to get
the cursor over to the space before MPTY. Better you should use
the following method:

F MPTYGEILD
then

R EMPTYCEILD

3 THE EDITOR (AND STAFF) 69

[mTTT)

saul] is the most powerful command for deletion. It deletes
everything from the current cursor position up till and including
the given string. Por example, if you have the line:
BREVITY IS THE SOUL”, THE ESSENCE, AND THE VERY SPARK OF WIT.
(note the cursor position), then the phrase:

TILL SPARKGEILD
or even just

TILL KGELD

(since there's only one "K") will produce

BREVITY IS THE £~™" “nm omm o

Has a nicer ring, doesn't it?

m-- m™¢4d Buffer and the Insc-* Suffer

In order to use the EDITOR effectively, you really have to
understand the workings of its "find buffer" and its "insert
buffer.”

You may not have known it, but when you typed

F MUSICGEILD
the first thing [F] did was to move the string "MUSIC" into
something called the "find buffer." A buffer, in computer

parlance, is a temporary storage place for data. The find buffer
is located in computer memory (RAM).

3 THE EDITOR (AND STAFF) 71

What good is this? It lets you find numerous occurrences of the
same string without retyping the string. For example, suppose
line 8 contains the profundity:

“THE WISDOM OF THE FUTURE IS THE HOPE OF THE AGES

with the cursor at the beginning, and you want to erase the "THE"
near the end. Start by typing

F THEJGEID
2: AwISDOrl fatol mITT TTYMTIT™Y T el mrrm™ TYTATIYT fatol THE AGES 8 ok

Now that "THE" is in the find buffer, you can simply type a
series of single [Fs:

FGRITD

mmm rrrepnv A THE “FUTURE IS THE HOPE OF T"™ »7™c © -t
I

inn wioDOM QF — 0 —oomotmm oTa omere Avvmm— ~F THF »~©™c 0 L

etc., until you find the "THE" you want, at which time you can
erase it with [E.*t

By the way, if you were to try entering one more time, you'd
get:

™ mrrm oAy R

This time cannot find a match for the find buffer, so it
returns the word "THE" to you, with the error message "NONE."

Remember we said that [D] is a combination of [F] and [E]? Well,
that means that [D] also uses the find buffer.

With the cursor positioned at the beginning of the line and with
"THEK" in the find buffer, you can delete all the "THE"s with
single [D]s:

DEEITD
AwTennM QF THE FUTURE "¢ ™“= @nAn= OF THE AGES 8 ok
1

D

A

7TSDOM OF “FUTURE I ™HE HOPE OF THE AGES 8 ok
RFEURN | ’

WTEf\qM N DrIrTno 7O A“nﬁﬂ-" OF THE AMTICO o .
Dl

WISDOM OF FUTURE IS HOPE Q= “»~wc 8 ok

tFor the Curious

[E]| counts the number of characters in the find buffer and deletes
that many characters preceding the cursor.

3 THE EDITOR (AND STAFF) 73

Line Editir~ ~ommands

Now that we've shown you how to move letters and words around,
we'll show you how to move whole lines around.

[B]

The word [E, which we introduced before, uses the very same
insert buffer that [I| uses. Assuming that you still have "BLUE" in
your insert buffer from the previous example and that line 14 is
still your current line, then typing:

P

will replace the o0ld line 14 with the contents of the insert
buffer, so that line 14 now contains only the single word:

BLUE

To quickly review, you have now learned three ways to use @]:

1) P ALL THIS TEXTI{ Y puts the string in the insert
buffer, then in the current line.

2) PAYCEID blanks the insert buffer, then
blanks the current line.

3) PGEMD puts the contents of the insert
buffer in the current line.

A very similar word is [U]. It places the contents of the insert
buffer --der the current line. For example, suppose your block
contaius:

ADAMS
BROWN
CUDAHY
DAVIS
ELMER

N e N

e

74 Starting FORTH

If you move your cursor to line 2 with:

2T
“BROW™ 3 ok

and then type:

U CARLINGEALD ok
U COOPE!l =~ =D ok

you'll get:

+ wDAMS ! |

2 BROWN

3 CARLIN -

4 COOPER 1

S CUDAHY | INSERT BUFFER

6 DAVIS - —

7 ELTER | COOPER
> —

US|

Instead of replacing the current line, squeezes the contents of
the insert buffer in below the current line, pushing all the lines
below it down. If there were anything in line 15, it would roll
off and disappear.

It's easier to use [U] than [P] when you're adding successive lines.
For example:

1 T P ADAMSGEID ok

U BROWNG D ok
U CUDAHYwiagyl) ok

U DAVIf=) ok
etc.

The three ways of using E] also apply to .

X

[¥] is the opposite of [U]; it -~*~- -*- the current line. Using the
above example, if you make ..uc - cuwrent (with the phrase "3 T"),
then by entering:

YT

you extract line 3 and move the lower lines up.

3 THE EDITOR (AND STAFF) 75

;|

[-

' ﬂusear BUFFER

/CARLIN

As you see, also moves the extracted line into the insert
buffer. This makes it easy to move the extracted line anywhere
you want it. For example, the combination:

9 TEETD
and:

PCEITD

would now put "CARLIN" on line 9.

Miscellaneo~ "MN"™"R_Comands

The word [WIPE| blanks an entire block. You can use [W. to
ensure that there will not be any strange characters which au.ght
keep a block from being loaded.

If your system doesn't have another way to blank an entire
block is this: first enter

0T |
then hit
X

sixteen times.

76 Starting FORTH

N and

When you type the word [N], you
add one to the current block
number.

Thus the combination:

N L
causes the next block to be @/ I 1+ TN,
listed. ~

Similarly, the word subtracts
one from the current block
number. I wntr ape YERE :

Thus the combination: -
. B2 Y L

lets you list one block back.

We can't say too much about this word until we discuss how the
FORTH "operating s—*-—" converses with the disk, but for now you
should know this: |«uooH|T assures you that any change you've
made to a block really gets written to the disk.

Say you've made some changes to a block,
then you turn off the computer. When you
come back tomorrow and list the block, it
may seem as though you never made the
changes at all. The operating system
simply didn't get around to writing the
corrected block to the disk before you
turned off the computer. The same thing
could happen if you were to load your

application and then crash the system SN
before it could write the changes to disk.

tFORTH-79 Standard

In the Standard, the name for this word is {SAVE-BUFFERS.

3 THE EDITOR (AND STAFF) 77

So always enter IFLUSHT before removing the disk, cycling power,
-~ %rying something dangerous. Some programmers habitually
ﬁ after every change without even thinking about it.

F-—J

The word F559] lets you copy one block to another, displacing
whatever waso .1l the destination block. You use it in this form:

from to COPY
For example, entering:

153 200 COPY
will copy whatever is in block 153 into block 200.
Make it a habit to after every [CC. ..

8l

[S] is an expanded version of [F. It lets you r~~-~h for a given
string in and beyond your current block in.u che following
blocks, up to the block that you specify.
For example, if your current block is 180, and you type:

185 S TREASURE

then o will search for "TREASURE" in blocks 180 thru 184. If it
finds "TREASURE" in, say, block 183, it will type:

mrTe ~MENT THAT WE TRE®©'"RE"_TOGETHER 7 1p> ~-

giving both the block and the line number.

The block number with which you precede the word @ represents
the next block " ar the last one you want searched. There is a
reason for this, wuc it won't make sense until a later chapter.

78 Starting FORTH

M

[] lets you —-—- an individual line (or group of lines) from one
block to aliveucz. To move a line to another block, first make
the line current with

182 LIST
then

7T
“1 SHOT A LINE INTO THF ™" ~ ok

Then enter the destination block and the number of the line
under which you want the line inserted, followed by the word e,

190 2 M

3 T SHOT ALINE INTD THE AR,

7 1 SHOTALINE INTO THE AIR

The line of text in the current block (block 182) moves down to
the next line. So to move three consecutive lines, simply enter

190 2 ¥
190 3 »
190 4 MG i}

3 THE EDITOR (AND STAFF) 79

ad

You can type the caret character instead of RETURN to indicate

the end of a character string, so that you can get more than one
command on a line.

For example, you could type:
D FRUIT" I NUTSGE
all on the same line, and get the same result as if you had typed:

D FRUITC
and:

I NUTSCEIED

That's it for the EDITOR commands. Because FORTH is naturally
flexible, and because users can define their own EDITOR commands
if they want to, the set of EDITOR commands in your system may
vary from the set presented here. This chapter closes with a
review of all the commands we've talked about.

One final observation about the EDITOR: it is not a program, as
it might be in anot]! ' language. It is rather a collection of
words. The EDITOR, 1n fact, is called a "vocabulary." We'll
discuss the significance of vocabularies in a later chapter.

~orrite ToADled

Now that you've learned to edit your definitions into a block,
it's time to load them. But consider for a moment: each time you
load definitions, you increase the size of your dictionary.

For example, let's say you write a definition for something you
call 1FUNCTION, edit it into an ava‘il=hle block, and load it. You
test it and realize you forgot a ...-...—*P|. So you fix the source
text with the EDITOR commands, then load the block again. It
works!

Now in the same block you edit in a definition of something you
call 2FUNCTION and load the block again. This time, you get it
right on the first try. But what does your dictionary look like?
From loading this block three times, you've got three versions of
1FUNCTION in there. The simplest way to avoid this problem is to
use the word

80

EMPTY

fEmmmul "forgets" all the
ueriusvions that you yourself
have defined (not sys*~-~—
definitions).t If you put [E|

at the beginning of the biccn,
you will start with a clean slate
each time you load.

For example:

® (SOLUTIONS —-- QUIZZIE 2-B)
1 2B1 *x + ;

2 ¢ 2B2 4 x - 6 7 + 3}

3

Starting FORTH

SV

SYSTEM

DEFINITIONS

EMPTY

Sometimes you don't want to get rid of your whole application,
only part of it. Suppose you were to write a word processing
application (so you can enter text, edit it in memory, then output
it to a printer). After you've finished the basic application,
you want to add variations, so it can use one format for
correspondence, another format for magazine articles, and

another format for address labels.

NICTINNARY

SYSTEM
DEFINITIONS

WOURD

PROCESSING
APPI I ATION

T

FORMAT FORMAT

LETTER ARIICLE lﬁbu.
F

ORMAT

tFor People on a Multiprogrammed System

"forgets" your own personal extension of the dictionary,

awe unyone else's.

3 THE EDITOR (AND STAFF) 81

In FORTH these three variations are called "overlays" because
they are mutually exclusive and can be made to replace each
other. Here's how.

The basic word processing application should begin with
The last definition should be a name only, such as

: VARIATIONS ;

This is called a "null definition" because it does nothing but
mark a place in your portion of the dictionary.

Then at the beginning of each variation block, include the
expression

FORGET VARIATIONS : VARIATIONS ;

| TOLD YA TO FORGfD
YOU EVER
SAwW Mg/

Now when you load one variation, it
IFORGET|s back to the null definition,
compiles a new null definition, and
then compiles the variation's
definitions. When you load the other
variation, you replace the first overlay
with the second overlay.

One more trick: what if the source text for your application
takes more than one block? The best solution is to let one block
load the other blocks. For example, your "load block" might
contain:

2 (MY APPLICATION)
1
2 1890 LOAD f.Bi LOAD 182 LOAD

It's much better to let a single load block all the related
blocks than to let each block load the nexta a chain.

Now you know the ropes of disk storage. You'll probably want to
edit most of the remaining examples and problems in this book
into disk blocks rather than straight from the keyboard to the
interpreter, especially the longer ones. It's just easier that
way.

82 Starting FORTH

* dandy Hint *1--4 a Block Won't [

On some FORTH systems, the following scenario may sometimes
happen to you: you load some new definitions from a block, but
when you try to execute them, FORTH doesn't seem to have ever
heard of them (responding with a "?").

First you want to check whether any or all of your definitions
were actually compiled into the dictionary. To do this, enter an
apostrophe followed by a space, then the name of the word, then
a [, as in

' THINGAMAJIG .GEIGD

If [] prints a number, then the definition is compiled, but if
FORTH responds

THINGP ™77~ 2

then it isn't., There are two possible reasons for part of a block
not getting compiled:

1) You made a typing error that keeps FORTH from being able to
recognize a word. For instance, you may have typed

(COMMENT LINE)

without a space after [-_(] This type of error is easy to find and
correct because FORTH prints the name of any word it doesn’'t
understand, like this:

180 LOADGEAMD (COMMENT ?

2) There is a non-printing character (one you can't see)t
somewhere in the block. To find a non-printing character, enter
this:

0 TCRID
1T

2 T g etc.

If a line contains any non-printing characters, the "ok" at the
end of the line will not line up with the "ok"s at the ends of
the other lines, because non-printing characters don't print
spaces. For anv such line. reenter the entire line Mmsina [Ph.

TFor Experts

The "null" character (ASCII 0) is the culprit. On most FORTH
systems, null is actually a defined word, synonymous with [EXIT|, a
word we will discuss in Chap. 9.

3 THE EDITOR (AND STAFF) 83

A Better Non “---—--*‘7e Stack Print

Now that you know how to load longer definitions from a disk
block, here's an improved version of .S which displays the
contents of the stack non-destructively without displaying the
"stack-empty" number.

This version uses an additional word called DEPTH, which returns
the number of values on the stack. (Follow it with [].) T

If you're a beginner, you might want to enter these two
definitions into a special block all by themselves so you can
load them any time you want them.

@ (NON-DESTRUCTIVE STACK PRINT)

1

2 ! DEPTH S@ @ 's - 2/ 2- ;

3 : .8 CR DEPTH IF

4 ’§ 80 @ 4 - DO IR . -2 +LOOP
S ELSE .*" Empty "™ THEN

6

7

t FORTH-79 Standard

The Standard word set includes |Doyridi.

84

Here's a list of the

I'\A:ting —— an

LIST

LOAD

{ xxX)
FLUSH

COPY

WIPE
FORGET xxx

EMPTY

T

"y

P XXX

or

U
Upp

U xxx

or

(n

(n

(source dest —-

Ti=~ N=~--tors

(n

-)
(=)

(block line —-

)

)

Starting FORTH

FORTH words we've covered in this chapter:

Lists a disk block.

Loads a disk block (compiles
or executes).

Causes the string xxx to be
ignored by the text inter-
preter. The character) is
the delimiter.

Forces any modifications
that have been made to a
block to be written to disk.

Copies the contents of the
source block to the desti-
nation block.

Sets the contents of the
current block to blanks.

Forgets all definitions back
to and including xxx.

Forgets the entire contents
of the user's dictionary.

Types the line.

Copies the given string, if
any, into the insert buffer,
then puts a copy of the in-
sert buffer in the current
line.

Copies the given string, if
any, into the insert buffer,
then puts a copy of the in-
sert buffer in the line
the current line.

[T RN

Copies the current line into
the insert buffer, and moves
a copy of the insert buffer
into the line under the spe-
cified line in the desti-
nation block.

3 THE EDITOR (AND STAFF)

E_-|_'1__'..._ P PR a_

F or
F xxx

) or
S xXxx

D or
D xxx

TILL or
TILL XXX

I or
I xxx

R or
R xxx

T or

(n

~eg

ing

85

Copies the current line into
the insert buffer and -~
tre ° the line from tue
blcen.

o S T,

Copies the given string, if
any, into the find buffer,
then “*-ds the string in the
curren. vlock.

Copies the given string, if
any, into the find buffer,
then searches the range of
blocks, starting from the
current block and ending
with n-l, for the string.

To be used after F. I~ -3es
as many characters as are
currently in the find buffer,
going backwards from the
cursor.

Copies the given string, if
any, into the find buffer,
finds the next occurrence of
the string within the current
line, and 4-"---~ it.

Copies the given string, if
any, into the find buffer,
then deletes all characters
starting from the current
cursor position up till and
including the string.

Copies the given string, if
any, into the insert buffer,
then inserts the contents of
the insert buffer at the
point just behind the cursor.

Combines the commands E and
I to replace a found string
with a given string or the
contents of the insert
buffer.

Indicates the end of the
string to be placed in a
buffer.

86

Review of ™-~rms
Block

Buffer

Disk

EDITOR

Find buffer

Insert Buffer

Load block

Null Definition

Overlay

Pointer

Source text

Starting FORTH

in FORTH, a division of disk memory containing
up to 1024 characters of source text.

a temporary storage area for data.

a disk that has been coated with a magnetic
material so that, as in a tape recorder, a
"head" can write or read data on its surface as
the disk spins.

a vocabulary which allows a user to enter and
modify text on the disk.

in FORTH's EDITOR, a memory location in which
the string that is to be searched for is stored.
Used by [F], [E, @, ™ ', and [§].

in FORTH's EDITOR, a memory location in which
the string that is to be inserted is stored.
Used by [I], [P, and [U). In addition, [¥] moves
the line that it deletes into the insert buffer.

one block which, when loaded, itself loads the
rest of the blocks for an application.

a definition that does nothing, written in the
form:

: NAME ;

that is, a name only will be compiled into the
dictionary. A null definition serves as a
"bookmark" in the dictionary, for ™"T"7T| to
find.

a portion of an application which, when
loaded, replacgs another portion in the
dictionary.

a location in memory where a number can be
stored (or changed) as a reference to something
else,

in FORTH, the written-out form of a definition
or definitions in English-like words and
punctyation, as opposed to the compiled form
that is entered into the dictionary.

3 THE EDITOR (AND STAFF) 87

Pro-'~ms — “h=pter 3

1. a) Enter your definitions of GIFT, GIVER and THANKS from
Probs. 1 and 3 of Chap. 1 into a block, then lcad and
execute THANKS.

b) Using the EDITOR, change the person's name in the
definition of GIVER, then load and execute THANKS again.
What happens this time?

2. Try loading some of your mathematical definitions from Chap.
2 into an available block, then load it. Fool around.

4 DECISIONS, DECISIONS, ...

In this chapter we'll learn how to program the computer to make
"decisions." This is the moment when you turn your computer into
something more than an ordinary calculator.

m™-~ Conditi~~~"_Phrase

Let's see how to write a simple decision-making statement in
FORTH. Imagine we are programming a mechanical egg-carton
packer. Some sort of mechanical device has counted the eggs on
the conveyor belt, and now we have the number of eggs on the
stack. The FORTH phrase:

12 = IF FILL-CARTON THEN
tests whether the number on the stack is ¢~--" to 12, and if it is,

the word FILL-CARTON is executed. 7TF *t t, execution moves
right along to the words that follow [“.m .

QK '

The word [5] takes two and compares them to see
values off the stack whether they are equal.

89

4 DECISIONS, DECISIONS, ... 91

Remember that every ™ needs a [TL_..,
to come home to. Bou. words must be in
the same definition.

| NOW PRONOUNCE
You {IE] AND [THEN].

Here is a partial list of comparison
operz“~-~ *hat you can use before an
-wey Statement:

less- than

> (greater- than

o= [(zero equal

0< tzero—lees-than
|

0> zero-greater-thar\

The words and expect the same stack order as the arithmetic
operators, that is:

T Postfix
2 <10 is equivalent to 2 /1P<
17 > -39 is equivalent to 17 "-39 >

The words [, [0<], and expect only one value on the stack.
The value is compared with zero.

Another word, [NOT|, doesn't test any value at all; it simply
reverses whatever condition has just been tested. For example,
the phrase:

s = NOT IF ...

will execute the words after [IF], if the two numbers on the stack
are not equal.

92 Starting FORTH

lternat--~ ™hrase

FORTH allows you to provide an alternative phrase in an
statement, with the word |[ELSE|.

The following example is a definition which tests whether a
given number is a valid day of the month:

: ?DAY 32 < IF ." LOOKS GOOD " ELSE ." NO WAY " THEN ;
If the number on the stack is less than thirty-two, the message

"LOOKS GOOD" will be printed. Otherwise, "NO WAY" will be
printed.

THEN

LOOKS GOOD”

lgL;;'I t [s e o e e

:I NO 'WAY "

Imagine that .] pulls a railroad-track switch, depending on the
outcome of the test. Execution then take~ --- of two routes, but
either way, the tracks rejoin at the word [iicuy.

By the way, in computer terminology, this whole business of
rerouting the path of execution is called "branching."T

Here's a more useful example. You know that dividing any number
by zero is impossible, so if you try it on a ¢omputer, you'll get
an incorrect answer. We might define a word which only performs
division if the denominator is not zero. The following
definition expects stack items in this order:

TFor 014 Hands

FORTH has no GOTO statement. If you think you can't live without
GOTO, just wait. By the end of this book you'll be telling your
GOTO where to GOTO.

4 DECISIONS, DECISIONS, ... 93

(numerator denominator -~)

: /CHECK DUP 0= IF ," INVALID " DROP
ELSE / THEN ; T

Notice that we first have to the denominator because the
phrase
0= IF
will destroy it in the process.
Also notice that the word removes the denominator if

division won't be performed, so that whether we divide or not,
the stack effect will be the same.

Nes ool s sasany) ﬂl_L*_] ’ -
It's possible to put an . fmmEal g ..'““'““‘|..L|,,,, I[)

statement inside another ™™ .. |iuuiy oc@temenc. lu sact, you can
iet as complicated as ycu like, so long as every [IF] has one

Consider the following definition, which determines the size of

commercial eggs (extra large, large, etc.), given their weight in
ounces per dozen:

: EGGSIZE DUP 18 < IF .* REJECT * ELSE
DUP 21 < IF ." SMALL " ELSE
DUP 24 ¢ IF ." MEDIUM “ ELSE
DUP 27 < IF ." LARGE " ELSE
DUP 38 < IF ." EXTRA LARGE " ELSE
“ ERROR " H

THEN THEN THEN THEN THEN DROP :

TFor Experts
There are better ways to do this, as we'll see.
YFor People at Terminals

Because this definition is fairly long, we suggest you load it
from a disk block.

94 Starting FORTH

Once EGGSIZE has been loaded, here are some results you'd get:

23 EGGSIZT‘\ RETITNTTTIAN -ﬁ
29 EGGSIZ ARGE ok
40 EGGSIZ K T

We'd like to point out a few things about EGGSIZE:
The entire definition is a series of "nested" [IF...
statements. The word "nested" does not refer to the fac. wuac
we're dealing with eggs, but to the fact that the statements nest
inside one another, like a set of mixing bowls.
The five [THEN|s at the bottom close off the five [IF]s in reverse
order; that is:

IF

IF

IF

IF

IF

THEN THEN THEN THEN THEN
Also notice that a | ©P] is necessary at the end of the
definition to get rid o. .ue original value.
Finally, notice that the definition is visually organized to be
read easily by human beings. Most FORTH programmers would
rather waste a little space in a block (there are plenty of

blocks) than let things get any more confused than they have to
be.

tFor Trivia Buffs
Here is the official table on which this definition is based:

Extra Large 27-30
Large 24-27
Medium 21-24
Small 18-21

4 DECISIONS, DECISIONS, ... 95

A Closer Lenbk =+ TF‘]

How does the comparison operator
(=, [&l, Bl; or whichever) let
know whether the condition is true
or false? By simply leaving a one
or a zero on the stack. A one
means that the condition is true;
a zero means that the condition is
false.

In computer jargon, when one piece of program leaves a value as
a signal for another piece of program, that value is called a
"flag.ll

Try entering the following phrases at the terminal, letting E]
show you what's on the stack as a flag.

54>.1 0k
54 <. 0 ok

(It's okay to use comparison operators directly at your terminal
like this, but remember that an [IF]...[THEN statement must be
wholly contained within a definition because it involves
branching.)

will take a one as a flag that means true and a zerc -~ a flag
that means false. Now let's take a closer look at INV_ , which
reverses the flag on the stack.

0 NOT . 1 ok
1 NOT . O ok

Now we'll let you in on a little secret: ™ will take any

non-zero value to mean true.f So what, you aon: Well, the fact

TFor the Doubting Few
Just to prove it, try entering this test:
: TEST IF ." NON-ZERO " ELSE ." ZERO " THEN ; i
Even though there is no comparison operator in the above
definition, you'll still get 0 TE§™ 77m~ -~'-
1 TES'
-400 1

IFor Memory-Misers Who Read the above Footnote

: TEST IF ." NON-" THEN ." ZERO " ;

96 Starting FORTH

that an arithmetic zero is identical to a flag that means "false"
leads to some interesting results.

For one thing, if all you want to test is whether a number is
zero, you don't need a comparison operator at all. For example,
a slightly simpler version of /CHECK, which we saw earlier, could
be

: /CHECK DUP IF / ELSE ." INVALID " DROP THEN ;

Here's another in :esting result. Say

you want to test whether a number is an .33 v
even multiple of ten, such as 10, 20, 30, _:q'_:i;
40, etc. You know that the phrase - Y=

10 MOD

divides by ten and returns the
remainder only. An even multiple of
ten would produce a zero remainder, so
the phrase

10 MOD 0=

gives the appropriate "true" or "false"
flag.

If you think about it, both and do exactly the same
thing: they change zeros to ones and non-zeros to zeros. They
have different names because one makes more sense dealing with
numbers, the other with flags.

Still another interesting result is that you
can use E[(minus) as a comparison operator

which tests whether two values are "not ﬂé_})
equal." When you subtract two equal

numbers, you get zero (false); when you Dﬂ@
subtract two unequal numbers, you get a

non-zero value (true). @

And a final result is described in the next
section.

4 DECISIONS, DECISIONS, ... 97

A Tt~ Toic

It's possible to take several flags from various tests and combine
them into a single flag for one @ statement. You might combine
them as an "either/or" decision, in which you make two
comparison tests. If either or both of the tests are true, then
the computer will execute something. If neither is true, it won't.

Here's a rather simple-minded
example, just to show you what
we mean. Say you want to print
the name "ARTICHOKE" if an
input number is either negative
or a multiple of ten.

How do you do this in FORTH?
Consider the phrase:

DUP 0< SWAP 10 MOD 0= +

Here's what happens when the
input number is, say, 30:

Contents
Op~-~*~t¢ of 8=--* A
30
DUP 30 30 Duplicates it so we can test it
twice.
0< 30 0 Is it negative? No (zero).

SWAP 0 30 Swaps the flag with the number.
10 MOD 0= 0 1 Is it evenly divisible by 10? Yes
(one).

+ 1 Adds the flags.

Adds the flags? What happens when you add flags? Here are four
possibilities:

98 Starting FORTH

first flaﬂ @

Second Hag + |0

result

Lo and behold, the result flag is true if either or both
conditions are true. In this example, the result is one, which
means "true." If the input number had been -30, then both
conditions would have been true and the sum would have been two.
Two is, of course, non-zero. So as far as is concerned, two is
as true as one.

Our simple-minded definition, then, would be:

: VEGETABLE DUP 0< SWAP 10 MOD 0= +
IF ." ARTICHOKE " THEN ;

Here's an improved version of a previous example called ?DAY.

The old ?DAY only caught entries over thirty-one. But negative
numbers shouldn't be allowed either. How about this:

: ?2DAY DUP 1 < SWAP 31 > +
IF ." NO WAY " ELSE ." THANK YOU " THEN ;

The above two examples will always work because any "true" flags
will always be exactly "1l." In some cases, however, a flag may
be any non-zero value, not just "1," in which case it's dangerous
to add them with [#]. For example,

1-1+. " ok

gives us a mathematically correct answer but not the answer we
want if 1 and -1 are flags.

For this reason, FORTH supplies a word called vn, which will
return the correct flag even in the case of 1 and -1. An "or
decision" is the computer term for the kind of flag combination
we've been discussing. For example, if either the front door or
the back door is open (or both), flies will come in.

Another kind of decision is called an "and" decision. 1In an

4 DECISIONS, DECISIONS, ... 99

"and" decision, both conditions must be true for the result to be
true. For example, the front door and the back door must both be
open for a breeze to come through. If there are three or more
conditions, they must all be true.

How can we “~ *his in FORTH? By using the handy word [AND|.
Here's what | would do with the four possible combinations of
flags we sawlier:

AND] (@), | [aND

R

&
>
s |

In other words, only the combination "1 1 AND" produces a result
of one.

Let's say we're looking for a cardboard box that's big enough to
fit a disk drive which measures:

height 6"
width 19"

length 22"

The height, width, and length requirements all must be satisfied
for the box to be big enough. If we have the dimensions of a box
on the stack, then we can define:

tFor the Curious Newcomer

The use of words like "or" and "and" to structure part of an
application is called "logic." A form of notation for logical
statements was developed in the nineteenth century by George
Boole; it is now called Boolean algebra. Thus the term "a
Boolean flag®™ {(or even just "a Boolean") simply refers to a flag
that will be used in a logical statement.

100 Starting FORTH

: BOXTEST (length width height —)
6 > ROT 22 > ROT 19 > AND AND
IF ." BIG ENOUGH " THEN ;

Notice that we've put a comment inside the definition, to remind
us of stack effects. This is particularly wise when the stack
order is potentially confusing or hard to remember.

You can test BOXTEST with the phrase:

23 20 7 BOXTEST BIG ENOUGH ok

As your applications become more sophisticated, you will be able
to write statements in FORTH that look like postfix English and
are very easy to read. Just define the individual words within
the definition to check some condition somewhere, then leave a
flag on the stack.

An example is:
: SNAPSHOT ?LIGHT ?FILM AND IF PHOTOGRAPH THEN ;
which checks that there is available light and that there is film

in the camera before taking the picture. Another example, which
might be used in a computer-dating application, is:

: MATCH HUMOROUS SENSITIVE AND
ART.LOVING MUSIC.LOVING OR AND SMOKING NOT AND
IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

where words like HUMOROUS and SENSITIVE have been defined to
check a record in a disk file that contains information on other
applic 1ts of the appropriate sex.

4 DECISIONS, DECISIONS, ... 101

question—dupe

Tw~ wg-3- --ith Built-in [IFjs

abort-quote

|E uu:'l

The word duplicates the top stack value only if it is
non-zero. This can eliminate a few surplus words. For example,
the definition

: /CHECK DUP IF / ELSE DROP THEN ;
can be shortened to:

: /CHECK ?DUP IF / THEN ;

nounl "

It may happen that somewhere in
a complex application an error
might occur (such as division by
zero) way down in one of the
low-level words. When this
happens you don't just want the
computer to keep on going, and
you also don't want it to leave
anything on the stack.

If you think such an error might
o~ yo~ ~-n use the word
B e " expects a flag
on the stack: a "true" flag
tells it to "abort," which in
turn clears the stack and returns
execution to the terminal,
waiting for ~omeone to type
something. [...ORT"| also prints
the name of the last interpreted
word, as well as whatever
message you want.t

Let's illustrate. We hope you're not sick of /CHECK by now,
because here is yet another version:

: /CHECK DUP 0= ABORT" ZERO DENOMINATOR " / ;

t FORTH-79 Standard

The Standard includes the word |[ABORT|, which differs from
only in that it does not issue an error message.

102 Starting FORTH

In this version, if the denominator is zero, any numbers that
happen to be on the stack will be dropped and the terminal will
show:

8 0 /CHECK_/CHE™™ ~“ERO DENOMINATOR

Just as an experiment, try putting /CHECK inside another
definition:

: ENVELOPE /CHECK ." THE ANSWER IS " . ;
and try

8 4 ENVELOPE THE ANSWER IS 2 ok
8 0 ENVELOPE _ENVELOPE ZERQ DENOMIN™™"R

The point is that when /CHECK aborts, the rest of ENVELOPE is
skipped. Also notice that the name ENVELOPE, not /CHECK, is
printed.

A useful word to use in conjunction with ™=ro™™ jg |?S;..JK|, which
checks for stack underflow and returns « wu< ..ag if it finds it.
Thus the phrase:

?STACK ABORT" STACK EMPTY "
aborts if the stack has underflowed.

FORTH uses the identical phrase, in fact. But it waits until all

of your definitions have stopped executing before it performs the
?STACK| test, because checking continuously throughout execution

we "7 ~ -~ "ler~" -“low down the computer.? You're free to insert
a |A ’| phrase at any critical or not-yet-tested
PCs cuv.. - your application.

t For Computer Philosophers

FORTH provides certain error checking automatically. But because
the FORTH operating system is so easy to modify, users can
readily control the amount of error checking their system will
do. This flexibility lets users make their own tradeoffs between
convenience and execution speed.

4 DECISIONS, DECISIONS, ...

103

Here's a list of the FORTH words we've covered in this chapter:

IF xxx
ELSE yyy
THEN zzz

0<

0>

NOT

AND
OR

?DUP

ABORT" xxx "

?STACK

L

IF

(nl n

(£-—-)

2—10

(nl n2 —- n-diff)

(nl n2 — f)
(nl n2 - f)
(n — 0
(n — 10
(n — £
(£ — 9

(nl n2 — and)

(nl n2 — or)

(n —
(0 -

(£ —

n n) or
0)

)

f)

If f is true (non-zero) exe-
cutes xxx; otherwise executes
YYY: continues with zzz
regardless. The phrase ELSE
YYY is optional.

Returns true if nl and n2 are
equal.

Returns true (i.e., the
non-zero difference) if nl
and n2 are not equal.

Returns true if nl is less
than n2.

Returns true if nl is greater
than n2.

Returns true if n is zero
(i.e., reverses the truth
value).

Returns trye if n is nega-
tive.

Returns true if n is positive.

Reverses the result of the
previous test; equivalent to

Returns the logical AND.
Returns the logical OR.

Duplicates only if n is non-
Zero.

If the flag is true, types out
the last word interpreted,
followed by the text. Also
clears the user's stacks and
returns control to the
terminal., If false, takes no
action.

Returns true if a stack
underflow condition has
occurred.

104

Review ~ ~

Abort

"And" decision

Branching

Comparison
operator

Conditional
operator

Flag

Logic

Nesting

"Or" decision

Starting FORTH

as a general computer term, to abruptly cease
execution if a condition occurs which the
program is not designed to handle, in order to
avoid producing nonsense or possibly doing
damage.

two conditions that are combined such that if
both of them are true, the result is true.

breaking the normally straightforward flow of
execution, depending on conditions in effect
at the time of exection. Branching allows the
computer to respond differently to different
conditions.

in general, a command that compares one Vvalue
with another (for example, determines whether
one is greater than the other) and sets a flag
accordingly, which normally will be checked by
a conditional operator. In FORTH, a
comparison operator leaves the flag on the
stack.

a word, such as |IF|, which routes the flow of
execution differently depending on some
condition (true or false).

as a general computer term, a valie stored in
memory which serves as a signal as to whether
some known condition is true or false. Once
the "flag is set," any number of routines in
various parts of a program may check (or reset)
the flag, as necessary.

in computer terminology, the system of
representing conditions in the form of "logical
variables," which can be either true or false,
and combining these variables using such
"logical operators" as "and," "or," and "not,"
to form statements which may be true or false.

placing a branching structure within an outer
branching structure.

two conditions that are combined such that if
either of them is true, the result is true.

4 DECISIONS, DECISIONS, ... 105

P..-L'I —— [a) "SRR B 4

(answers in the back of the book)

1.

What will the phrase
0= NOT
leave on the stack when the argument is
1?
0?
200?
Explain what an artichoke has to do with any of this.
Define a word called CARD which, given a person's age on the
stack, prints out either of these two messages (depending on

the relevant laws in your area):

ALCOHOLIC BEVERAGES PERMITTED or
UNDER AGE

Define a word called SIGN.TEST that will test a number on
the stack and print out one of three messages:

POSITIVE or
ZERO or
NEGATIVE

In Chap. 1, we defined a word called STARS in such a way
that it always prints at least one star, even if you say

0 STAR™ * -*

Using the word STARS, define a new version of STARS that
corrects this problem.

Write the definition for a word called WITHIN which expects
three arguments:

(n low-limit hi-limit ——)
and leaves a "true" flag only if "n" is within the range

low-limit < n < hi-limit

106

Starting FORTH

Here's a number-guessing game (which you may enjoy writing
more than anyone will enjoy playing). First you secretly
enter a number onto the stack (you can hide your number
after entering it by executing the word PAGE, which clears
the terminal screen). Then you ask another player to enter a
guess followed by the word GUESS, as in

100 GUESS

The computer will either respond "TOO HIGH," "TOO LOW," or
"CORRECT!" Write the definition of GUESS, making sure that
the answer-number will stay on the stack through repeated
guessing until the correct answer is guessed, after which the
stack should be clear.

Using nested tests and [IH...[E......[THEN| statements, write a
definition called SPELLER which will spell out a number that
it finds on the stack, from -4 to 4. If the number is outside
this range, it will print the message "OUT OF RANGE." For
example:

2 SPELLEP ™WO ok
-4 SPELLL., NEGATIVT ©nmo ~k
7 SPELLER ~ ~F_

Make it as short as possible. (Hint: the FORTH word
gives the absolute value of a number on the stack.)

Using your definition of WITHIN from Prob. 5, write another
number—guessing game, called TRAP, in which you first enter a
secret value, then a second player tries to home in on it by
trapping it between two numbers, as in this dialogue:

0 1000 TRAP_BETWEEN ok
330 660 TRAP BETWEEN ok
440 550 TRAP K-~ ~— - ok
330 440 TRAP E -

and so on, until the player guesses the answer:
391 391 TRAP_ Yy~ ~"™ Tl ok
Hint: you may have to modify the arguments to WITHIN so

that TRAP does not say "BETWEEN" when only one argument is
equal to the hidden value.

5 THE PHILOSOPHY OF FIXED POINT

In this chapter we'll introduce a new batch of arithmetic
operators. Along the way we'll tackle the problem of handling
decimal points using only whole-number arithmetic.

Quickie Of -—-tors

Let's statt with the real easy stuff. You should have no trouble
figuring out what the words in the following table do.T

pronounced:
1+ (n — n+l) Adds one.

1- (n — n-1) Subtracts one. one-minus

24 (n — n+2) Adds two.

2- (n —— n-2) Subtracts two. two-minus

o% (n - n*2) Multiplies by two({ +wo-star
(arithmetic left
shift).

2/ (h — n/2) Divides by two (G slash
(arithmetic right wo-s|
shift).

- S

The reason they have been defined as words in your FORTH system
is that they are used very frequently in most applications and
even in the FORTH system itself.

tFor Beginners

We'll explain what "arithmetic left shift" is later on.

107

108 Starting FORTH

There are three reasons to use a word such as [I#], instead of one
and [¥], in your new definitions. First, you save a little
dictionary space each time. Second, since such words have been
specially defined in the "machine language" of each individual
type of computer to take advantage of the computer's
architecture, they execute faster than one and . Finally, you
save a little time during compilation.

). ".__Operators

Here's a table of four miscellaneous
math operators. Like the gquickie
operators, these functions should be
obvious from their names.

Aunt Min and Uncle Max

ABS {n — [n)) Returns the absolute value. —l
absolute

NEGATE (n - =n) Changes the sign.
MIN (nl n2 -~ n-min) Returns the minimum.

MAX (nl n2 -- n-max) Returns the maximum.

Here are two simple word problems, using and [MIN|:

Write a definition which computes the difference between two
numbers, regardless of the order in which the numbers are
entered.

: DIFFERENCE - ABS ;
This gives the same result whether we enter

52 37 DIFFERENCE . 15 ok or
37 52 DIFFERENCE ._15 ok

5 THE PHILOSOPHY OF FIXED POINT 109

MIN

Write a definition which computes the commission that furniture

salespeople will receive if they've been promised $50 or 1/10 of
the sale price, whichever is less, on each sale they make.

: COMMISSION 10 / 50 MIN ;
Three different values would produce these results:

600 COMMISSION . 50 ok
450 COMMISSION . & ~*
50 COMMISSION . L ..

The Retur~ <+-~ck

We mentioned before that there were still some stack manipulation
operators we hadn't discussed yet. Now it's time.

Up till now we've been talking about "the stack" as if there were
only one. But in fact there are two: the "parameter stack" and
the "return stack." The parameter stack is used more often by
FORTH programmers, so it's simply called "the stack" unless there
is cause for doubt.

As you've seen, the parameter stack holds parameters (or
"arguments”) that are being passed from word to word. The return
stack, however, holds any number of "pointers" which the FORTH
system uses to make its merry way through the maze of words that
are executing c¢*-~r words. We'll elaborate later on.

You the user can employ the return stack as a kind of "extra
hand” to hold values temporarily while you perform operations on
the parameter stack.

% ‘

- 713
2

PARA- [@ | [KerunN
METER STACK N !
STACK| [@ n&@

110 Starting FORTH

—_—

1
2
3

' L_%

The return stack is a last-in first-out structure, just like the
parameter stack, so it can hold many values. But here's the
catch: whatever you put on the return stack you must remove
again before you get to the end of the definition (the
semicolon), because at that point the FORTH system will expect to
find a pointer there. You cannot use the return stack to pass
parameters from one word to another.

The following table lists the words associated with the return
stack. Remember, the stack notation refers to the - -~--— 2ter
star’

>R (n —) Takes a value off
the parameter
stack and pushes
it onto the return
stack.

R> (--n) Takes a value off
the return stack
and pushes it onto
the parameter
stack.

I {(— n) Copies the top of
the return stack
without affecting

it.
T (=—n) Copies the seco~* I-pr'm'!e)
item Of the retu.u

stack without af-
fecting it.

J { — n) Copies the "~ (T
item of the iceuin
stack without af-
fecting it.

5 THE PHILOSOPHY OF FIXED POINT 111

The words and transfer a value to and from the return

stack, respectively. In the cartoon above, where the stack
effect was:

231—321
This is the phrase that did it:
>R SWAP R>
Each and its corresponding must be used together in the

same definition or, if executed interactively, in the same line of
input (before you hit the RETURN key).

The other three words--[I}, [I"], and [J-—only copy values from the
return stack without removing them. Thus the phrase:

>R SWAP I
would produce the same result as far as it goes, but unless you

clean up your trasht before the next semicolon (or return key),
you will crash the system.

To see how [>R], [R>], and might be used, imagine you are so
unlucky as to need to solve the equation:
ax? + bx + ¢
with all four values on the stack in the following order:
(abcx+)

(remember to factor out first).

tYou might call such an error in your program a "litter bug.

112 Starting FORTH

Parameter Return
Op--~%or Stack st---
abecx
>R abc X
SWAP ROT cba X
I cbax X
* ¢ b ax X
+ c (ax + b) X
R> * c x(ax+b)
+ x (ax+b)+c

Go ahead and try it. Load the following definition:

: QUADRATIC (abcx =n)
>R SWAP ROT I * + R> * + ;

Now test it:
2793 QUADRATIC_‘."‘ “‘_

One more note (it's a little off the subject, but this is the first
chance we've had to note it): you have now learned two different
words with the name (remember the EDITOR's "insert" word?).
The reason the same name can refer to two separate definitions,
depending on the context, is that the words are in different
vocabularies.

We briefly mentioned earlier that the EDITOR is a vocabulary.
You can get into the EDITOR vocabulary automatically by using
certain EDITOR commands, such as [T]. Another vocabulary is
called FORTH, which contains all the other predefined words
we've covered so far., You can get back into the FORTH
vocabulary by starting to compile a new definition (that is, when
the interpreter sees the word |i]).

We mention all this now simply to amaze and impress you. The
real discussion of vocabularies comes in a future chapter.

5 THE PHILOSOPHY OF FIXED POINT 113

An Introd-—*‘on to Floating ™-*-* *-**“—etic

There are many controversies surrounding FORTH. Certain
principles which FORTH programmers adhere to religiously are
considered foolhardy by the proponents of more traditional
languages. One such controversy is the question of “"fixed-point
representation” versus "floating-point representation.”

If you already understand these terms, skip ahead to the next
section, where we'll express our views on the controversy. If
you're a beginner, you may appreciate the following explanation.

First, what does floating point mean? Take a pocket calculator,
for example. Here's what the display looks like after each entry:

You enter: Display reads:
1 .5 0 x 1.5
2 . 2 3 2,23
= 3.345

The decimal point "floats" across the display as necessary. This
is called a "floating point display."

"Floating point representation" is a way to store numbers in
computer memory using a form of scientific notation. 1In
scientific notation, twelve million is written:

12 x 106

since ten to the sixth power equals one million. In many
computers twelve million could be stored as two numbers: 12 and
6, where it is understood that 6 is the power of ten to be
multiplied by 12, while 3.345 could be stored as 3345 and--3.

The idea of floating-point representation is that the computer
can represent an enormous range of numbers, from atomic to
astronomic, with two relatively small numbers.

What is fixed-point representation? It is simply the method of
storing numbers in memory without storing the positions of each
number's decimal point. For example, in working with dollars and
cents, all values can be stored in cents. The pr----— rather
than each individual number, can remember the locac.vu of the
decimal point.

For example, let's compare fixed-point and floating-point
representations of dollars-and-cents values.

114 Starting FORTH

Real-world Fixed-point Floating-point

Val-~ Repi o P~--~gentation
1.23 123 123(=2)
10.98 1098 1098 (~2)
100.00 10000 1(2)
58.60 5860 586 (~1)

As you can see, with fixed-point all the values must conform to
the same "scale."” The decimal poir must be properly "aligned"
(in this case two places in from the right) even though they are
not actually represented. With fixed-point, the computer treats
all the numbers as through they were integers. If the program
needs to print out an answer, however, it simply inserts the
decimal point two places in from the right before it sends the
number to the terminal or to the printer.

Why ™"™mH P--qra—~~~s Advocate F®--° ™-‘t

Many respectable languages and many distinguished programmers
use floating-point arithmetic as a matter of course. Their
opinion might be expressed like this: "Why should I have to
worry about moving decimal points around? That's what computers
are for."

That's a valid question--in fact it expresses the most significant
advantage to floating-point implementation. For translating a
mathematical equation into program code, having a floating-point
language makes the programmer's life easier. .

The typical FORTH programmer, however, perceives the role of a
computer differently. A FORTH programmer is most interested in
maximizing the efficiency of the machine. That means he or she
wants to make the program run as fast as possible and require as
little computer memory as possible.

To a FPORTH programmer, if a problem is worth doing on a computer
at all, it is worth doing on a computer well. The philosophy is,
"If you just want a quick answer to a few calculations, you might
as well use a hand-held calculator." You won't care if the
calculator takes half a second to display the result. But if you
have invested in a computer, you probably have to repeat the
same set of calculations over and over and over again.
Fixed-point arithmetic will give you the speed you need.

Is the extra speed that noticeable? Yes, it is. A floating=-point
multiplication or division can take three times as long as its
equivalent fixed-point calculation. The difference is really
noticeable in programs which have to do a lot of calculations

5 THE PHILOSOPHY OF FIXED POINT 115

before sending results to a terminal or taking some action.T
Most mini- and microcomputers don't "think" in floating-point;
you pay a heavy penalty for making them act as though they do.

Here are sor of the reasons you might prefer to have
floating-point capability.

1. You want to use your computer like a calculator on
floating-point data.

2, You value the initial programming time more highly than
the execution time spent every time the calculation is
performed.

3. You want a number to be able to describe a very large
dynamic range {greater than -2 billion to +2 billion).

4, Your system includes a discrete hardware floating-point
multiply (a separate "chip" whose only job is to perform
floating-point multiplication at super high speeds).

tFor Experts

Many professional FORTH programmers who have been writing
complex applications for years have never had to use
floating-point. And their applications often involve solutions
of differential equations, Fast Fourier Transforms, non-linear
least squares fitting, linear regression, etc. Problems that
traditionally required a main-frame have been done on slower
minicomputers and microprocessors, in some cases with an overall
‘-~~gase in computation rate.

Most problems with physical inputs and outputs, including weather
modeling, image reconstruction, automated electrical
measurements, and the like all involve input and output variables
that inherently have a dynamic range of no more than a few
thousand to one, and thus fit comfortably into a 16-bit integer
word. Intermediate calculation steps (such as summation) can be
handled by the judicious use of scaling and double-length
integers where required. For example, one common calculation
step might involve multiplying each data point by a parameter (or
by itself) and summing the result. In fixed point, this would be a
16 x 16-bit multiply and 32-bit summation. In floating-point,
numbers are likely stored as 24-bit mantissa and 8-bit exponents.
The 24-bit multiply will take about 1.5 times longer and the 32-bit
addition 3-10 times longer than in fixed point. There is also the
overhead of floating all the input data and fixing all the output
data, approximately equal to one floating-point addition each.
When these operatjions are performed thousands or millions of
times, the overall saving by remaining in integer form is
enormous.

116 Starting FORTH

All of these are valid reasons. Even Charles Moore, perhaps the
staunchest advocate of simplicity in the programming community,
has occasionally employed floating-point routines when the
hardware supported it. Other FORTH programmers have written
floating-point routines for their mini- and microcomputers. But
the mainstream FORTH philosophy remains: "In most cases, you
don't need to pay for floating-point.”

FORTH backs its philosophy by supplying the programmer with a
unique set of high-level commands called "scaling operators."
We'll introduce the first of these commands in the next section.
(The final example in Chap. 12 illustrates the use of scaling
techniques.)

Here's a math operator that is as useful as it is unusual: [*/.

*/ (nl n2 n3 — Multiplies, then di-
n-result) vides (nl*n2/n3). Uses
a 32-bit intermediate
result.
star-siash
[y |

As its name implies, performs multi-
plication, then divis.vu. For example,
let's say that the stack contains these
three numbers:

(225 32 100 —)
[7 will first multiply 225 by 32, then
urvide the result by 100.

This operator is particularly useful as an
integer-arithmetic solution to problems
such as percentage calculations.

For example, you could define the word % like this:
: % 100 */ ;
so that by entering the number 225 and then the phrase:

32 %

118 Starting FORTH

The previous example brings up another question: how to round
off.

Let's assume that this is the problem:

If 32% of the students eating at the school cafeteria usually
buy bananas, how many bananas should be on hand for a crowd
of 225? Naturally, we are only interested in whole bananas,
so we'd like to round off any decimal remainder.

As our definition now stands, any value to the right of the
decimal is simply dropped. In other words, the result is
"truncated."

32% of: Re: 3
225 = 72.00 72 —— exactly correct
226 = 72.32 72 — correct, rounded down
{truncated)
227 = 72.64 72 — truncated, not rounded.

There is a way, however, with any decimal value of .5 or higher,
to round upwards to the next whole banana. We could define the
word R%, for "rounded percent," like this:

:R% 10 */ 5+ 10 /;
so that the phrase:

227 32 R% .

will give you 73, which is correctly rounded up.

Notice that we first divide by 10 rather than 100. This gives us
an extra decimal place to work with, to which we can add five:

Stack
Operr*i~1 Contents

227 32 10
*/ 726
5+ 731
10 / 73

5 THE PHILOSOPHY OF FIXED POINT 119

The final division by ten sets the value to its rightful decimal
position. Try it and see.f

A disadvantage to this method of rounding is that you lose one
decimal place of range in the final result; that is, it can only
go as high as 3,276 rather than 32,767. But if that's a problem,
you can always use double-length numbers, which we'll introduce
later, and still be able to round.

. s

Sor- T™--sp Scaling

Let's back up for a minute. Take the simple problem of computing
two-thirds of 171. Basically, there are two ways to go about it.

1. We could compute the value of the fraction 2/3 by
dividing 2 by 3 to obtain the repeating decimal .666666,
etc. Then we could multiply this value by 171. The
result would be 113.9999999, etc., which is not quite right
but which could be rounded up to 114.

2. We could multiply 171 by 2 to get 342. Then we could
divide this by 3 to get 114.

Notice that the second way is simpler and more accurate.
Most computer languages support the first way. "You can't have a
fraction like two-thirds hanging around inside a computer,” it is

believed, "you must express it as .666666, etc."

FORTH supports the second way. lets you have a fraction like
two-thirds, as in:

171 2 3 */

Now that we have a little perspective, let's take a slightly more
complicated example:

) —_—

tFor Experts
An even faster definition:

: R 50/ 1+ 2/;

120

Starting FORTH

We want to distribute $150 in proportion to two values:T

7,105 ?
5,145 ?
12,250 150

Again, we could solve the problem this way:

and

(7,105 / 12,250) x 150

(5,145 / 12,250} x 150

but for greater accuracy; we should say:

and

(7,105 x 150) / 12,250

(5,145 x 150) / 12,250

which in FORTH is written:

then

7105 150 12250 */

5145 150 12250 */

. 87 ok

7 ok

It can be said that
the values 87 and 63
are "scaled" to 7105
and 5145. Calculating
percentages, as we
did earlier, is also a
form of scaling. For
this reason,g@ is
called a "scaling
operator.”

tFor Beginners Who Like Word-problems

Here's a word-problem for the above example:

The boss says he'll divide a $150 bonus between the two
top-selling marketing representatives according to their monthly

commissions.
commissions are $7,105 and $5,145.

each marketing rep get?

When the receipts are counted, the top two
How much of the bonus does

5 THE PHILOSOPHY OF FIXED POINT 121

Another scaling operator in FORTH is |[*;muyt

* /MOD (ul u2 u3 - Multiplies, then L
u-rem u-result) divides (ul*u2/u3). Stal'-slqsh-
Returns the re- mad
mainder and the
guotient. Uses a
double-length in-
termediate ﬂ-:-_s_u]"

We'll let you dream up a good example for yourself,

Using Rational »----—imations?

So far we've only used scaling operations to work on rational
numbers. They can also be used on rational approximations of
irrational constants, such as pi or the square root of two. For
example, the real value of pi is

3.14159265358, etc.

but to stay within the bounds of single-length arithmetic, we
could write the phrase:

31416 10000 */
and get a pretty good approximation.

Now we can write a definition to compute the area of a circle,
given its radius. We'll translate the formula:

Tr2

into FORTH. The value of the radius will be on the stack, so we
DUP| it and multiply it by itself, then star-slash the result:

tFor Math-block Victims:

You can skip this section if it starts making your brain itch. But
if you're feeling particularly smart today, we want you to know
that ...

A rational number is a whole number or a fraction in which the
numerator and denominator are both whole numbers. Seventeen is
a rational number, as is 2/3. Even 1.02 is rational, because it's
the same as 102/100. -2, on the other hand, is irrational.

122 Starting FORTH

: PI DUP * 31416 10000 */ ;
Try it with a circle whose radius is ten inches:
10 PI . 314 ok

But for even more accuracy, we might wonder if there is a pair of
integers besides 31416 and 10000 that is a closer approximation to
pi. Surprisingly, there is. The fraction:

355 113 */

is accurate to more than six places beyond the decimal, as
opposed to less than four places with 31416.

Our new and improved definition, then, is:
: PI DUP * 355 113 */ ;

It turns out that you can approximate nearly any constant by

many different pairs of _Jdmtegers, all numbers less than 32768, with
an error of less than 107°.%

TFor Really Dedicated Mathephiles

Here's a handy table of rational approximations to various
constants:

Nur---- App: ° tion Error
T o= 3.141 ... 355/ 113 8.5 x 10°*
V2 o= 1.414 .., 19601/13860 1.5 x 10°
V3 = 1.732 ... 18817/10864 1.1 x 10°
= 2.718 ... 28667/10546 5.5 x 107
vav = 3.162 .., 22936/ 7253 5.7 x 10°
Y2 = 1.059 ... 26797/25293 1.0 x 10°
logy 2/1.6384 = 0.183 ... 2040/11103 1.1 x 10°
In2/16.384 = 0.042 ... 485/11464 1.0 x 107
.001° /22-bit rev = 0.858 ... 18118/21109 1.4 x 10°
arc-sec/22-bit rev = 0.309 ... 9118/29509 1.0 x 10°
e = 2.9979248 24559/ 8192 1.6 x 10*

5 THE PHILOSOPHY OF FIXED POINT

Here's a list of the

1+
1~
2+
2-
2%

2/

ABS
NEGATE
MIN
MAX

>R

R>

Il

*/

* /MOD

123

FORTH words we've covered in this chapter:

(n =— n+l)

(n -- n-1)

(n =— n+2)

(n == n-2)

(n — n*2)

(n —— n/2)

(n = |nj)

(n == -n)

(nl n2 — n-min)

(nl n2 —— n-max)

(n —)

(—n)

(--n)

(—n)

{ ~—n)

(nl n2 n3 -
n-result)

{ul u2 ud3 —

u-rem u-result)

Adds one.
Subtracts one.
Adds two.
Subtracts two.

Multiplies by two (arithmetic
left shift)

Divides by two (arithmetic
right shift)

Returns the absolute value.
Changes the sign.

Returns the minimum.

Returns the maximum.

Takes a value off the
parameter stack and pushes it
onto the return stack.

Takes a value off the return
stack and pushes it onto the

parameter stack.

Copies the top of the return
stack without affecting it.

Copies the second item of
the return stack without
affecting it.

Copies the third item of the
return stack without af-
fecting it.

Multiplies, then divides (ul*
n2/n3). Uses a 32-bit interme-
diate result.

Multiplies, then divides (ul*
u2/u3). Returns the remain-
der and the quotient. Uses a
double-length intermediate
result.

124

P-—-i-w of Terms

Double~length
intermediate
result

Fixed-point
arithmetic

Floating-point
arithmetic

Parameter Stack

Return stack

Scaling

Starting FORTH

a double-length value which is created
temporarily by a two-part operator, such as[:Z,
so that the "intermediate result" (the result of
the first operation) is allowed to exceed the
range of a single-length number, even though
the initial arguments and the final result are
not.,

arithmetic which deals with numbers which do
not themselves indicate the location of their
decimal points. Instead, for any group of
numbers, the program assumes the location of
the decimal point or keeps the decimal
location for all such numbers as a separate
number.

arithmetic which deals with numbers which
themselves indicate the location of their
decimal points. The program must be able to
interpret the true value of each individual
number before any arithmetic can be performed.

in FORTH, the region of memory which serves as
common ground between various operations to
pass arguments (numbers, flags, or whatever)
from one operation to another.

in FORTH, a region of memory distinct from the
parameter stack which the FORTH system uses to
hold "return addresses" (to be discussed in
Chap. 9), among other things. The user may
keep values on the return stack temporarily,
under certain conditions.

the process of multiplying (or dividing) a
number by a ratio. Also refers to the process
of multiplying (or dividing) a number by a
power of ten so that all values in a set of
data may be represented as integers with the
decimal point assumed to be in the same place
for all values.

5 THE PHILOSOPHY OF FIXED POINT 125

Problems Chapt~~- £

1. Translate the following algebraic expression into a FORTH
definition:

ab
c

given (abc¢c —)
2. Given these four numbers on the stack:
(6 70 123 45 -)

write an expression that prints the largest value.
Practi-- in “~1ling

3. In "calculator style," convert the following temperatures,
using these formulas:

Oc = " - 32
o

OF =(°Cc x 1.8) + 32
Ok =%c + 273

(For now, express all arguments and results in whole
degrees.)

a}) 0° F in Centigrade

b) 212° F in Centigrade
¢} -32° F in Centigrade
d) 16° C in Fahrenheit
e) 233° K in Centigrade

4, Now define words to perform the conversions in Prob. 3.
Use the £ wing names:

F>C F>XK C>F C>K K>F K>C

Test them with the above values.

6 THROW IT FOR A LOOP

In Chap. 4 we learned to program the computer to make
"decisions™ by branching to different parts of a definition
depending on the outcome of certain tests. Conditional
branching is one of the things that make computers as useful as
they are.

In this chapter, we'll see how to write definitions in which
execution can conditionally branch back to an earlier part of
the same definition, so that some segment will repeat agaih and
again. This type of control structure is called a "loop." The
ability to perform loops is probably the most significant thing
that makes computers as powerful as they are. If we can program
the computer to make out one payroll check, we can program it to
make out a thousand of them.

For now we'll writTe loops that do simple things like printing
numbers at your terminal. In later chapters, we'll learn to do
much more with them.

D-S-*ta J---- A mﬁl

One type of loop structure is called a "definite loop." You, the
programmer, specify the number of times the loop will loop. In
FORTH, you do this by specifying a beginning number and an
ending number (in reverse order) before the word . Then you
the w~~9~ which you want to have repeated between the words

DO and [Lo..,. For example

: TEST 10 0 DO CR ." HELLO " LOOP ;

will print a carriage return and "HELLO" ten times, because zero
from ten is ten.

127

128 Starting FORTH

TEST
HELLQ
HELLO
Like ~- 'IF[.../THEN| statement, which also involves branching, a

uJOP| statement must be contained within a (single)
definition.

The ten is called the "limit" and the zero is called the "index."

FORMULA:

limit index DO ... LOOPt

Here's what happens inside a [BQ]...[LCo. .

ot

KtT;;”
STACK

[N

v M . s .
First [DO]* puts the index and the limit on the return stack.

{For the Timid Beginner
Go ahead! Nobody's looking.
: TEST 1000 0 DO ." I'M GOING LOOPY! " LOOP ;

Go on, execute itl How often have you been able to tell anyone
to do something a thousand times?

Yhalf-brother of the DODO bird.

130 Starting FORTH

Remember that the FORTH word ™ copies the top of the return
stack onto the parameter stack. ..u can use to get hold of the
current value of the index each time around. Consider the
definition

¢ DECADE 100 DO I . LOOP ;
which executes like this:

DECADE " * °°> " 56 796 ok

Of course, you could pick any range of numbers (within the range
of -32768 to +32767):

: SAMPLE -243 -250 DO I . LOOP ;

SAMPLE -P=M 240 -248 747 _Dac M= a4 ok

Notice that even negative numbers increase by one each time.
The limit is always higher than the index.

You can leave a number on the stack to serve as an argument to
something inside a loop. For instance,

: MULTIPLICATIONS CR 111 DO DUP I * . LOOP DROP ;
will produce the following results:

7 MULTIPLICATIONS
7.1* ™ ™ o+ 49 56 63 70 ok

Here we're simply multiplying the current value of the index by
seven each time around. Notice that we have to ™ the seven
inside the loop so that a copy will be available caw..u time and
that we have to it after we come out of the loop.

A compound interest problem gives us the opportunity to
demonstrate some trickier stack manipulations inside a loop-

Given a starting balance, say $1000, and an interest rate, say 6%,
let's write a definition to compute and print a table like this:

1000 6 COMPOUND
YEAR 1 BALANCE 1060
YEAR 2 BALANCE 1124
YEAR 3 BALANCE 1191
etc.

for twenty years.

First we'll load R%, our previously-defined word from Chap. 5,
then we'll define

6 THROW IT FOR A LOOP 131

+ COMPOUND (amt int —)
SwAP 21 1 DO ." YEAR " I . 3 SPACES
2DUP R% + DUP ." BALANCE " . CR LOOP 2DROP ;

’

BALANCE

INTEREST
-y o] RaTe Eapn
RUNNING
BALANCE

NEW
BALANCE

DALANCE BALANCE

L RATE RATE
-

Each time through the loop, we do a [2DUP| so that we always
maintain a running balance and an unchanged i-*~--st rate for

the next go-round. When we're finally done, we E them.

INTEneS1

oare

[N

T lfy

The index can also serve as a condition for an statement. 1In
this way you can make something special happen on certain passes
through the loop but not on others. Here's a simple example:

: RECTANGLE 256 0 DO I 16 MOD 0= IF
CR THEN ." *" LOOP ;

RECTANGLE will print 256 stars, and at every sixteenth star it

will also perform a carriage return at your terminal. The result
should look like this:

90 2K 2K 20 200 2 2 3 HOROK K OKOK K K
40 2K 20 2 2 2 2 3K OK K K XK K
a8 38 2k 2K 2 2K 3 K R KK K K K K K
958 3K 2 25 % K 3 K A KO K K
95 8 Bk 3 2K K KK K KK K K
3K K I K 2K 3 K 2K 3K 2K K K K K
35K 5% K K K K K 3K K K K K
35 3 3 2 2 20 2 KK K K AR XK
o5 30K oK 2K 2K 20K ok K XK KK K K
95 2K 2 2 2K 2 3 HOK K O K K
90 3K 3 2 2 A oK 2 R A K K ok K
o038 b 2 K K K OK KK KK KK
o8 38 b 2K 2 0 2 2K R KK K KK
90 2 2K 2 2 2 2 8 K HOK 3 3OK XK K
98 3K 20 2 20 2 2K K KK 3K K K
0k 2K 2 25 3 o A 3K K K HOK K

132 Starting FORTH

And here's an example from the world of nursery rhymes. We'll
let you figure this one out.

:POEM CR11DOI. ." LITTLE "

I3 MOD 0= IF ." INDIANS " CR THEN LOOP
." INDIAN BOYS. " ;

N--+-* Loops

In the last section we def‘--" - -jord called MULTIPLICATIONS,
which contained a [DQ)...[L f we wanted to, we could put
MULTIPLICATIONS inside anous. |wwv...|LOOP|, like this:

: TABLE CR 111 DO I MULTIPLICATIONS LOOP ;
Now we'll get a multiplication table that looks like this:
12345678910
2468101214 16 18 20
369 12 15 18 21 24 27 30

etc.
10 20 30 40 50 60 70 80 90 100

because the in the outer loop supplies the argument for
MULTIPLICATIONS.

You can also nest loops inside one another all in the same
definition:

: TABLE CR 1l 1 DO
111Dp0OIJ* 5UR LOOP CR LOOP ;

Notice this phrase in the inner loop:

IJ*

copies the third item of the return stack
onto the parameter stack. It so happens
that in this case the third item on the

In Chap. 5 we mentioned that the word @ _limit [

return stack is the index of the outer loop. h’m,’t
Thus the phrase "I J *" multiplies the two I'I:”?
indexes to create the values in the table.

Now what about this phrase? %C
>

5 U.R

6 THROW IT FOR A LOOP 133

This is nothing more than a fancy |_T_] that is used to print numbers
in table form so that they line up vertically. The five
represents the number of spaces we've decided each column in the
table should be. The output of the new table will look like this:

3 4 5 6 7 8 9 10
6 8 10 12 14 16 18 20
9 12 15 18 21 24 27 30 etc.

w N -
BN

Each number takes five spaces, no matter how many digits it

contains. ([U.R stands for "vr--‘gned number-print, right
justified." The term "unsignec, you may recall, means you
cannot use it for negative numbers.)

If you want the index to go up by sor- =-~“er other tk-- ~1e
each time around, you can use the word [.uovws, instead of juvwsjt
expects on the stack the number by which you want the
index to change. For example, in the definition

: PENTAJUMPS S50 0 DOI. 5 +LOOP ;
the index will go up by five each time, with this result:

PENTAJUMPS ® = 0 15 20 25 30 35 40 45 ok

while in
: PALLING ~100 DO I . -1 +LOOP ;
the index will go down by one each time, with this result:

FALLING 0 -1 =2 =3 =4 =~ ~ 7 ©° @& 110 -»

The argument for ,.uOOP], which is called the "increment,;" can
come from anywhere, but it must be put on the stack each time
around. Consider this experimental example:

: INC-COUNT DO I . DUP +LOOP DROP ;

tFor the Curious

A third loop ending word is introduced in Chap. 7.

134 Starting FORTH

There is no in¢rement inside the definition; instead, it will have
to be on the stack when INC-COUNT is executed, along with the
limit and index. Watch this:
Step up by one:
150 INC-COUNT 01 2 3 4 "
Step up by two:
250 INC-COUNT 0 2 * -"
Step down by three:
-3 -10 10 INC-COUNT_"" 7" 4 1 -2 = ° ok
Our next example demonstrates an increment that changes each
time through the loop.
: DOUBLING 32767 1 DO I . I +LOOP ;

Here the index itself is used as the increment {I +LOOP), so that
starting with one, the index doubles each time, like this:

DOUBLING
124 " "7 32 64 128 2F< =2 1024 2048 4096 P""™ 75384 ok

(We chose 32767 as our limit because it is our highest allowable
number in single-length.)

Notice that in this example we don't ever want the argument for
+LOOP| to be zero, because if it were we'd never come out of the
loop. We would have created what is known as an "infinite loop."

136 Starting FORTH

definition. This means that you cannot design/test your loop
definitions in "calculator style" unless you simulate the loop
yourself:

Let's see how a fledgling FORTH programmer might go about
design/testing the definition of COMPOUND (from the first section
of this chapter). Before adding the E messages, the programmer
might begin by jotting down this version on a piece of paper:

: COMPOUND (amt int —)
SWAP 211 DO I . 2DUP R + DUP . CR LOOP 2DROP ;

The programmer might test this version at the terminal, using [:[
or .S to check the result of each step. The "conversation” might
look like this:

1000 6 SWAP .SCETD

— —_—_—
first 2DUP C—— T~ 1In simulation, the programmer
time 6 1000 omits the "limit index DO"
thru phrase, as well as any

reference to I.

R$.SCEILD
7 """ 60 ok

— —_—
+ .SCEI In simulation, the programmer
£ 1050 ok can omit the "DUP ." phrase.

second 2DUP R% + .SGEMLD
time £ 11 A o

2DROP .S Everything seems to be work-

EM™™ -~ ing, so the programmer
- - pretends the last loop has
finished and checks that the
stack is clear.

6 THROW IT FOR A LOOP 137

A H__:.- TS o

EA-,. =~ ﬂlear the [PR

Sometimes a beginner will unwittingly write a loop which leaves a
whole lot of numbers on the stack. For example

: FIVES 1000 DO IS5 . LOOP ;
instead of

: FIVES 1000 DO I5 * ., LOOP ;
If you see this happen to anyone (surely it will never happen to
you!) and if you see the beginner typing in an endless succession
of dots to clear the stack, recommend typing in

XX
XX is not a FORTH word, so the text interpreter will execute the

word |AB"“’“" , which among other things clears both stacks. The
beginner w~..l be endlessly grateful.

138 Starting FORTH

Indefinit- "oops

While loops are called definite loops, FORTH also supports
"indefinite" loops. This type of loop will repeat indefinitely
or until some event occurs. A standard form of indefinite loop is

BEGIN ... UNTIL

The [E™"™" . "™™"L| loop repeats until a condition is "true."
The useage is
BEGIN xxx f£f UNTIL
where "xxx" stands for the words that you want to be repeated,
and "f" stands for a flag. As long as the flag is zero (false),

the loop will continue to loop, but when the flag becomes
non-zero (true), the loop will end.

\ {alwatjs repeats
at least once)

-/ tro.

An example of a definition that uses a |BEGIN|.. statement
is one we mentioned earlier, in our washing mach..c caample:

: TILL-FULL BEGIN ?FULL UNTIL ;
which we used in the higher-level definition
: FILL FAUCETS OPEN TILL-FULL FAUCETS CLOSE ;

?FULL will be defined to electronically check a switch in the
washtub that indicates when the water reaches the correct level.
It will return zero if the switch is not activated and a one if it
is. TILL-FULL does nothing but repeatedly make this test over
and over (thousands of times per second) until the switch is
finally activated, at which time execution will come out of the
loop. Then the [j in TILL-FULL will return the flow of execution
to the remaining words in FILL, and the water faucets will be
turned off.

Sometimes a programmer will deliberately want to create an
infinite loop. In FORTH, the best way is with the form

6 THROW IT FOR A LOOP 139

BEGIN xxx 0 UNTIL

The zero supplies a "false" flag to the word [UNTIL|, so the loop
will repeat eternally.

Beginners usually want to avoid infinite loops, because executing
one means that they lose control of the computer (in the sense
that only the words inside the loop are being executed). But
infinite loops do have their uses. For instance, the text
interpreter is part of an infinite loop called [QUIT], which waits
for input, interprets it, executes it, prints "ok," then waits for
input once again. In most microprocessor-controlled machines,
the highest-level definition contains an infinite loop that
defines the machine's behavior.

Another form of indefinite loop is used in this format:

BEGIN xxx f WHILE yyy REPEAT
Here the test occurs halfway through the loop rather than at the
end. As long as the test is true, the flow of execution continues

with the rest of the loop, then returns to the beginning again.
If the test is false, the loop ends.

N-'“ce that ““e effect of the test is opposite that in the
[buwIN]...[ONL.y construction. Here the loop repeats whi’-
something is true (rather than until it's true).

The indefinite loop structures lend themselves best to cases in
which you're waiting for some external event to happen, such as
the closing of a switch or thermostat, or the setting of a flag by
another part of an application that is running simultaneously.
So for now, instead of giving examples, we just want you to
remember that the indefinite loop structures exist.

140 - Starting FORTH

M~ !’

" De“*~‘te Loop

There is a way to write a definite loop so that it stops short of
the pres~-*---“ limit if a truth condition changes state, by using

the word] LEAVE| causes the loop to end on the very next
LOOP| or .

3

\ 2

Sometime during the course of the loop (while is
asleep at the switch), the word [LEP‘"“: sets the limit to
equal the index. Now the next time ,..JP| is executed, the
loop will terminate.

Watch how we rewrite our earlier definition of COMPOUND.
Instead of just letting the loop run twenty times, let's get it to
quit after twenty times or as soon as our money has doubled,
whichever occurs first.
We'll simply add this phrase:

2000 > IF LEAVE THEN
like this:

DOUBLED 6 10086 21 1 DO CR

M YEARR Y I 2 ULR

2DUP R%x + DUP .™ BALANCE ™ .

DUP 28@e@ > IF CR CR ." MORE THAN DOUBLED IN *
I . ." YERRS " LERVE THEN

LOOP Z2DROP ;

The result will look like this:

6 THROW IT FOR A LOOP

DOUBLED

YEAR
YEAR
YERR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR
YEAR

VONDTUD WN -

BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE
BALANCE

MORE THAN DOUBLED

141

1060
1124
1191
1262
1338
1418
1S@3
1593
1689
1790
1897
211

IN 12 YEARS ok

One of the problems at the end of this chapter asks you to rework
DOUBLED so that it expects the parameters of interest and

starting balance, and computes by itself the doubled balance that
LEAVE| will try to reach.

142 Starting FORTH

: ol |

To give a neater appearance to your loop outputs (such as tables
and geometric shapes), you might want to clear the screen first
by using the word |[P2-™|. You can execute '“"TEI interactively
like this:

PAGE RECTANGLE

which will clear the screen before printing the rect~-~le that we
defined earlier in this chapter. Or you could put nGEI at the
beginning of the definition, like this:

: RECTANGLE PAGE 256 0 DO
I 16 MOD 0= IF CR THEN ."™ *" LOOP ;

If you don't want the "o™" “- appear upon completion of
execution, use the word . Again, you can use "7 W
interactively:

RECTANGLE QUIT

or you can make |Gu.., the last word in the definition (just before
the semicolon).

6 THROW IT FOR A LOOP

143

Here's a list of the FORTH words we've covered in the chapter:

DO ... LOOP

DO ... +LOOP

LEAVE

BEGIN ...

UNTIL

BEGIN xxx
WHILE yyy
REPEAT

U.R

PAGE

QUIT

DO: (limit
index --)
LOOP: (=)

DO: (limit

index =--)
+LOOP: (n —
(—)
UNTIL: (f ~—
WHILE: (f —

(u width —)

Sets up a finite loop, given
the index range.

Like DO ... LOOP except adds
the value of n (instead of
always one) to the index.

Terminates the loop at the
next LOOP or +LOOP.

Sets up an indefinite loop
which ends when f is true.

Sets up an indefinite loop
which always executes xxXx
and also executes yyy if f is
true. Ends when f is false.

Prints the unsigned single-
length number, right-
justified within the field
width,

Clears the terminal screen
and resets the terminal's
cursor to the upper left-hand
corner.

Terminates execution for the
current task and returns
control to the terminal.

144

Review of Te

Definite loop

Infinite loop

Indefinite loop

Starting FORTH

a loop structure in which the words contained
within the loop repeat a definite number of
times. In FORTH, this number depends on the
starting and ending counts (index and limit)
which are placed on _the stack prior to the
execution of the word [DQ].

a loop structure in which the words contained
within the loop continue to repeat without any
chance of an external event stopping them,
except for the shutting down or resetting of
the computer.

a loop structure in which the words contained
within the loop continue to repeat until some
truth condition changes state (true-to-false or
false-to-true), In FORTH, the indefinite loops

begin with the word [BEGIN|.

6 THROW IT FOR A LOOP 145

Pemblomg o AL-wiap §

In Problems 1 through 6, you will create several words which will
print out patterns of stars {asterisks). These will involve the

use of loops and [BEGIN

1.

...[ONTIL] loops.

First create a word named STARS which will print out n stars
on the same line, given n on the stack:

10 STARS CELI) ******k**k*x ok

Next define BOX which prints out a rectangle of stars, given
the width and height (number of lines), using the stack order
(width height ——).

10 3 BOX
Kkkkkokkk kK

khkkkkkkkkk
khkkkkhkkkk Sk

Now create a word named \STARS which will print a skewed
array of stars (a rhomboid), given the height on the stack.
Use a loop and, for simplicity, make the width a constant
ten stars.

3 \STARS

de de e Je e de de de de de
khkkkkkkkkk
khkkkkkkkkk ol

Now create a word which slants the stars the other direction;
call it /STARS. It should take the height as a stack input
and use a constant ten width. Use a loop.

Now redefine this last word, using a [BEGIN|...v.....] loop.

4
146 :ting FORTH

6. WFite a definitiop c 1 _ AMONDS which will print out the
gir 1 numt of diam shapes, 3 shown in this exam :

2 DIAMONDS *

A AOK
4 KKK K
4% 0 3 ek K
2K 24 2K K 2K oK K KK
28 200K 2K ek ¢ ke K KK
200K 58058 3K oK e 20 3 4K KK
20058 2 28K 200k 2 K K K OK KK
2408 4 28 ok 200K 3K K oK ke A ROk
2000 K e 08 30 2 o8 3K 0 8 K e K K KoK
340380 20020 20 08 3 o8 0 2 o0 2 B K K KoK
20050200 8 2 2 o8 ke 2 e 20K ok KKK
20058 20 50050 KR 2 K KK oK
2000 0 8¢ 2 ¢ e 2 o KKK
2020098 20 28 20 3 3 ek oK
AR Ao K K KK
20 % % 3 K K
e ok kK
Ak
*
x
Aok XK
4 ek kK
40K K 4k K
008 0k ke ok K K K
8 K 2 38 20 26 o4 K K K
98¢ 98¢ 8k k¢ 98 ¢ 20 e K A KK
40 0 K K 3508 e 20 2 K K K
0 K K 0K K K K R KA K K
20 3 350 6 2 8K 2 08 2 3 K KKK KK
25030 06 2 2 008 24 20 0 2 0 3 0K K ok
350 80K 2 K 20K 98 K B K K KK KK
a4 k¢ 20 o0 2 24 o0 2 oK K KK K
90 90 A4 2 8 K 20 4K A K K
24 2R0K 2008 o o oA BOK K
200 8 28 ok 2 2 2 2K
240 ok 2ok KOk
2Kk K
xR X
x

7. In our yE e
mpute« i £

ror 20 jy 1 1

B th £

1 4 n

\ ki oup.lea.

6 THROW IT FOR A LOOP 147

Define a word called ** that will compute exponential
values, like this:

72 %%, 49 ok
(seven squared)

24 ** , 16 ok
(two to the fourth power)

For simplicity, assume positive exponents only (but make sure
** yorks correctly when the exponent is one--the result
should be the number itself).

7 A NUMBER OF KINDS OF NUMBERS

So far we've only talked about signed single-length numbers. 1In
this chapter we'll introduce unsigned numbers and double-length
numbers, as well as a whole passel of new operators to go along
with them.

The chapter is divided into two sections:

For beginners--this section explains how a computer looks at
numbers and exactly what is meant by the terms signed or
unsigned and by single-length or double-length.

For everyone—this section continues our discussion of FORTH
for beginners and experts alike, and explains how FORTH
handles signed and unsigned, single- and double-length
numbers.

149

7 A NUMBER OF KINDS OF NUMBERS 151

Before we leave you with any misconceptions, we'd better clarify
the way negative numbers are represented. You might think that
it's a simple matter of setting the sign bit to indicate whether a
number is positive or negative, but it doesn't work that way.

To explain how negative numbers are represented, let's return to
decimal notation and examine a counter such as that found on
many tape recorders.

Let's say the counter has three digits. As you wind the tape
forward, the counter-wheels turn and the number increases.
Starting once again with the counter at 0, now imagine you're
winding the tape backwards. The first number you see is 999,
which, in a sense, is the same as -1. The next number will be 998,
which is the same as -2, and so on.

c o'l
o »
C:JN

aEE

The representation of signed numbers in a computer is similar.
Starting with the number

0000000000000000
and going backwards one number, we get

1111111111111111 (sixteen ones)

which stands for 65535 in unsigned notation as well as for -1 in
signed notation. The number

1111111111111110

which stands for 65534 in unsigned notation, represents -2 in
signed notation.

Here's a chart that shows how a binary number on the stack can be
used either as an unsigned number or as a signed number:

152 Starting FORTH

as an
unsigned
number
1
65535 111111111111111L
as a
signed
32768 | 100000nNNANANQ000 number
32767 011111 [TI71 32767
_ n 00000000010 0
11111111 awnaal -1
1000000000000000 -32768

This bizarre-seeming method for representing negative values
makes it possible for the computer to use the same procedures for
subtraction as for addition.

To show how this works, let's take a very simple problem:

2
' 8

Subtracting one from two is the same as adding two plus negative
one. In single-length binary notation, the two looks like this:

0000000000000010
while negative-one looks like this:
111" 11111111

The computer adds them up the same way we would on paper; that
is when the total of any column exceeds one, it carries a one
into the next column. The result looks like this:

0000000000000010
+11 1111111111
100uuuu0000000001

As you can see, the computer had to carry a one into every
column all the way across, and ended up with a one in the
seventeenth place. But since the stack is only sixteen bits wide,

7 A NUMBER OF KINDS OF NUMBERS 153

the result is simply
0000000000000001
which is the correct answer, one.

We needn't explain how the computer converts a positive number
to negative, but we will tell you that the process is called
"two's complementing.”

= e ,@_;_ ru_.':.£

While we're on the subject of how a computer performs certain
mathematical operations, we'll explain what is meant by the
mysterious phrases back in Chap. 5: "arithmetic left shift" and
"arithmetic right shift."

A FOR™™ T=~tant Rer'---
2% (n —— n*2) Multiplies by two (arithmetic left shift).

2/ (n —— n/2) Divides by two (arithmetic right shift).

To illustrate, let's pick a number, say six, and write it in binary
form:

0000000000000110

(4 + 2). Now let's shift every digit one place to the left, and
put a zero in the vacant place in the one's column.

0000000000001100

This is the binary representation of twelve (8 + 4), which is
exactly double the original number. This works in all cases, and
it also works in reverse. If you shift every digit one place to
the right and fill the vacant digit with a zero, the result will
always be half of the original value.

In arithmetic shift, the sign bit does not get shifted. This
means that a positive number will stay positive and a negative
number will stay negative when you divide or multiply it by two.
(When the high-order bit shifts with all the other bits, the term
is "logical shift.")

The important thing for you to know is that a computer can shift
digits much more quickly than it can go through all the folderol
of normal division or multiplication. When speed is critical,

154 Starting FORTH

it's much better to say
2*
than
2 *
and it may even be better to say
2% 2% 2%
than
8 *

depending on your particular model of computer, but this topic is
getting too technical for right now.

= Tnt--"-"-n_tc "~"le-length Numb---

A double-length number is just what you probably expected it
would be: a number that is represented in thirty-two bits instead
of sixteen. Signed double-length numbers have a range of
+2,147,483,647 (a range of over four billion).

oF

Yol Voy o

QPG IS Lo w0

OB N LRV IR o v
ANNCFSEINESIEL IV 0 o >

et NSIR PN IS ST 02 v

NS ETINEEFTIRINOTENCISSTITET .0

RN IR WIS T EIVIGTVNTN T o w vy

In FORTH, a double-length number takes the place of two
single-length numbers on the stack. Operators like ™<AP| and
m are useful either for double-length numbers or f.. pairs of
single-length numbers.

One more thing we should explain: to the non~-FORTH-speaking
computer world, the term "word"” means a 16-bit value, or two
bytes. But in FORTH, "word" means a defined command. So in
order to avoid confusion, FORTH programmers refer to a 16-bit
value as a "cell." A double-length number requires two cells.

7 A NUMBER OF KINDS OF NUMBERS 155

Other Number Bases

As you get more involved in programming, you'll need to employ
other number bases besides decimal and binary, particularly
hexadecimal (base 16) and octal (base 8). Since we'll be talking
about these two number bases later on in this chapter, we think
you might like an introduction now.

Computer people began using hexadecimal and octal numbers for
one main reason: computers think in binary and human beings
have a hard time reading long binary numbers. For people, it's
much easier to convert binary to hexadecimal than binary to
decimal, because sixteen is an even power of two, while ten is
not. The same is true with octal. So programmers usually use hex
or octal to express the binary numbers that the computer uses for
things like addresses and machine codes. Hexadecimal (or simply
"hex") looks strange at first since it uses the letters A through
F.

Decimal B*---7 Hexade-‘—al
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Let's take a single-length binary number:

0111101'"~*~0001

To convert this number to hexadecimal, we first subdivide it into
four units of four bits each:

| 0111 | 1011 | 1010 | 0001 |
then convert each 4-bit unit to its hex equivalent:

[71B|a]1]

156 Starting FORTH

or simply 7BAl,
»
Octal numbers use only the numerals 0 through 7. Because

nowadays most computers use hexadecimal representation,
we'll skip an octal conversion example

We'll have more on conversions in the section titled "Number
Conversions" later in this chapter.

The Af~"™" Cha~--ter Set

If the computer uses binary notation to store numbers, how does it
store characters and other symbols? Binary, again, but in a
special code that was adopted as an industry standard many years
ago. The code is called the American Standard Code for
Information Interchange code, usually abbreviated ASCII.

Table 7-1 shows each character in the system and its numerical
equivalent, both in hexadecimal and in decimal form.

The characters in the first column (ASCII codes 0-1F hex) are
called "control characters" because they indicate that the
terminal or computer is supposed to do something like ring its
bell, backspace, start a new line, etc. The remaining characters
are called "printing characters" because they produce visible
characters including letters, the numerals zero through nine, all
available symbols and even the blank space (hex 20). The only
exception is DEL (hex 7F) which is a signal to the computer to
ignore the last character sent.

In Chap. 1 we introduced the word IEM“ . takes an ASCII
code on the stack and sends it to the tc.w.ual so that the
terminal will print it as a character. For example,

65 EMIT A ok
66 EMIT B ok

etc. (We're using the decimal, rather than the hex, equivalent
because that's what your computer is most likely expecting right
now.)*t

Why not test on every printing character, "automatically"?

: PRINTABLES 127 32 DO I EMIT SPACE LOOP ;

tFor Experts

Why are you snooping on the beginner's section?

7 A NUMBER OF KINDS OF NUMBERS 157
E——— . —
TABI* 7-1 —— ASCII CHARACTF®S & “~" " ALENTS
Char Hex Dec Char Hex Dec Char Hex Dec Char Hex Dec
NUL 00 0 SP 20 32 @ 40 64 * 60 96
SOH 01 1 ! 21 33 A 41 65 a 61 97
STX 02 2 n 22 34 B 42 66 b 62 98
ETX 03 3 # 23 35 c 43 67 c 63 99
EOT 04 4 S 24 36 D 44 68 d 64 100
ENQ 05 5 % 25 37 E 45 69 e 65 101
ACK 06 6 & 26 38 F 46 70 £ 66 102
BEL 07 7 ' 27 39 G 47 71 g 67 103
BS 08 8 (28 40 H 48 72 h 68 104
HT 09 9) 29 41 b¢ 49 73 i 69 105
LF o0a 10 * 28 42 J 4 74 j 6A 106
vr 0B 11 + 2B 43 K 4B 75 k 6B 107
FF o0C 12 , 2 44 L ac 76 1 6C 108
CR 0D 13 - 2D 45 M 4D 77 m 6D 109
SM O0E 14 . 2E 46 N 4E 78 n 6E 110
SI OF 15 / 2F 47 o] 4F 79 o 6F 111
DLE 10 16 0 30 48 P 50 80 p 70 112
pClL 11 17 1 31 49 Q 51 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC3 13 19 3 33 51 [53 83 s 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NaR 15 21 5 35 53 U 55 85 u 75 117
SYN 16 22 6 36 54 v 56 86 v 76 118
ETB 17 23 7 37 55 1 57 87 w 77 119
CAN 18 24 8 38 56 X 58 88 X 78 120
EM 19 25 9 39 57 Y 59 89 y 79 121
SUB 1A 26 : 3F 58 3 54 90 z 78 122
ESC 1B 27 ; 3B 59 [58 91 { 7B 123
FS 1lc 28 < 3c 60 \ 5¢ 92 | 7C 124
GS 1D 29 = 3D 61 1 5D 93 } 7D 125
RS 1E 30 > 3E 62 . 5E 94 ~ 7E 126
us 1F 31 ? 3F 63 _ 5F 95 DEL 7F 127
(RB)

ey

The "Char" columns list the ASCII characters (some of which are
control characters); the "Hex" columhs give the hexadecimal
equivalents; and the "Dec" columns present the decimal equiva-
lents.

—

158 Starting FORTH

PRINTABLES will emit every printable character in the ASCII set:
that is, the characters from decimal 32 to decimal 126. (We're
using the ASCII codes as our loop index.)

PRINTABLES __ I " " § ° - " () * + ... ok

Beginners may be interested in some of the control characters as
well. Por instance, try this:

7 EMIT ok

You should have heard some sort of beep, which is the video
terminal's version of the mechanical printer's "typewriter bell."

Other control characters that are good to know include the
following:

decimal
nhame "~ 2ration equival~~+
BS backspace 8
LF line feed 10
CR carriage return 13

Experiment with these control characters, and see what they do.

ASCII is designed so that each character can be represented by
one byte. The tables in this book use the letter "c" to indicate
a byte value that is being used as a coded ASCII character.

ML T o=l

The words ...D| and [OR| (which we introduced in Chap. 4) use "bit
logic™; that is, each bit is treated independently, and there are
no "“carries"™ from one bit--"~ze to the next. For example, let's
see what happens when we [these two binary numbers:

0000000011111111

0110~ "~ *g:-lnnrnn
0000...__ (1) RV

For any result-bit to be "1," the respective bits in both
arguments must be "1l." Notice in this example that the argument
on top contains all zeroes in the high-order byte and all ones in

7 A NUMBER OF KINDS OF NUMBERS 159

the low-order byte. The effect on the second argument in this
example is that the low-order eight bits are kept but the
high-order ¢ight bits are all set to zero. Here the first

argument is being used as a "mask," to mask out the high-order
byte of the second argument.

The word [OR also uses bit logic. For example,

1000100100001001
00000017 """~"1000
10001015 ... 100T

a "1" in either argument produces a "1" in the result. Again,
each column is treated separately, with no carries.

By clever use of masks, we could even use a 16-bit value to hold
sixteen separate flags. For example, we could find out whether
this bit

1011101010011100
A

is "1" or "0" by masking out all other flags, like this:

1011101010011100

000000000C"" "
000000000C. +vuuu

Since the bit was "1," the result is "true." Had it been "0," the
result would have been "0" or "false."

We could set the flag to "0" without affecting the other flags by
using this technique:

1011101010011100
111111117771 01111
avaaanwan10001100

A

We used a mask that contains all "1"s except for the bit we
wanted to set to "0." We can set the same flag back to "1" by
using this technique:

1011101010001100
fnnannnnn010000
v wasusu 0011100

A

160 Starting FORTH

S=7TION II FOR EVERYBODY

Signed ~-4 Unsigned Numb-~-~

Back in Chap. 1 we introduced the word E

If the word “uERPRETI can't find an inc~m‘ng string in the
dictionary, it hands it over to the word [NL....R. [NUMBER| then
attempts *- —2nvert the string into a number expressed in binary
form. If w..BER| succeeds, it pushes the binary equivalent onto
the stack.

INI"“““’[does not do any range-checking.T Because of this,
NI

can convert either signed or unsigned numbers.

For instance, if you enter any number between 32768 and 65535,
[NT**"ER| will convert it as an unsigned number. Any value
be.wcen ~32768 and -1 will be stored as a two's-complement
integer.

This is an important point: the stack can be used to hold either
signed or unsigned integers. Whether a binary value is
interpreted as signed or unsigned depends on the operators that
you apply to it. You decide which form is better for a given
situation, then stick to your choice.

TFor Beginners

This means that BER| does not check whether the number you've
entered as a siuya.c-length nur--r exceeds the proper range. If
you enter a giant number, [NUMu..| converts it but only saves the
least significant sixteen digits.

162 Starting FORTH

(ovJP] is similar to [+LOOP|, in that it terminates a .| loop and
that it takes an incrementing value. The difference is that with

LOOP|, the index and limit may range from zero to 65535, and the
‘~-—7ement must be positive. [/LOOP| executes somewhat faster than

Numbe ~ 3

When you first load FORTH, all number conversions use base ten
(decimal} for both input and output.

You can easily change the base by executing one of the following
comands:

.

HEX (-) Sets the base to sixteen.

OCTAL (--) Sets the base to eight
(available on some sys-
tems).T

DECIMAL (—) Returns the base to ten.

-

TFor Experts

is omitted unless the design of the particular processor
vempwaS its use,

7 A NUMBER OF KINDS OF NUMBERS 163

When you change the number base, it stays changed until you
change it again. So be sure to declare ™=~ *1AL] as soon as
you're done with another number base.f

These commands make it easy to do number conversions in
"calculator style."

For example, to convert decimal 100 into hexadecimal, enter
DECIMAL 100 HEX . 64 ok

To convert hex F into decimal (remember you are already in hex),
enter

OF DECIMAL . 15 ok

Make it a habit, starting right now, to precede each hexadecimal
value with a zero, as in

0A 0B OF

This practice avoids mix-ups with such predefined words as [B, D],
or [E] in the EDITOR vocabulary.

A Handy Hint
A Definition of BINARY — or Any-ARY

Beginners who want to see what numbers look like in binary
notation may enter this definition:

: BINARY 2 BASE ! ;

The new word BINARY will operate just like [f or [Eua, but
will change the number base to ***~ On sySicwms nrhich do not

have the word ""™AI], experimenl... may define

: OCTAL 8 BASE ! ;

—— — — ee— [—————

tFor People Using Multiprogrammed Systems

When you change the number base, you change it for your terminal
task only. Every terminal task uses a separate number base.

164 Starting FORTH

M1 o 1 -_...l_h -

Double-length numbers provide a range of +2,147,483,647. Most
FORTH systems support double-length numbers to some degree.T}
Normally, the way to enter a double-length number onto the stack
(whether from the keyboard or from a block) is to punctuate it
with one of these five punctuation marks:

r o /=
For example, when you type

200,000 CEID

Numwow.y recognizes the comma as a signal that this value should
be converted to double-length. then pushes the value
onto the stack as two consecutive "cells" (cell is the FORTH term
for sixteen bits), the high order cell on top.

tFor polyFORTH Users:

polyFORTH includes double-length routines, but they are
"electives," which means that they are written in the group of
blocks which you must load each time the system is booted. This
arrangement gives you the flexibility to either load these

routines or delete them from your load block, according to the
needs of your application.

{FORTH-79 Standard
The Standard requires only three double-length arithmetic

primitives., The optional Double Number Word Set includes many
more double-length operators.

7 A NUMBER OF KINDS OF NUMBERS 165

The FORTH word prints a double-length number without any
punctuation.

D. d —) Prints the signed
double~-length number,
followed by one space.

In this book, the letter "d" stands for a double-length signed
integer.

For example, having entered a double-length number, if you were
now to execute [D.], the computer would respond:

D 720000 ok

Notice that all of the following numbers are converted in exactly
the same way:

12345. D. 12345 ok
123.45 D. 12345 ok
1-2345 D._]774F -~
1/23/45 D. wco=o oK
1:23:45 D._""""5 ok

But this is not the same:

-12345
because this value would be converted as a negative,
gingle~-length number. (This is the only case in which a hyphen
is interpreted as a minus sign and not as punctuation.)
In the next section we'll show you how to define your own

equivalents to which will print whatever punctuation you want
along with the number.

166 Starting FORTH

Number Forma-“‘-- —-- Double-ler-“* Unsignedt

$200.00 12/31/80 372-8493 6:32:59 98.6

The above numbers represent the kinds of output you can create
by defining your own "number-formatting words" in FORTH. This
section will show you how.

The simplest number-formatting definition we could write would be
: UD., <# #S #> TYPE;

UD. will print an unsigned double-length number. The words |~y
and (respectively pronounced bracket-r~—%-- and
number-bracket) signify the beginning and the cud v. the
number-conversion process. In this definition, the entire
conversion is being performed by the single word [#S] (pronounced
nu -’ . converts the value on the stack into ASCII
Chicuvceees. It will only produce as many digits as are necessary
to represent the number; it will not produce leading zeroes. But
it always produces at least one digit, which will be zero if the
value was zero. For example:

12,345 UD. 123450k
12. ur °°
0 UD' et sl

The word |TYPE| prints the characters that represent the number at
your terminal. Notice that there is no space between the number

and_the "ok." To get a space, you would simply add the word
, like this:

: UD. <% #S #> TYPE SPACE ;

Now let's say we have a phone number on the stack, expressed as a
32-bit unsigned integer. For example, we may have typed in

372-8493

(remember that the hyphen tells E to treat this as a
double-length value). We want to dé...c o Word which will format
this value back as a phone number. Let's call it .PH# (for "print
the ° ne number") and define it thus:

TFor Those Whose Systems Do Not Have Double-length Routines
Loaded

The examples used in this and the next section won't do what you
expect. The principles remain the same, however, so read these
two sections carefully, then read the note on page 1l72.

7 A NUMBER OF KINDS OF NUMBERS 167

: PHf <¢ % 4 4 4 45 HOLD #S #> TYPE SPACE ;

Our definition of .PH# has
everything that UD. has, and more.
The FORTH word IE (pronounced
number) produces a single digit
only. A number-formatting
definition is reversed from the
order in which the number will be
printed, so the phrase

8 F 4

produces the right-most four digits
of the phone number.

Now it's time to insert the hyphen. Looking up the ASCII value
for hyphen in the table in the beginner's section of this
chapter, we find that a hyphen is represented by decimal 45. The
FORTH word [HCT™ takes this ASCII code and inserts it into the
formatted numb.. character string.

We now have three digits left. We might use the phrase
4

but it's easier to simply use the word I# |, which will
automatically convert the rest of the number for us.

If you are more familiar with ASCII codes represented in
hexadecimal form, you can use this definition instead:

HEX : .PH# <# 4 # # # 2D HOLD #S #> TYPE SPACE ;
DECIMAL

Either way, the compiled definition will be exactly the same.

Now let's format an unsigned double- T -
length number as a date, in the TEDAY 08
following form:) =
JULY
7/15/80 ﬂg
Here is the definition: I

: .,DATE <# # # 47 HOLD # # 47 HOLD #S #> TYPE SPACE ;

Let's follow the above definition, remembering that it is written
in reverse order from the output. The phrase

168 Starting FORTH

47 HOLD

produces the right-most two digits (representing the year) and
the right-most slash. The next occurrence of the same phrase
produces the middle two d°-“ts (representing the day) and the
left-most slash. Finally, zv; produces the left-most two digits
(représenting the month).

We could have just as easily defined
47 HOLD

as its own word and used this word twice in the definition of
.DATE.

Since you have control over the conversion process, you can
actually convert different digits in different number bases, a
feature which is useful in formatting such numbers as hours and
minutes. For example, let's say that you have the time in seconds
on the stack, and you want a word that will print hh:mm:ss. You
might define it this way:

SEXTAL 6 BASE | ; T
:00 # SEXTAL # DECIMAL 58 HOLD ;
SEC <# :00 :00 #S #> TYPE SPACE ;

We will use the word :00 to format the
seconds and the minutes. Both seconds and
minutes are modulo-60, so the right digit
can go as high as nine, but the left digit
can only go up to five. Thus in the
definition of :00 we convert the first digit
(the one on the right) as a decimal number,
then go into "sextal" (base 6) and convert
the left digit. Finally, we return to
decimal and insert the colon character.
After :00 _converts the seconds and the
minutes, converts the remaining hours.

For example, if we had 4500 seconds on the
stack, we would get

4500. SEC_1-"-"" -~

Table 7-2 summarizes the FORTH words that
are used in number formatting. (Note the
"KEY" at the bottom, which serves as a
reminder of the meanings of "n," "4," etc.)

tFor Beginners

See the Handy Hint on page 163.

7 A NUMBER OF KINDS OF NUMBERS 171

<# SIGN #S #>

Let's define a word which will print a signed
double~length number with a decimal point and
two decimal places to the right of the decimal.
Since this is the form most often used for
writing dollars and cents, let's call it .$ and
define it like this:

: .$ SWAP OVER DABS
<¢ # # 46 HOLD #S SIGN 36 HOLD #> TYPE SPACE ;

Let's try ite

2000.00 . €”pQ~ ~° -
or even

2,000.00 .$_$2000.00 ok

We recommend that you save .$, since we'll be using it in some
future examples.

You can also write special formats for single-length numbers. For
example, if you want to use an unsigned single-length number,
simply put a zero on the stack before the word [<#]. This
effectively changes the single~length number into a

double-length number which is so small that it has nothing (zero)
in the high-order cell.

To format a signed single-length number, again you must supply a
zero as a high-order cell. But you also must leave a copy of ti
signed number in the third stack position for [SIGN|, and you must
leave the absolute value of the number in the second stack
position. The phrase to do all of this is

DUP ABS 0

172 Starting FORTH

Here are the "set-up" phrases that are needed to print various
kinds of numbers:

[TP T S T _._.inted e . oWl owl
32-bit, unsigned (nothing needed)
31-bit, plus sign SWAP OVER DABS

(to save the sign in the
third stack position for
f~+Anal

~T A

16-bit, unsigned 0
(to give a dummy
high-order part)
15-bit, plus sign DUP ABS 0
(to save the sign)
r¢ Toovtc tprt Tt - - Loaded

In this case the set-up phrases are different, as follows:

Nu~--~7 to be printed

16-bit, unsigned DUP

15-bit, plus sign DUP ABS DUP

Even though [§] still expects two cells on the stack, in this
case the significant cell must be on top (where normally the
high-order cell is found). The contents of the second stack
position are not used.

7 A NUMBER OF KINDS OF NUMBERS

Double-len~+r Qp~~ntors

173

Here is a list of double-length math operators:t{

D+

DNEGATE

DABS

DMAX

DMIN

D<

DU<

D.R

(dl d2 =- d-sum)

(d1 d2 -~ d-diff)
(@ ~--d)

@ —ldap

(dl d2 -- d-max)

(dl 42 -~ d-min)

(d1 42 =~ f)
(@-—-19
(dl a2 — f)

(udl ud2 — f)

(d width -~)

tFor polyFORTH Users

Adds two 32~bit numbers.

Subtracts two 32-bi*
numbers (dl1-d2). C

Changes the sign of a]
32-bit number.

-neaqte
Returns the absolute |
value of a 32-bit
number.)

Returns the maximum of
two 32-bit numbers.

Returns the minimum o.
two 32-bit numbers.

Returns true if 41 anAd
d2 are equal. Cd-cgvu

Returns true if 4 is
zZero.

Returns true if 4l i-= |

less than d2. Cd-'-le_‘;S'\.nun

Returns true if udli 1s
less than ud2. Both
numbers are unsigned.

Prints the signed 32-bit
number, right—justified
within the field width.

The double-length routines must be loaded.

I{FORTH-79 Standard

Except for [DH, w~, and [I

PE|, which are required, these words

are part of the optional Luuw.e Number Word Set.

174 Starting FORTH

The initial "D" signifies that these operators may only be used
“-- "puble-length operations, whereas the initial "2," as in
«wonaP| and ""JP|, signifies that these operators may be used
either for d.uvole-length numbers or for pairs of single-length
numbers.

Here's an example using [DH:

200,000 300,000 D+ D._5pnAnn ~k
A warning for experimenters: you can write definitions that
contain double-precision operators, but you cannot include a

punctuated, double-precision; * inside a definition. 1In the
next chapter we'll explain wha. .. v instead.

sMieen 3 Tap~th f)Rerators

Here's a table of very useful FORTH words which operate on a
combination of single-~ and double-length numbers:t

= - ————— -

M+ (d n —- d-sum) Adds a 32-bit number to a
16-bit number. Returns a 32-bit
result.

M/ (d n —— n-quot) Divides a 32-bit number by a

16-bit number. Returns a 16-bit
result. All values are signed.

M* (nl n2 -- d-prod) Multiplies two 16-bit numbers.
Returns a 32-bit result. All
values are signed.

M*/ dnn-— Multiplies a 32-bit
d-result) number by a 16~bit number and

divides the triple-length

result by a l6-bit number

(d*n/n). Returns a 32-bit

result. All values are sianed.

t FORTH~-79 Standard

The mixed-length operators are not included in either the
Required or the Double Number Word Set.

7 A NUMBER OF KINDS OF NUMBERS 175

Here's an example using [M3]:
200,000 7 M+ D. 200007 ok

Or, using ™* 7, we can redefine our earlier version of % so that

it will ac..p. a double-length argument:
: $ 100 M*/ ;

as in
200.50 15 % D, 3007 ok

If you have loaded the definition of .$ which we gave in the last
Handy Hint, you can enter

200.50 15 & .$_$°" 07 ok

We can redefine our earlier definition of R% to get a rounded
double-length result, like this:

: R$ 10 M*/ 5 M+ 10 M/ ;
then

987.65 15 R% . ©30.08 ok
Notice that @ is the only ready-made FORTH word which
performs multiplication on a double-length argument. To multiply
200,000 by 3, for instance, we must supply a "1" as a dummy
denominator:

200,000 3 1 M*/ D._600000 ok

since
3
1

is the same as 3.
is also the only ready-made FORTH word that performs

division with a double-length result. So to divide 200,000 by 4,
for instance, we must supply a "1" as a dummy numerator:

200,000 1 4 M*/ D._50000 -~

176 Starting FORTH

Num---- *-_[-<'-itions

When a definition contains a number, such as
: SCORE-MORE 20 + ;

the number is compiled into the dictionary in binary form, just as
it looks on the stack.

[n0110p0090111001

The number's binary value depends on the number base at the time
you ~-—-—31~ the definition. For example, if you were to enter

HEX : SCORE-MORE 14 + ; DECIMAL

the dictionary definition would contain the hex value 14, which
is the same as the decimal value 20 (16 + 4). Henceforth,
SCORE-MORE will always add the equivalent of decimal 20 to the
value on the stack, regardless of the current number base.

If, on the other hand, you were to put the word [inside the
definition, then you would change the number .asc when you
-~~~ - the definition.

For example, if you were to define:

DECIMAL

: EXAMPLE HEX 20 . DECIMAL ;
the numbe "~ be compiled as the binary equivalent of decimal
20, since | was current at compilation time.

At execution time, here's what happens:
EXAMPLE 14 ok

The number is output in hexadecimal.

7 A NUMBER OF KINDS OF NUMBERS 177

For the record, a number that appears inside a definition is
called a "literal." (Unlike the words in the rest of the
definition which allude to other definitions, a number must be
taken literally.)

Here is a list of the FORTH words we've covered in this chapter:

Unsigned operators

u. u-—) Prints the unsigned
single-length number,
followed by one space.

U* (ul u2 —— ud) Multiplies two 16-bit num-
bers. Returns a 32-bit
result., All values are
unsigned.

U/MOD (ud ul —- u2 u3) Divides a 32-bit by a 16-
bit number. Returns a
16-bit quotient and re-
mainder. All values are
unsigned.

U< (ul u2 — £) Leaves true if ul < u2,
where both are treated as
16-bit unsigned integers.

DO ... /LOOP DO: (u-limit Like DO ... +LOOP except
u-index --) uses an unsigned limit,
/LOOP: (u —) index, and increment.

Number bases

HEX (-) Sets the base to sixteen.

OCTAL (-) Sets the base to eight
(available on some sys-
tems).

DECIMAL (—) Returns the base to ten.

Number formatting operators

<# Begins the number conversion process.
Expects an unsic~~“ double-length number on
the stack.

Converts one digit and puts it into an output
character string. @pr"""‘ produces a

digit--if you're out of S.yu:..cant digits,

you'll still get a zero for every ™

180

Review ~€ T--—-

Arithmetic left
and right shift

ASCII

Binary

Byte

Cell
Decimal
Hexadecimal

Literal

Mask

Number
formatting

Octal

Sign bit,
high-order bit

Two's
complement

Unsigned number

Starting FORTH

the process of shifting all bits in a number,
except the sign bit, to the left or right, in
effect doubling or halving the number,
respectively.

a standardized system of representing input/
output characters as byte values. Acronym for
American Standard Code for Information
Interchange. (Pronounced ask-k---)

number base 2.

the standard term for an 8-bit value.

the FORTH term for a 16-bit value.

number base 10.

number base 16.

in general, a number or symbol which represents
only itself; in FORTH, a number that appears
inside a definition.

a value which can be "superimposed" over

another, hiding certain bits and revealing
only those bits that we are interested in.

the process of printing a number, usually in a
special form such as 3/13/81 or $47.93.

number base 8.

the bit which, for a sianed number, indicates
whether it is positive or negative and, for an
unsigned number, represents the bit of the
highest magnitude.

for any number, the number of equal absolute
value but opposite sign. To calculate 10 - 4,
the computer first produces the two's comple-
ment of 4 (i.e., -4), then computes 10 + (-4).

a number which is assumed to be positive.

7 A NUMBER OF KINDS OF NUMBERS 181

Unsigned single-

length number an integer which falls within the range 0 to
65535.
wWord in FORTH, a defined dictionary entry;

ProF’-—- - Chr " -

elsewhere, a term for a 1l6-bit value.

1~

FOR BEGINNERS

1.

2.

3.

Veronica Wainwright couldn't remember the upper limit for a
signed single-length number, and she had no book to refer
to, only a FORTH t~~~inal. So she wrote a definition called
N-MAX, using a |BEwausess| loop. When she executed it,
she got

327€7 -~k
What was her definition?

Since you now know that [F] and employ bit logic,
explain why the following €aawple —* use instead of :

: MATCHE HUMOROUS SENSITIVE AND
ART-LOVING MUSIC-LOVING OR AND SMOKING NOT AND
IF ." I HAVE SOMEONE YOU SHOULD MEET " THEN ;

Write a definition that "rings" your terminal's bell three
times. Make sure that there is enough of a delay between
the bells so that they are distinguishable. Each time the
bell rings, the word "BEEP" should appear on the terminal
screen. '

(Problems 4 and 5 » practice in double-length math.)

4.

a. Rewrite the temperature conversion definitions which you
created for the problems in Chap. 5. This time assume
that the input and resulting temperatures are to be
double-length signed integers which are scaled (i.e.,
multiplied) by ten. For example, if 10.5 degrees is
entered, it is a 32-bit integer with a value of 105.

b. Write a formatted output word named .DEG which will
display a 32-bit signed integer scaled by ten as a string
of digits, a decimal point, and one fractional digit.

For example:

12.3 .DEGEEET" "3 -~

182 Starting FORTH

Problem 4, continued

c. Solve the following conversions:

0.0° F in Centigrade
212.0° F in Centigrade
20.5° F in Centigrade
16.0° C in Fahrenheit
-40.0° C in Fahrenheit
100.0° K in Centigrade
100.0° K in Fahrenheit
233.0° K in Centigrade
233,0° K in Fahrenheit

5. a. Write a routine which evaluates the quadratic equation

7%2 + 20x + 5
given x, and returns a double-length result.

b. How large an x will work without overflowing thirty-two
bits as a signed number?

FOR EVERYONE

6. Write a word which prints the numbers 0 through 16 (decimal)
in decimal, hexadecimal, and binary form in three columns.
E.g.,

DECIMAL 0 HEX 0 BINARY 0
DECIMAL 1 HEX 1 BINARY 1l
DECIMAL 2 HEX 2 BINARY 10

DECIMAL 16 HEX 10 BINARY 10000
7. If you enter
B RETURN]

(two periods not separated by a space) and the system
responds "ok," what does this tell you?

8. Write a definition for a phone-number formatting word that
will also print the area code with a slash if and only if the
number includes an area code. E.g.,

555-1234 .PH§ 55F "4 ~%
213/372-8493 _PH} -8493 ok

8 VARIABLES, CONSTANTS, AND ARRAYS

As we have seen throughout the previous seven chapters, FORTH
programmers use the stack to store numbers temporarily while they
perform calculations or to pass arguments from one word to
another. When programmers need to store numbers more
permanently, they use variables and constants.

In this chapter, we'll learn how FORTH treats variables and
constants, and in the process we'll see how to directly access
locations in memory.

-11—.--' E_b.l —~

Let's start with an example of a situation in which you'd want to
use a variable--to store the day's datel First we'll create a
variable called DATE. We do this by saying

VARIABLE DATE
If today is the twelfth, we now say

12 DATE !
that is, we put a twelve on the stack, then give the name of the
variable, then finally execute the word [I], which is pronounced
store. This phrase stores the number twelve into the variable
DATE.

Conversely, we can say

TFor Beginners

Suppose your computer generates bank statements all day, and
every statement must show the date. You don't want to keep the
date on the stack all the time, and you don't want the date to be
part of a definition that you'd have to redefine every day. You
want to use a variable.

183

184 Starting FORTH

DATE @

that is, we can name the variable, then execute the word @,
which is pronounced fe*~h. This phrase fetches the twelve and
puts it on the stack. T.us the phrase

DATE @ . 12 ok
prints the date.

To make matters even easier, there is a FORTH word whose
definition is this:

1?2 @.;
So instead of "DATE~fetch-dot," we could simply type
DATE ? 12 -

The value of DATE will be twelve until we change it. To change
it, we simply store a new number:

13 DATE | ~-
DATE ? 13 _..

Conceivably we could define additional variables for the month
and year:

VARIABLE DATE VARIABLE MONTH VARIABLE YEAR

then define a word called !DATE (for "store-the-date") like this:
: IDATE YEAR ! DATE ! MONTH ! ;

to be used like this:
7 31 80 !DATE ok

then define a word called .DATE (for "print-the-date") like this:
: .DATE MONTH ? DATE ? YEAR ? ;

Your FORTH ¢--~+-~— 1lready has a number of variables defined; one

is called [BASE| contains the number base that you're
cr--"tly w in. In fact, the definitions of and
Duc.nal] (ar 1], if your system has it) are simply

DECIMAL 10 BASE ! ;
HEX 16 BASE ! ;
OCTAL 8 BASE ! ;

8 VARIABLES, CONSTANTS, AND ARRAYS 185

You can work in any number base by simply storing it into J

Somewhere in the definitions of the system words which perform
input and output number conversions, you will find the phrase

BASE @

because the current value ofE is used in the conversion
process. Thus a single routine vau .onvert numbers in any base.
This leads us to make a formal statement about the use of
variables:

SA002£

In FORTH, variables are appropriate for any
value that is used inside a definition
which may need to change at any time after
the definition has already been compiled.

Z000000000000000000800000000000080000000000000

00000000000

%

A Clog~~ L« ~ =~ Tariables

When you create a variable such as DATE by using the phrase

VARIABLE DATE

you are really compiling a new word, called DATE, into the
dictionary. A simplified view would look like this:

Tror Experts

A three-letter code such as an airport terminal name, can be
stored as a single-length unsigned number in base 36. For
example:

: ALPHA 36 BASE ! ; ok
ALPHA ok
ZAP U

2AD ok

186 Starting FORTH

DATE

instruction code

appropriate for
variables

space for the
actual value
o be stored

DATE is like any other w-~1 in your dictionary except that you
defined it with the word ..R *°LE| instead of the word [f. As a
result, you didn't have to dei...2 what your definition would do;
the word IVA““BLE] itself spells out what is supposed to happen.
And here is w..t happens:

When you say

12 DATE !

12

Twelve goes onto then the text and, finding it,

the stack, interpreter looks poi-+- it out
up DATE in the tO |lunolr
dictionary

1L~For Experts

In the next chapter we'll show you what a dictionary entry really
looks like in memory.

8 VARIABLES, CONSTANTS, AND ARRAYS 187

DATE

| L,Ut{r.‘—'l I |
varighles

em. Ty
o [2076

=

»ao UTE| executes a variable by copying the address of the
variable's "empty" cell (where the value will go) onto the stack.T

DATE

2016\ oue 1o
varinhles l
12 7 |
1 '2076
l 2 |
The word El takes the ad- value into that location.
dress (on top) and the value Whatever number used to be
(underneath), and stores the at that address is replaced

by the new number.

(To remember what order the arguments belong in, think of setting
down your parcel, then sticking the address label on top.)

TFor Beginners

In computer terminology, an address is a number which identifies
a location in computer memory. For example, at address 2076
(addresses are usually expressed as hexadecimal, unsigned
numbers), we can have a l6~-bit representation of the value 12.
Here 2076 is the "address"; 12 is the "contents.”

188 Starting FORTH

The word]E[expects one argument only: an address, which in this
case is supplied by the name of the variable, as in

DATE @

DATE

code for
A\ variables

&,
_2076;Lr 1212 bore

r a——

@VV

Using the value on the stack as an address, the word pushes
the contents of that location onto the stack, "dropping" the
address. (The contents of the location remain intact.)

LI

Usin~ - Vari-*“ as a Count —

In FORTH, a variable
is ideal for keeping
a count of something.
To reuse our egg-
packer example, we
might keep track of

516, 517, 518 ...
how many eggs go

down the conveyor 0\ —_ _

belt in a single day. = O

(This example will a - A

work at your terminal, - > ~ A el

SO enter it as we go.)
First we can define

VARIABLE EGGS
to keep the count in. To start with a clean slate every morning,
we would store a zero into EGGS by executing a word whose
definition looks like this:

: RESET 0 EGGS ! ;

Then somewhere in our egg-packing application, we would define a
word which executes the following phrase every time an egg

8 VARIABLES, CONSTANTS, AND ARRAYS 189

passes an electric eye on the conveyor:
1 EGGS +!

The word [+!] adds the given value to the contents of the given
address.t (It doesn't bother to tell you what the contents are.)
Thus the phrase

1 EGGS +!

increments the count of eggs by one. For purposes of
illustration, let's put this phrase inside a definition like this:

: BEGG 1 EGGS +! ;
At the end of the day, we would say

EGGS ?
to find out how many eggs went by since morning.
Let's try it:

RESE™ ~%
EGG_un

EG™ ~%

EGu oK
EGGS ? 3 ~t

Here's a review of the words we've covered in the chapter so far:

TFor the Curious

+1] is usually defined in assembly language, but an equivalent
igh-level definition is

: +!1 DUP @ ROT + SWAP ! ;

190 Starting FORTH

 E——— _ 1

VARIABLE xxx (—) Creates a variable [ygrigble
named xxX;

xxx: (-- adr) the word xxx returns

its address when
executed.

’—

(n adr —) Stores a 16-bit number
into the address.

@ (adr —— n) Replaces the address (fetch
with its contents.

? (adr =~) Prints the contents of
the address, followed
by one space.

+1 (n adr -~) Adds a 16-bit number to lus —
the contents of the|gtore
address.

Consta-*~

While variables are normally used for
values that may change, constants are used

for values that won't change. In FORTH, we LimiT

create a constant and set its value at the Instruction code

same time, like this: appropriate for
cnnefgﬁ?e

220 CONSTANT LIMIT

Here we have defined a cohstant named 220
LIMIT, and given it the value 220. Now we | _
can use the word LIMIT in place of the !
value, like this:

: ?TO0.HOT LIMIT > IF ." DANGER -- REDUCE HEAT " THEN ;

If the number on the stack is greater than 220, then the warning
message will be printed.

Notice that when we say

LIMIT

we get the v'7°° not the address. We don't need the "fetch."

8 VARIABLES, CONSTANTS, AND ARRAYS 191

This is an important difference between variables and constants.'f
The reason for the difference is that with variables, we need the
address to have the option of fetching or storing. With
constants, we always want the value; we almost never store.

One use for constants is to name a hardware address. For

example, a microprocessor-controlled camera application might
contain this definition:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;
Here the word SHUTTER has been defined as a constant so that
execution of SHUTTER returns the hardware address of the
camera's shutter. It might, for example, be defined:

HEX

3E27 CONSTANT SHUTTER
DECIMAL

The words OPEN and CLOSE might be defined simply as

OPEN 1 SWAP ! ;
CLOSE 0 SWAP ! ;
so that the phrase
SHUTTER OPEN
writes a "1" to the shutter address, causing the shutter to open.

Here are some situations when it's good to define numbers as
constants:

1. When it’s important that you make your application more
readable. One of the elements of FORTH style is that
definitions should be self-documenting, as is the
definition of PHOTOGRAPH above.

TFor: People Who Intend to Use polyFORTH's Target Compiler™

In your case the difference is more profound. A constant's =-~7-2
will be compiled into PROM; a variable compiles into PR... u
reference to a location in RAM,

192 Starting FORTH

2. When it's more convenient to use a name instead of the
number. For example, if you think you may have to
change the value (because, for instance, the hardware
might get changed) you will only have to change the
value ¢~~~ -~-in the block where the constant is
defined-—wuceu recompile your application.

3. When you are using the same value many times in your

application. In the compiled form of a definition,
reference to a constant requires less memory space.F

CONSTANT xxx (n -) Creates a constant named
xxx: (— n) XXX with the value n; the
word Xxx returns n when

executed.

TFor polyFORTH Users

Because of reason 3, polyFORTH includes constant-definitions of
two often-used numbers:

0 CONSTANT 0
1 CONSTANT 1

8 VARIABLES, CONSTANTS, AND ARRAYS 193

Double-'~-~*+» Yariables -~4 Consta-*-*

You can define a double-length variable by using the word

[ZVAR.“"', | For example,

2VARIABLE DATE
Now you can use the FORTH words ,—., (pronounced tw~ ~*~--' and
(two “-*ch) to access this double-length variab.c. .uu can
store a uvuvle ngth number into it by simply saying
800,000 DATE 2!
and fetch it back with
DATE 2@ D °°""10 ok
Or you can store the full month/date/year into it, like this:
7/16/81 DATE 2!
and fetch it back with
DATE 2@ .DATE 7/16/81 ok

assuming that you've loaded the version of .DATE we gave in the
last chapter.i

You car “-fine a double-length constant by using the FORTH word
"""‘\ISTL..,-I, like this:

200,000 2CONSTANT APPLES

Now the word APPLES will place the double-length number on the
stack.

APPLES D._20nn00 ok

tFORTH-79 Standard

The words described in this section are not required except in
the Double Number Word Set.

{For polyFORTH Users

polyFORTH uses an even-more-clever arrangement to store the date
as one single-length integer.

194 Starting FORTH

Use of |..\,w..“n.‘T! becomes necessary when you need to include a
double-length value inside a definition. In FORTH the only way
to do this is by first defining the double~length value as a
|2CONSTA‘""'. For example, to define a word which adds 400,000 to
a double-icngth value on the stack, we must define

400,000 2CONSTANT MUCH
: MUCH-MORE MUCH D+ ;

in order to be able to say

APPLES MUCH-MORE D. 6007 ~t
As the prefix "2" reminds us, we can also use [2C 1 to
define a pair of single-length numbers. The reason .u. pucting
two numbers under the same name is a matter of convenience and
of saving space in the dictionary.

As an example, recall (from Chap. 5) that we can use the phrase

355 113 */
to multiply a number by ~ - imation of pi. We could store
these two integers as a [as follows:

355 113 2CONSTANT PI
then simply use the phrase
PI */
as in
10000 PI */ , 2747 ok

Here is a review of the double-length data-structure words:

T For polyFORTH Users

polyFORTH includes the following definition for a double-length
zero for convenient use inside a colon definition:

0. 2CONSTANT 0.

8 VARIABLES, CONSTANTS, AND ARRAYS 195

2VARIAT "™ xxx (—) Creates a double-length
variable named xxX;
xxx: (= adr) the word xxx returns
its address when exe-
cuted.

2CONSTANT xxx (d) Creates a double-length
constant named xxXx
with the value 4;
xxXx: (— 4d) the word xxx returns
the value d when exe-
cuted.

21 (d adr -) Stores a double-length
number into the ad-
dress.

2@ (adr — d) Returns the double-
length contents of the
address.

Arrays r@?

As you know, the phrase
VARIABLE DATE

creates a definition which conceptually looks like this:

DATE

code

room for a
single-length value

Now if you say
2 ALLOT

an additional two bytes are allotted in the definition, like this:

196 Starting FORTH

DATE

code

room for a

single-length value room for two single length values

(or one double-length value)

ditto
The result is the same as if you had used FTTE|l. By
changing the argument to [ALLOT|, however, you cuu &...ne any
~=%"-- of variables under the same name. Such a group of

vairsanaeS is called an "array."

For example, let's say that in our laboratory, we have not just
one, but five burners that heat various kinds of liquids.

o] [

We can make our word ?TOO-HOT check that all five burners have
not exceeded their individual limit if we define LIMIT using an

array rather than a constant.

Let's give the array the name LIMITS, like this:
VARIABLE LIMITS 8 ALLOT

The phrase "8 ALLOT" gives the array an extra eight bytes or
four cells (five cells in all).

198 Starting FORTH

We can store limits for burners 2, 3, and 4 by adding the
"offsets" 4, 6, and 8, respectively, to the original address.
Since the offset is always double the burner number, we can
define the convenient word

: LIMIT 2* LIMITS + ;

to take a burner number on the stack and compute an address that
reflects the appropriate offset.t

Now if we want the value 170 to be the limit for burner 2, we
simply say

170 2 LIMIT !

or similarly, we can fetch the limit for burner 2 with the phrase

2 LIMIT 2 17 -%k

This technique increases the usefulness of the word LIMIT, so
that we can redefine ?TOO.HOT as follows:

: ?TOO0.HOT (burner# temp —)
LIMIT @ > IF ."™ DANGER —- REDUCE HEAT " THEN ;

which works like this:

210 0 ?TOO.HOT ok
230 0 ?TOOC.HOT DAN(™" -- P@n"1E HEAT ok
300 1 ?TOO.HOT ok
350 1 ?TO0.HOT DANC™™ REDUCE HEAT ok

etc,

TFor Beginners

a) Some people call the "offset" an "index," and some people
say that one uses an offset to "index into" an array.

b) The reason we number our burners 0 through 4 instead of 1
through 5 is so that we can use the burner number itself
(doubled for byte addressing) as the offset.

A thing which most people would call the “"first" in a series,
programmers think of as the "zeroth." §Still, if you need to
call the burner on the left "burner 1," you can simply
change LIMIT to say

¢ LIMIT 1- 2* LIMITS + ;

8 VARIABLES, CONSTANTS, AND ARRAYS 199

RmabkhAaw ExamEle ___‘[ls-'—- an Arr-v £Av I"ggn!--i‘lg-

Meanwhile, back at the egg ranch:

Here's another example of an array. 1In this example, each
element of the array is used as a separate counter. Thus we can
keep track of how many cartons of "extra large" eggs the machine
has packed, how many "large," and so forth.

Recall from our previous definition of EGGSIZE (in Chap. 4) that
we used four categories of acceptable eggs, plus two categories
of "bad eggs.”

0 REJECT

1 SMALL

2 MEDIUM

3 LARGE

4 EXTRA LARGE
5 ERROR

So let's create an array that is six cells long:

VARIABLE COUNTS 10 ALLOT
The counts will be incremented using the word [t*I], so we must be
able to set all the elements in the array to zero before we begin
counting. The phrase

COUNTS 12 0 FILL
will fill twelve bytes, starting at the address of COUNTS, with
zeros. If your FORTH system includes the word [ERASE|,t it's
better to use it in this situation. [EF-" fills the given number
of bytes with zeroes. Use it like this:

COUNTS 12 ERASE

FILL (adr n b —) Fills n bytes of memory,
beginning at the address,
with value b.

ERASE (adr n ~—~) Fills n bytes of memory,
beginning at the address,
with zeroes.

——— —————— — —

T FORTH-79 Standard

E| is included in the optional Reference Word Set.

200 Starting FORTH

For convenience, we can put the phrase inside a definition, like
this:

: RESET COUNTS 12 ERASE ;
Now let's define a word which will give us the address of one of
the counters, depending on the category number it is given (0
through 5), like this:

: COUNTER 2* COUNTS + ;

and another word which will add one to the counter whose number
is given, like this:

: TALLY COUNTER 1 SWAP +! ;

The "1" serves as the increment for [+l], and [SWAF] puts the
arguments for in the order they belong, i.e., (n adr —).

Now, for instance, the phrase
3 TALLY
will increment the counter that corresponds to large eggs.

Now let's define a word which converts the weight per dozen into
a category number:

¢ CATEGORY DUP 18 < IF @ ELSE
DUP 21 < IF 1 ELSE
DUP 24 < IF 2 ELSE
DUP 27 < IF 3 ELSE
DUP 38 < IF 4 ELSE
S
THEN THEN THEN THEN THEN SWAP DROP ;i

(By the time we get to the phrase "SWAP DROP," we wil' *“ave two
values on the stack: the weight which we have been |uw ing and
the category number, which will be on top. We want only the
category number; "SWAP DROP" eliminates the weight.)

{ For Experts

We'll see a simpler definition at the end of this chapter.

8 VARIABLES, CONSTANTS, AND ARRAYS 201

For instance, the phrase
25 CATEGORY

will leave the number 3 on the stack. The above definition of
CATEGORY resembles our old definition of EGGSIZE, but, in the
true FORTH style of keeping words as short as possible, we have
removed the output messages from the definition. Instead, we'll
define an additional word which expects a category number and
prints an output message, like this:

¢ LABEL DUP 8= IF ." REJECT * ELSE
puP 1 = IF .'" SMALL *“ ELSE
DUP 2 = IF ." MEDIUM " ELSE
puP 3 = IF ." LARGE " ELSE
DUP 4 = IF ."” EXTRA LARGE " ELSE
" ERROR *

THEN THEN TQEN THEN THEN DROP ; 1
For example:
1 LABEL SMALL ok
Now we can define EGGSIZE using three of our own words:
: EGGSIZE CATEGORY DUP LABEL TALLY ;
Thus the phrase
23 EGGSIZE
will print

MTnTTTI o
S

at your terminal and update the counter for medium eggs.

How will we read the counters at the end of the day? We could
check each cell in the array separately with a phrase such as

3 COUNTER ?

(which would tell us how many "large" cartons were packed). But
let's get a little fancier and define our own word to print a
table of the day's results in this format:

TFor Experts

We'll see a more elegant version of this definition in the next
chapter. .

202 Starting FORTH

QU*ITY SIZE
1 REJECT
112 SMALL
132 MEDIUM
143 LARGE
159 EXTRA LARGE
0 ERROR

Since we have already devised category numbers, we can simply
use a loop and index on the category number, like this:

: REPORT PAGE .M QUANTITY SIZE" CR CR
6 8 PO I COUNTER €@ S5 U.R
7 SPACES I LABEL CR LOOP ;

(The phrase
I COUNTER @ 5 U.R
takes the category number given by , indexes into the array,

and prints the contents of the proper element in a five-~column
field.)

[PP

ring Def’-“*ions

This is a good time to talk about factoring as it applies to
FORTH definitions. We've just seen an example in which factoring
simplified our problem.

Our first definition of EGGSIZE, from Chap. 4, categorized eggs by
weight and printed the name of the categories at the terminal.
In our present version we factored out the "categorizing" and the
"printing"” into two separate words. We can use the word
CATEGORY to provide the argument either for the printing word or
the counter-tallying word (or both). And we can use the printing
word, LABEL, in both EGGSIZE and REPORT.

As Charles Moore, the inventor of FORTH, has written:
A good FORTH vocabulary contains a large number of small

words. It is not enough to break a problem into small
pieces. The object is to isolate words that can be reused.

For example, in the recipe:

8 VARIABLES, CONSTANTS, AND ARRAYS 203

Get can of tomato sauce.
Open can of tomato sauce.
Pour tomato sauce into pan.
Get can of mushrooms.

Open can of mushrooms.
Pour mushrooms into pan.

you can "factor out" the getting, opening, and pouring, since
they are common to both cans. Then you can give the
factored-out process a name and simply write:

TOMATOES ADD
MUSHROOMS ADD

and any chef who's graduated from the Postfix School of Cookery
will know exactly what you mean.

Not only does factoring make a program easier to write (and fix!),
it saves memory space, too. A reusable word such as ADD gets
defined only once. The more complicated the application, the
greater the savings.

Here's another thought about FORTH style before we leave the egg
ranch. Recall our definition of EGGSIZE

: EGGSIZE CATEGORY DUP LABEL TALLY ;

CATEGORY gave us a value which we wanted to pass on to both
LABEL and TALLY, so we include the ™", To make the definition
"cleaner," we might have been temp.<u. to take the out and
put it inside the definition of LABEL, at the beginning. Thus we
might have written

: EGGSIZE CATEGORY LABEL TALLY ;
where CATEGORY passes the value to LABEL, and LABEL passes it on
to TALLY. Certainly this approach would have worked. But then,
when we defined REPORT, we would have had to say

I LABEL DROP
instead of simply

I LABEL
FORTH programmers tend to follow this convention: when possible,
words should destroy their own parameters. In general, it's

better to put the inside the "calling definition" (EGGSIZE,
here) than in the "called" definition (LABEL, here).

204 Starting FORTH

An~n~ther Examp’ - "Looping" *“-ough -~ “rray

We'd like to introduce a little technique that is relevant to
arrays. We can best illustrate thi*~ ~echniqi'~ ' writing our own
definition of a FORTH word called .. HF].t qﬁ is used to print
out the contents of a series of memory addresscs. The usage is
adr count DUMP
For instance, we could enter
COUNTS 12 DUMP

to print out the contents of our egg-counting array called
COUNTS. Since "‘"““" is primarily designed as a programming tool
to print out the contents of memory locations, it prints either
byte-by-byte or cell-by-cell, depending c- *““e type of
addressing the computer uses. Our version of [Lg.., will print
cell-by-cell.

Obviously our \wuwm., will involve a loop. The question is:
what should we use for an index? Although we might use the count
itself (0 - 6) as the loop index, it's better to use the -~“4-ess as
the index.
The address of COUNTS will be the starting index for the loop,
while the address plus the count will serve as the limit, like
this:

: DUMP OVER + SWAP DOCRI@ 5 U,R 2 /LOOP ; I
The key phrase here is

OVER + SWAP

which immediately precedes the [DQ|.

tFORTH-79 Standard
The Standard does not require Bl.
{For Those Whose Systems Do Not Have [’”"‘“'

Substitute R

206 Starting FORTH

Byte Arre-—-

FORTH lets you create an array in which each element consists of
a single byte rather than a full cell. This is useful any time
you are storing a series of numbers whose range fits into that
which can be expressed within eight bits.

-+J

-
3

ign p
L. °r lzajl

YN 8 e~ o~

|

The range of an unsigned 8-bit number is 0 to 255. Byte arrays
are also used to store ASCII character strings. The benefit of
using a byte array instead of a cell array is that you can get
the same amount of data in half the memory space.

The mechanics of using a byte array are the same as using a cell
array except that

1. you don't have to double the offset, since each element
corresponds to one address, and

2. you must use the words and instead of [I] and [@.
These words, which operate on byte values only, have
been given the prefix "C" because their typical use is
accessing ASCII characters.

- —_—

Ci (b adr -) Stores an 8-bit { c-
value into the |stere
address.

ce (adr —- b) Fetches an 8-bit [¢-
value from the |fetch
address. .

208 Starting FORTH

You can access the elements in a |.nwaa.d array just as you would
the elements in a |VARIABLE| array. For example:

LIMITS 2+ # 240 ok .

You can ¢ "~ ' " “e new values into the array, just as you would
into a [] array, as long as you don't do this in an
applicatic.. c.u. you someday hope to target compile.t

To initialize a byte-array that has been defined with [C

you can use the word (c—c-——-'.1 For instance, we coulu siuic
each of the values used in Cu. cyy-sorting definition CATEGORY as
follows:

CREATE SIZES 18 cC, 21¢C¢, 24C, 27¢C, 30C, 255¢C,

This would allow us to redefine CATEGORY using a loop rather
than a series of nested [IF].. = statements, as followsi

: CATEGORY 6 0 DO DUP SIZES I + C@
< IF DROP I LEAVE THEN LOOP ;

Note that we have added a maximum (255) to the array to simplify
our definition regarding category 5.

Including the initialization of the SIZES array, this version
takes only three lines of source text as opposed to six and takes
less space in the dictionary, too.

tFor People Who Intend to Use polyFORTH's Target Compiler

In a target-compiled application, [VA.....BLE| arrays will reside in
RAM; tables defined by [CREATE| and initialized by [] or will
reside, fixed, in PROM.

1FORTH~79 Standard
is included in the optional Reference Word Set.
¥For People Who Don't Like Guessing How It Works

The idea here is this: since there are five possible categories,
we can use the category numbers as our loop index. Each time
around, we compare the number on the stack against the element
in SIZES, offset by the current loop index. As soon as the
weight on the stack is greater than one of the elements in the
array, we leave the loop and use to tell us how many times we
had looped before we "left." Since this number is our offset
into the array, it will also be our category number.

8 VARIABLES, CONSTANTS, AND ARRAYS 209

Here is a list of the FORTH words we've covered in this chapter:

CONSTANT xxx

VARIABLE xxX

CREATE xXxXXx

ce

FILL

BASE

(n—)

xxXxX: (— n)

xxxX: (-— adr)

—- adr)

XxXx:

(n adr —)

(adr — n)

(adr)

(n adr —)

(n—)

(n —)

(b adr ——)

(adr —- b)

(adr n b —)

(n—)

Creates a constant named
xXX with the value n; the
word xXxxx returns n when
executed.

Creates a variable named
xxX; the word xxx returns
its address when executed.

Creates a dictionary entry
(head and code pointer

only) named xxx; the word
XXX returns its address when
executed.

Stores a 16-bit number into
the address.

Replaces the address with its
contents.

Prints the contents of the
address, followed by one
space.

Adds a l6-bit number to the
contet of the address.

Adds n bytes to the para-
meter field of the most
recently defined word.

Compiles n into the next
available cell in the dic-
tionary.

Stores an 8-bit value into
the address.

Fetches an 8-bit value from
the address.

Fills n bytes of memory,
beginning at the address,
with value b.

A variable which contains
the value of the number base
being used by the system.

210

Starting FORTH

Double-length Operators (Optional in FORTH-79 Standard)

2VARIABLE xxx (=--)

xxx: (-—— adr)
2CONSTANT xxx (d -~)

xxx: (== 4)
21 (@ adr —)
2Q (adr -- d)

Creates a double-length
variable named xxx;

the word xxx returns its
address when executed.

Creates a double~-length
constant named xxx with
the value d;

the word xxx returns the
value d when executed.

Stores a double-length
number into the address.

Returns the double-length
contents of the address.

Words Included in the FORTH-79 Standard Reference Word Set

C, (b~)
DUMP (adr u —)
ERASE (adr n —)

Compiles b into the next
available byte in the
dictionary.

Displays u bytes of memory,
starting at the address.

Stores zeroes into n bytes
of memory, beginning at
adr,

Additional Words Available in Some Systems

0 (— 0 Returns the constant zero.

1 (—1 Returns the constant one.

0. (00 Returns the double-length
constant zero.,

KEY

n, nl ... 16-bit signed numbers b 8-bit byte

4, 41, ... 32-bit signed numbers £ Boolean flag

u, ul, ... 16~bit unsigned numbers c ASCII character

value

ud, udl, ... 32-bit unsigned numbers adr address

8 VARIABLES, CONSTANTS, AND ARRAYS 211

1 _of Te-—-

Array

Constant

Factoring

Fetch
Initialize

Offset

Store

Variable

a series of memory locations with a single
name. Values can be stored and fetched into
the individual locations by giving the name of
the array and adding an offset to its address.

a value which has a name. The value is stored
in memory and usually never changes,

as it applies to programming in FORTH,
simplifying a large job by extracting those
elements which might be reused and defining
those elements as operations.

to retrieve a value from a given memory
location.

to give a variable (or array) -its initial
value(s) before the rest of the program begins.

a number which can be added to the address of
the beginning of an array to produce the
address of the desired location within the
array.

to place a value in a given memory location.

a location in memory which has a name and in
which values are frequently stored and fetched.

212

Starting FORTH

ro-vt--3 — Ch-—+-r 8

1.

a) Write two words called BAKE-PIE and EAT-PIE. The first
word increases the number of available PIES by one. The
second decreases the number by one and thanks you for the
pie. But if there are no pies, it types "What pie?"
(Make sure you start out with no pies.)

EAT-PI™ ™™ T PIE?
BAKE-P.u_un
EAT-PIE_THANK 77" -k

b) Write a word called FREEZE-PIES which takes all the
available pies and adds them to the number of pies in the
freezer. Remember that frozen pies cannot be eaten.

BAKE-PIE BAKE~PIE FREEZE-PIES ok
PIES ? 0 ok
FROZEN-PIES ? 2 ok

Define a word called .BASE which prints the current value of
the variable in decimal. Test it by first changing
™" SE] to some value other than ten. (This one's trickier
wual it may seem.)

DECIMAL .BASE 10 ok
HEX .BAS™ '“ ok

Define a number-formatting word called M. which prints a
double~length number with a decimal point. The position of
the decimal point within the number is movable and depends
on the value of a variable that you will define as PLACES.
For example, if you store a "1" into PLACES, you will get

200,000 M._"nnnn g ok

that is, with the decimal point one place from the right. A
zero in PLACES should produce no decimal point at all.

8 VARIABLES, CONSTANTS, AND ARRAYS 213

5.

In order to keep track of the inventory of colored pencils
in your office, create an array, each cell of which contains
the count of a different colored pencil. Define a set of
words so that, for example, the phrase

RED PENCILS

returns the address of the cell that contains the count of
red pencils, etc. Then set these variables to indicate the
following counts:

23 red pencils
15 blue pencils
12 green pencils
0 orange pencils

A histogram is a graphic representation of a series of
values. Each value is shown by the height or length of a
bar. In this exercise you will create an array of values and
print a histogram which displays a line of "*"s for each
value. First create an array with about ten cells.
Initialize each element of the array with a value in the
range of zero to seventy. Then defir a word PLOT which
will print a line for each value. On each line print the
number of the cell followed by a number of "*"s equal to the
contents of that cell,

For example, if the array has four cells and contains the
values 1, 2, 3, and 4, then PLOT would produce:

1 *
2 k%

3 kkk
4 *Ekk

214

Starting FORTH

Create an application that displays a tic-tac-toe board, so
that two human players can make their moves by entermg them

from the keyboard. For example, the phrase

4 X!

puts an "X" in box 4 (counting starts with 1) and produces

this display:

Then the phrase

30!

puts an "O" in box 3 and prints the display:

Use a byte array to remember the contents of the board, with
the value 1 to signify an "X," a -1 to signify a "0," and a 0

to signify an empty box.

(NOTE: until we explain more about vocabularies, avoid
naming anything "X," since this may conflict with the

editor's [X].)

9 UNDER THE HOOD

Let's stop for a chapter to lift FORTH's hood and see what goes
on inside.

Some of the information contained herein we've given earlier,
but, at the risk of redundancy, we're now going to view the FORTH
"machine" as a whole, to see how it all fits together.

!_ ~ de INrn‘m'D‘D_P'I:Im

Back in the firs~ ~hapter we learned that the text interpreter,
whose name is [IM....PRET|, picks words out of the input stream and
tries to find ‘ieir definitions in the dictionary. If it finds a
word, |“""""'1P‘mu'l has it executed.

[7‘“" v Print _an asierisk]

(>4

We can perform these separate operations ourselves by using
words that perform the component functions of . For
instance, the word EI (an apostrophe, but pronounced tick) finds a
definition in the dictionary and returns its adf-~-~s. If we have
defined GREET as we did in Chap. 1, we can now say

' GREET U. "°"""_ok

and discover the address of GREET (whatever it happens to be).

215

216 Starting FORTH

We may also directly use [EXF~7TE]. [EX] will execute a
definition, given its address on tne stack. wnus we can say

' GREET EXECUT® "ELLQ * “PEAR F~™"H ok

and accomplish the same thing as if we had merely said GREET,
only in a more roundabout way.

If tick cannot find a word in the dictionary, it executes [ABORT"
and prints a question mark.

FORTH's text interpreter uses a word related to tick that returns
a zero flag if the word is found. The name and "~-~ e of the word
varies,t{ but the conditional structure of the [i....RPRET| phrase
always looks like this:

(find the word) IF (convert to a number)
ELSE (execute the word)
THEN

A
that is, if the string is not a defined word in the dictionary,
INT™™™PRET| tries to convert it as a number. If it is a defined
worw, INTERPRET| executes it.

The word E] has several uses. For instance, you can use the
phrase

' GREET .

to find out whether GREET has been defined, without actually
having to execute it (it will either print the address or respond
"?2"). In systems that only save the first three characters of a
name, you can also use the above phrase to determine whether a
name that you want to give to a new definition will conflict with
a predefined name.

tFORTH-79 Standard

The word |[FIND| attempts to find the next word in the input stream
in the dictionary and then returns its address or, if not found, a
Zero.

IFor polyFORTH Users

The word [-'] attempts to find the next word in the input stream in
the dictionary. If the search is successful, " " leaves the
parameter field address and false; if unsuccessfu., .eaves [HERE
and true.

9 UNDER THE HOOD 217

You can also use the address to |[DUMP| the contents of the
definition, like this:

' GREET 12 DUMP

Or you can change the value of a constant by first finding its
address, then storing the new value into it, like this:

116 ' LIMIT !

Or you can use tick to implement something called "vectored
execution.” Which brings us to the next section ...

Vectored Execution

While it soun®- hairy, the idea of vectored execution is really
quite simple. .astead of executing a definition ““rect’ - as we
did with the phrase

' GREET EXECUTE

we can execute it indirectly by keeping its address in a
variable, then executing the contents of the variable, like this:

' GREET POINTER !
POINTER @ EXECUTE

The advantage is that we can change the pointer later, so that a
single word can be made to perform different things at different
times.

Here is an example that you can try yourself:

: HELLO " HELLO ™
GOODBYE .'" GOODBYE *“ ;

VARIABLE ’ALOHA

: RLOHRA ’ARLOHR @ EXECUTE

A h W

’ HELLO ’ALOHA !

In the first two lines, we've simply created words which print the
strings "HELLO" and "GOODBYE." 1In line 3, we've defined a
variable called 'ALOHA. This will be our pointer. 1In line 4,
we've defined the word ALOHA to execute the definition whose
address is in 'ALOHA, 1In line 6, we store the address of HELLO
into 'ALOHA.

Now if we execute ALOHA, we will get

218 Starting FORTH

ALOHA HELLO ok
Alternatively, if we execute the phrase

' GOODBYE 'ALOHA !
to store the address of GOODBYE into 'ALOHA, we will get

ALOHA GOC™™"™ ok
Thus the same word, ALOHA, can do two different things.
Notice that we named our pointer 'ALOHA (which we would
pronounce tick-aloha). Since tick provides an address, we use it
as a prefix to suggest "the address of" ALOHA, It is a FORTH
naming convention to use this prefix for vectored execution
pointers.
Tick always goes to the next word in the i-—-* stream.! What if
we put tick inside a definition? When we €ac.u.e the definition,
tick will find the next word in the input stream, not the next
word in the definition. Thus we could define

: SAY ' 'ALOHA ! ;

then enter

SAY HELLO ok
ALOHA —™™"°7 %

or

SAY GOODBY™ -"-
ALOHA GOOLuL.u vk

to store the address of either HELLO or GOODBYE into 'ALOHA.
But what if we want tick to use the next word in the defin‘“‘2n?,
We must use the word |[']| (brac™ ~ " :k-bra~"~*' instead of ..ck.?*

For example:

: COMING ['] HELLO 'ALOHA !
: GOING ['] GOODBYE 'ALOHA !

~e we

TFORTH-79 Standard

The behavior of tick as described by the Standard differs
somewhat from that explained here. See Appendix 3.

iFor Some Smi system, Non-polyFORTH, Users

If your keyboard doesn't have a "[" or "]" key, the documentation
that came with your FORTH system should indicate substitutes.

9 UNDER THE HOOD 219

Now we can say

COMING ~*
GOING ok
ALOHA_GOODBY™ -™

Here's an example of vectored execution that can be found on
certain FORTH systems. When FORTH is first loaded, the word
“"MBERI can only convert single-length numbers. But after
uwdble-length routines are loaded, "7~ "7R| can convert
double-length or single-length numbers.d not be enough
to simply r-“~<‘-- ™MBER|, because then you would also have to
redefine [] and any -*4aer word which uses [NUMBER].
Instead, the uciiusciun of NUML&HA:‘ is something like

: NUMBER 'NUMBER @ EXECUTE ;

where .w.-IBER[is the variable used as a pointer. When FORTH is
first loaded, this variable contains the address of the
single~length version. But when t-- “--“le-length routines are
loaded, a new definition called E @, with double-length
capability, is added to the dicticuary. On the line below the
definition in the load block is the phrase

' (NUMBER) 'NUMBER !

When [NUMI _} is executed in the =-~--~ yhether by [IF ET| or
whomever, the contents of q are fetcheu auu this
definition is executed, giving | new-found double-length
capability.

Here are the commands we've covered so far:t

' xxx (— adr) Attempts to find the{4ick
address of xxx (the
word that follows in
the input stream) in the

dictionary.
' compile time: Used only in a colon/
(—) definition, compiles
run time: the address of the
(-~ adr) next word in the

definition as a literal.

T FORTH-79 Standard

See Appendix 3.

220 Starting FORTH

The “~—~~1we of a "*-*‘onary Entry

All “-finitions --*-“her they have been defined by [}, by
[VA.._.. JLE], by [CI . or by any other "defining word," share
these basic parts.

name field

link field

code pointer field
parameter field

Using the variable DATE as an example, here's how these
components are arranged within each dictionary entry in systems
that have a three-character-maximum name field. 1In this diagram,
each horizontal line represents one cell in the dictionary:

precedence
bit
(previe: = A~finitinay |
E ‘oo __{
name
z A ' T
link |
code pointer |

parameter
field [) J

Systems that allow thirty-one-character-maximum name fields
usually follow the same pattern, but the name field may take
anywhere from two to thirty-two bytes, depending on the name.
The order of the four components may also vary.’r

t FORTH-79 Standard

The FORTH-79 Standard allows thirty-one-character-maximum name
fields, but does not specify the order of the field within the
dictionary entry. The order is considered implementation-
dependent.

222 Starting FORTH

r T :I
m_;u
At search time, tick (or CAV':‘j:

bracket-tick-bracket, etc.) starts v
with the most recent word and
follows the "chain" backwards,
using the addréss in each link

cell to locate the next defini-
tion back.

PLOW

The link field of the first definition in the dictionary contains
a zero, which tells tick to give up; the word is not in the
dictionary.

-7~ —ointer

Next is the "code pointer." The address contained in this
pointer is what distinguishes a variable from a constant or a
colon definition. It is the address of the instruction that is
executed first when the particular type of word is executed. For
example, in the case of a variable, the pointer points to code
that pushes the address of the variable onto the stack. In the
case of a constant, the pointer points to code that pushes the
contents of the constant onto the stack. In the case of a colon
definition, the pointer points to code that executes the rest of
the words in the colon definition.

The code that is pointed to is called the "run-time code"
because it's used when a word of that type is executed (not when
a word of that type is defined or compiled).

224 Starting FORTH

count T 1
2 =« 1y head

link

rnde pointer

pfa 0_. parameter body

field

By the way, the name and link fields are often called the "head"
of the entry; the code pointer and parameter fields are called
the "body."

- AL

- - Basi ructur~ -~ a Colon Definition

While the format of the head and code pointer is the same for all
types of definitions, the format of the parameter field varies
from type to type. Let's look at the parameter field of a colon
definition.

The parameter field of a colon definition contains the addresses
of the previously defined words which comprise the definition.
Here is the dictionary entry for the definition of PHOTOGRAPH,
which we defined as:

: PHOTOGRAPH SHUTTER OPEN TIME EXPOSE SHUTTER CLOSE ;

When PHOTOGRAPH is executed, the definitions that are located at
the successive addresses are executed in turn. The mechanism
which reads the list of addresses and executes the definitions at
each address is called the "address interpreter."

tFor Experts

The addresses that comprise the body of a colon definition are
usually code-field addresses (cfa), not parameter-field addresses.

228 Starting FORTH

DINNER
— - Eventually, of course, the .mITl in
| ENTREE will put the value on the return
LD]G‘ DedoiRT stack into the interpreter pointer. At
last we're ready for DESSERT.
FXIT
One st = ~ °

Perhaps you're wondering: what »-~m2ans

when we finally execute the in
DINNER? Whose return address .. <.. che QuIT
stack? What do we return to? j

Well, remember that DINNER has just been
executed by [EXF~—™ - “*-h is a component INTERPRET
of [INTF™™"™™, |inwswmncsnssd 1S @ loop which l
checks cuc cutire input stream. Assuming

that we entered GEMM after DINNER, then EXECUTE
there is nothing more to interpret. So
when we exit [INTER."’"L"‘“’ where does that
leave us? In the ou st definition for
each terminal, called peuaal. DINNER

y in simplified form, looks like this: L

: QUIT BEGIN (clear return stack) (accept input)
INTERPRET ." ok" CR 0 UNTIL ;

- 1}

(The parenthetical comments represent words -~ " ~~ "~~~ 3 not yet
covered.) We can see that after the word jiwiunconw. CcOmes a
dot-quote message, "ok," and a [CR|, which of course are what we
see after interpretation has been completed.
Next is the phrase

0 UNTIL

which unconditionally returns us to the beginning of the loop,
where we clear the return stack and once again wait for input.

If we execute MTTM at any level of execution, we will

9 UNDER THE HOOD

Ff\ﬂmf!

LOW
MEMORY

HIGH
MEMORY

~---raphy

PRE-COMPMLED
FORTH

SYSTEM
VARIABLES

ELECTIVE
DEFINITIONS

USER
DICTIONARY

- :
PARAMETER STACK

RETURN STACK
USER
YARIABLES

BUFFERS

231

This is a "memory map"f! of a
typical single-user FORTH system.
Multiprogrammed systems such as
polyFORTH are more complicated, as
we will explain later on. For now
let's take the simple case and ex-
plore each region of the map, one
at a time.

Pr-_-_..._'1-: [WG I R

In low memory resides the only
precompiled portion of the system
(already compiled into dictionary
form). On some systems this code is
kept on disk (often blocks 1 - 8) and
automatically loaded into low RAM
when you start up or "boot" the
computer. On other systems the
precompiled portion resides per-
manently in PROM, where it is active
as soon as you power up the com-
puter.

The precompiled portion usually
includes most of the single-length
math operators and number-
formatting words, single-length
stack manipulation operators, editor
commands, branching and structure-
control words, the assembler, all
the defining words we've covered so

fFor Beginners

A "memory map" depicts how computer
memory is divided up for various
purposes in a particular system.
Here, low-numbered addresses begin
at the top ("low memory") and in-
crease as the map goes down. Memory
space is measured in groups of 1,024
bytes. This quantity is called a
"K" (from "kilo-," meaning a
thousand, which is close enough).

232 Starting FORTH

far, and, of course, the text and address interpreters.f

Sys® ~ Variable-

The next section of memory contains "system variables" which are
created by the precompiled portion and used by the entire
system. They are not generally used by the user. [[NUMBER|,
which we discussed earlier, is a system variable.

Electiv ~ ~' '"ions

The portion of the FORTH system that is not precompiled is kept
on disk in source-text form. You can elect to load or not to load
any number of these definitions to better control use of your
computer's memory space. The load block for all "electives" is
called the "electives block," usually block 9. To compile the
electives after you "boot," simply enter

9 LOAD
(or whichever block is the electives block for your system).

For example, in polyFORTH electives include double- and
mixed-length operators, extended editor commands, date and time
commands, and the ability to add new multiprogrammed tasks
including additional terminals. You can mask any of these
electives out of the electives block simply by inserting
parentheses.

If your electives block contains this line:
(32-BIT ARITHMETIC) 30 LOAD 31 LOAD 32 LOAD

you can avoid loading the double-length routines by changing the
line to

(32-BIT ARITHMETIC 30 LOAD 31 LOAD 32 LOAD)
If you want to change the electives block after you have already

loaded it, you must reload the system (by rebooting) before you
can reload the electives. (The word |RELOAD|, available on some

systems, will reload the system and not the electives.)

fFor Experts

To give you an idea of how compact FORTH can be, all of
polyFORTH's precompiled portion resides in less than 8K bytes.

9 UNDER THE HOOD 233

The dictionary will grow into higher memory as you add your own
definitions within the portion of memory called the "user
dictionary." The next available cell in the dictionary at any
time is pointed to by a variable called ™, During the process
of compilation, the pointer I_ﬁ_] is adju.ted cell-by-cell (or
byte “-r-byte) as the entry is being added to the dictionary.
Thus ., is the compiler's bookmark; it points to the place in the
dictionary where the compiler can next compile.

[H is also used by the word , which advances [H] by the
number of bytes given. For enu.p.., the phrase

10 ALLOT

adds ten to [H] so that the compiler will leave room in the
dictionary for a ten-byte (or five-cell) array.

A related word is [HERE|, which is simply defined

: HERE HG@;
to put the value of [H on the stack. The word [] (comma), which
stores a single-length value into the next available cell in the
dictionary, is simply defined

:, HERE ! 2 ALLOT ;

that is, it stores a value into and advances the dictionary
pointer two bytes to leave rooOw .u. t.

You can use to determine how much memory -~- part of your
application requires, simply by comparing the |1..m.3| from before
with the ™ ™7] after compiling. For example:

HERE 220 LOAD HERE SWAP - . 196 ok

indicates that the definitions loaded by block 220 filled 196
bytes of memory space in the dictionary.

234 Starting FORTH

M~ Dad

At a certain distance from @ in your dictionary, you will find
a small region of memory cas.ed the "pad." Like a scratch pad,
it is usually used to hold ASCII character strings that are being
manipulated prior to being sent out to a terminal. For example,
the number-formatting words use the pad tc “-"° the ASCII
numerals during the conversion process, prior to

The size of the pad is indefinite. In most systems there are
hundreds or even thousands of bytes between the beginning of the
pad and the top of the parameter stack.

Since the pad's beginning address is defined relative to the last
dictionar— ~=*ry, it mov-- -~very time you add a new definition or
execute 3ET| or [Ew..¥]. This arrangement proves safe,
however, ~<.wase the pad *~ never used when any of these events
are occurring. The word |*"D| returns the current address of the
beginning of the pad. It is defined simply:

: PAD HERE 34 + ;

that is, it returns an address that is a fixed number of bytes
beyond . (The actual number may vary.)

Bomomomom Ttk

Far abovet the pad in memory is the area reserved for the
parameter stack. Although we like to imagine that values
actually move up and down somewhere as we "pop them off" and
"push them on," in reality nothing moves. The only thing that
changes is a pointer to the "top" of the stack.

As you can see below, when we "put a number on the stack," what
really happens is that the pointer is "decremented" (so that it
points to the next location toward low memory), then our number
is stored where the pointer is pointing, When we "remove a
number from the stack,"” the number is fetched from the location
where the pointer is pointing, then the pointer is incremented.
Any numbers above the stack pointer on our map are meaningless.

tFor Beginners

"Above" refers to the higher memory addresses, which are "lower"
on our map.

236 Starting FORTH

The bottom of the sti ' '~ pointed to

by a variable called T, 18

always contains the auurcss 01 wie next —_

cell b-'~1 the "empty stack" cell. 2

For examples of good uses of {'S| and b

[B0], review the definitions of [DEPTH beue
and of [.S] that we gave in the Handy 0 pointer
Hint at the end of Chap. 3. - 7 E [5v]
Notice that with double-length numbers,

the high-order cell is stored at the
lower memory address whether on the
stack or in the dictionary. The
operators and [2@) keep the order of
cells consistent, as you can see here.

T a {2CONSTANT

l
me;v:ry ‘t N
AlM
link
hign | code
low L high hiah
memory ’_l"ow—
= —

T--ut Mer—---e Buf°--

[E0] also contains the starting address for the "input message
buffer," which grows toward high memory (the same direction as
the pad). When you enter text from the terminal, it gets stored
into this buffer where the text interpreter will scan it.

Retur—- “tack

Above the buffer resides the return stack, which operates
identically to the parameter stack. There are no high-level
FORTH words analogous to [§] or that refer to the return
stack.

9 UNDER THE HOOD 237

User Y-riables

The next section of memory contains "user variables." These

variables include [B"““, @nl, and many others that we'll cover in
an upcoming section.

Block Buff---

At the high end of memory reside the block buffers. Each buffer
provides 1,024 bytes for the contents of a disk block. Whenever
you access a block (by listing or loading it, for example) the
system copies the block from the disk into the buffer, where it
can be modified by the editor or interpreted by [COAD]. We'll
discuss the block buffers in Chap. 10.

This completes our journey across the memory map of a typical
single~user FORTH system. Here are the words we've just covered
that relate to memory regions in the FORTH system.T

H (— adr) Returns the address of
the dictionary pointer.

HERE (=-— adr) Returns the next
available dictionary
location.

PAD (— adr) Returns the beginning

address of a scratch
area used to hold
character strings for
intermediate pro-

cessing.
'S (— adr) Returns the address of
the top of the stack|tick-
before 'S is executed. S
s0 (—adr) Contains the address of

the bottom of the
parameter stack.

T FORTH-79 Standard

[, (8], ana are not required by the Standard.

238

The G -~~iphy o° - """ +-~~"ed F(™~ T

LOW
MEMORY

PRE-COMPILED
FORTH

SYSTEM
VARIABLES

ELECTIVE
DEFINITIONS

USER AREA 1
(terminal task)

USER AREA 2
(terminal task)

USER AREA 3
(terminal task)

USER AREA 4
(control task)

OPERATOR

HIGH BUFFERS

MEMORY

Starting FORTH

USER
DICTIONARY

User Area -
PARAMETER STACK | { (Terminal task)
INPUT MESSAGE
BUFFER

RETURN STACK

USER
VARIABLES

' PARAMETERSTACK |
User Area -
(Control task)

RETURN STACK

USER
VARIABLES

Some FORTH systems (such as polyFORTH) can be multitasked,T so
that any number of additional tasks can be added. A task may be

TPor Beginners

The term "multitasked" describes a system in which numerous tasks
operate concurrently on the same computer without interference

from one another.

9 UNDER THE HOOD 239

either a "terminal task," which puts the full interactive power of
FORTH into the hands of a human at a terminal, or a "control
task," which controls a hardware device that has no terminal.

Either type of task requires its own "user area.” The size and
contents of a user area depends on the type of task, but typical
configurations for the two types of tasks are shown in the fiqure.

Each terminal task has its own private dictionary, pad, parameter
stack, input message buffer, return stack, and user variables.
This means that any words that you define at your terminal are
normally not available to other terminals. Similarly, each task

===

has its own copies of the user variables, such as il.

Each control task has a pair of stacks and a small set of user
variables. Since a control task uses no terminal, it doesn't need
a dictionary of its own; nor does it need a pad or a message
buffer.

Following the initial boot there is only one task, called
[OPERATOR|. Loading the electives block will allocate space for
the various terminal and control-task partitions. Thus it is
possible to reconfigure the subtasks within a system by altering
the electives block and reloading it. But it's beyond the scope
of this book to explain how.

240

User Variables

The following list shows most of the user variables.

won't ever mention again.
remember where you can find it.

Don't try to memorize this table.

Starting FORTH

Some we
Just

User variables are not like ordinary variables.

Pointer to the next

A zero indicates

S0 Pointer to the bottom of the parameter stack
and, for terminal tasks, the start of the input
message buffer.

SCR For the editor, a pointer to the current block
number (set by LIST and used by L).

R# Current character position in the editor.

BASE Number conversion base.

H Dictionary pointer.
available byte.

CONTEXT Contains up to four indexes for vocabularies
to be searched.

CURRENT Contains the index of the vocabulary to which
new definitions will be linked.

>IN Pointer to the current position in the input
stream.

BLK If non-zero, a pointer to the block being
interpreted by LOAD.
interpretation from the terminal (via the
input message buffer).

OFFSET Block offset to disk drives.

The content of
OFFSET is added to the stack number by BLOCK.

With an ordinary

variable (one defined by the word |VARIABLE|), the value is kept
in the parameter field of the dictionary entry.

242 Starting FORTH

Vocabularies

Earlier we mentioned that the ri 1 the in the editor doesn't
conflict with the [T used in a ~., loop is that they belong to
separate "vocabularies.”™ In a simple FORTH system there are
three standard vocabularies: FORTH, the editor, and the
assembler.

All the words that we've covered so far belong to the FORTH
vocabulary, except for the editor commands which belong to the
editor vocabulary. The assembler vocabulary contains commands
that are used to write assembly-language code for your particular
computer. Since assembly code varies from computer to computer,
and since assembly-language programming is a whole different
subject, we won't cover it in this book.

All definitions are added i i)
to the same dictionary in

the order in which they

are compiled, regardless of

which vocabulary they

belong to. So vocabularies

are not subdivisions of the

dictionary; rather they are

independently linked lists

that weave through it. ' —mme —

For example, in the figure
shown here, there are three
vocabularies: football,
baseball, and basketball. %
All three are co-resident
in the same dictionary, but
when tick follows the
basketball chain, for
instance, it only finds
words in the basketball
vocabulary. Even though
each vocabulary has a word
called CENTER, tick will
find whichever version is

cao%Eerx:.priate for the §

tFor the Curious

See Appendix 2,

9 UNDER THE HOOD 243

There is another advantage besides exclusivity, and that is speed
of searches. If we are talking about basketball, why waste time
hunting through the football and I seball words?

You can change the context in which the dirtinnary ic ~~=- ~hed
b Avans 1ting any of the three commands ' , Or
[iRl. For example, if you enter

FORTH

you know for sure that the search context is the FORTH
vocabulary.

Ordinarily, however, the FORTH system automatically changes the
context for you. Here's a typical scenario:

The system starts out with FORTH being the context. Let's say
you start entering an application into a block. Certain editor
commands switch the context to the editor vocabulary. You will
stay in the editor vocabulary until you load the block and begin
compiling definitions. The word E] will automatically reset the
context to what it was before--FORTH.

Different versions of FORTH have different ways of implementing
vocabularies. Still, we can make a few general statements that
will cover most systems.

The vocabi °~ :y to be searched is specified “— - user variable
~=~7le” COL.wuXT|. As we said, the commands EDITOR|, and

..~ 3ElouER| chane the search context.

There is another kind of vocabulary "context": the vocabulary
to which new definitions will be linke< The link voca-="-~~- ‘-
specified by another variable called [.....ENT|. Because |vusuunva,
normally specifies the FORTH vocabulary, new definitions are
normally linked to the FORTH vocal LY.

But how does the system compile words "~ '~ *° litor and
assembler vocabularies? By using the word y as in

EDITOR DEFINITIONS
We know that the word n.....y sets |[CON..XLT| to "EDITC™ " m™-~
word [DEFINITIONS| copies whatever is in [CO ™=v™ into | :
The definition of DEFINITIONS is simply

: DEFINITIONS CONTEXT @ CURRENT ! ;
Having entered

EDITOR DEFINITIONS

any words that you compile henceforth will belong to the editor

244 Starting FORTH

vocabulary until you enter
FORTH DEFINITIONS
to reset {ENT] to "FORTH."T

We've presented this introduction to vocabularies mainly to
satisfy your curiosity, not to encourage you to add new
vocabularies of your own. The problem of defining different
subsets of application words with conflicting names is better
handled by the use of overlays, which we discussed in Chap. 3.

TPor curious polyFORTH Users

olyF~™™1 allows several vocabularies to be chained in sequence.
CONT:. specifies the search order.

The polyFORTH dictior 'y is comprised of eight "linked lists"
which do not correspona with the vocabularies. At compile time a
hashing function, based on (usually) the first letter of the word
being defined, computes a "hashing index." This index is
combined with the "current" vocabulary to produce an index into
one of the eight lists.

Thus a single list may contain words from many vocabularies, but
any words with identical names belonging to separate
vocabularies will be linked to separate lists. The distribution
of entries in each chain is balanced, and an entire vocabulary
can be searched by searching only one-eighth of the dictionary.

9 UNDER THE HOOD 245

A u__d:: T2 4

e v - ERARE M nour

Some FORTH ’ » such as polyFORTH, feature a very useful
word called —....._. If you enter

LOCATE EGGSIZE

FORTH will list the block that contains the definition of
EGGSIZE. The only requirements are that the word must be
resident (currently in the dictionary) and that the word must
have been loaded from a block. You therefore can locate
system electives and words in your application, but you can't
locate words in the precompiled portion.

246 Starting FORTH

' oxxx (— adr) Attempts to find the
address of xxx (the word
that follows in the input
stream) in the dictionary.

INTERPRET (—) Interprets the input
stream, indexed by >IN,
until exhausted.

EXECUTE (adr --) Executes the dictionary
entry whose parameter
field address is on the
stack.

EXIT (—) When compiled within a
colon definition, termi-
nates execution of that
definition at that point.
When executed from ‘a load
block, terminates inter-
pretation of the block at
that point.

QUIT (—) Clears both stacks and
returns control to the
terminal. No message is
given.

HERE (-- adr) Returns the next available
dictionary location.

PAD (- adr) Returns the beginning
address of a scratch area
used to hold character
strings for intermediate

processing.

FORTH (—) Makes FORTH the CONTEXT
vocabulary.

EDITOR (-—) Makes the editor
vocabulary the CONTEXT
vocabulary.

ASSEMBLER (—) Makes the assembler
vocabulary the CONTEXT
vocabulary.

DEFINITIONS (—) Sets CURRENT to the

CONTEXT vocabulary so that
subsequent definitions will
be linked to this
vocabulary.

248

R--*-w_of Terms

Address
interpreter

Body

Boot

Cfa

Control task

Code pointer
field

Defining word

Electives

Head

Input message
buffer

Starting FORTH

the second of FORTH's two interpreters, the one
which executes the list of addresses found in
the dictionary entry of a colon definition.
The address interpreter also handles the
nesting of execution levels for words within
words.

the code and parameter fields of a FORTH
dictionary entry.

simply, to load the precompiled portion of
FORTH into the computer so that you can talk to
the computer in FORTH. This happens
automatically when you turn the computer on or
press "Reset.”

code field address; the address of a dictionary
entry's code pointer field.

on a multitasked system, a task which cannot
converse with a terminal. Control tasks usually
run hardware devices.

the cell in a dictionary entry which contains
the address of the run-time code for that
particular type of definition. For example, in
a dictionary entry created by [, the field
points to the address interpreter.

a FORTH word which crea~-~ ~ dictionary entry.
Examples include [, ~ Ni TRRTABLE], etc.

the set of FORTH definitions that come with a
system but not in the precompiled portion. The
"electives block"” loads the blocks that
contain the elective definitions; the block can
be modified as the user desires.

the name and link fields of a FORTH dictionary
entry.

the region of memory within a terminal task
that is used to store text as it arrives from a
terminal. Incoming source text is interpreted
here.

9 UNDER THE HOOD

Link field

Name field

Pad

Parameter field

Pfa

Precompiled
portion

Run-time code

System variable

249

the cell in a dictionary entry which contains
the address of the previous definition, used in
searching the dictionary. (On systems which
use multiple chains, the link field contains the
address of the previous definition in the same
chain.)

the area of a dictionary entry which contains
the name (or abbreviation thereof) of the
defined word, along with the number of
characters in the name.

the region of memory within a terminal task
that is used as a scratch area to hold
character strings for intermediate processing.

the area of a dictionary entry which contains
the "contents" of the definition: for a
ICONSTANT|, the value of the constant; for a
yrmrrrrm, the value of the variable; for a
Cuavu ucaiinition, the list of addresses of
words that are to be executed in turn when the
definition is executed. Depending on its use,

the length of a parameter field varies.

parameter field address; the address of the
first cell in a dictionary entry's parameter
field (or, if the parameter field consists of
only one cell, its address).

the part of the FORTH system which is resident
in object form immediately after the power-up
or boot operation. The precompiled portion
usually includes the text interpreter and the
address interpreter; defining, branching, and
structure-control words; single-length math and
stack operators; single-length number
conversion and formatting commands; the
editor; and. the assembler.

a routine, compiled in memory, which specifies
what happens when a member of a given class of
words is executed. The run-time code for a
colon definition is the address interpreter;
the run-time code for a variable pushes the
contents of the variable's pfa onto the stack.

one of a set of variables provided by FORTH
which are referred to system-wide (by any
task). Contrast with "user variable."

250

Task

Terminal task

User variable

Vectored
execution

Vocabulary

Starting FORTH

in FORTH, a partition in memory that contains
at minimum a parameter and a return stack and a
set of user variables.

on a multitasked system, a task which can
converse with a human being using a terminal;
i.e., one which has a text interpreter,
dictionary, etc.

one of a set of variables provided by FORTH,
whose values are unique for each task.
Contrast with "system variable."

the method of specifying code to be executed
by providing not the address of the code itself
but the address of a location which contains
the address of the code. This location is
often called the "vector." As circumstances
change within the system, the vector can be
reset to point to some other piece of code.

an independently linked subset of the FORTH
dictionary.

9 UNDER THE HOOD 251

Problems -—— Chapter 9

1.

First review Chap. 2, Prob. 6. Without changing any of those
definitions, now write a word called COUNTS which will allow
the judge to optionally enter the number of counts for any
crime. For instance, the entry

CONVICTED-OF BOOKMAKING 3 COUNTS TAX-EVASION
WILL-SERVEGEMD 17 Y=*™S ok

will compute the sentence for one count of bookmaking .and
three counts of tax evasion.

What is the beginning address of your private dictionary?

In your system, how far is the pad from the top of your
private dictionary?

Assuming that DATE has been defined by |[V*T™"*"" 7|, what is
the difference between these two phrases:

DATE .
and
' DATE .

What is the difference between these two phrases:

BASE .
and
' BASE .

In this exercise you will create a "vectored execution
array," that is, an array which contains addresses of FORTH
words. You will also create an operation word which will
execute one word stored in the array when the operation
word is executed.

Define a one-dimensional array of two-byte elements which
will return the nth element's address when given a preceding
subscript n. Define several words which output something at
your terminal and take no inputs. Store the addresses of
these output words in various elements of the array. Store
the address of a do-nothing word in any remaining elements

252

of tl ‘ray. Define a word which v
index and execute the word whe : a¢
referenc element.

For example,

1 DO-SOME
2 DI IOME

3 D IOME.......
khkhkkkkkkkk

kkhkkkkkkkk
kkkkkhkkkkk
kkkkkkkkkk
kkkkkkkkkk

4 DO-SOMETHINM" -~V
5 DO-SOMETHI!

]

Starting FOl.

a | array
is stored in the

10 I/0 AND YOU

In this chapter we'll explain how FORTH handles I/OJr of
character strings to and from the block buffers and the terminal.

Specifically, we'll discuss disk-access commands, output commands,
string-manipulation commands, input commands, and number-input
conversion.

- o,

hilele]] Basics

The FORTH system is designed so that you don't usually need to
think about the mechanics of the block buffers. But sooner or
later you will, so here's how it works.

As we mentioned earlier, each buffer is large enough to hold the
contents of one block (1024 bytes) in RAM so that it can be
edited, loaded, or generally accessed in any way. While we can
imagine that we're communicating directly to the disk, in reality,
the system brings the data from the disk into the buffer where we
can read it. We can also write data to the buffer, and the
system will send it along to the disk.

tFor Beginners

I/0 is an abbreviation for "input-output," which refers to data,
text, or signals that are sent or received by the computer. I/O
devices include terminals, printers, disk drives, push buttons,
etc.

253

256 Starting FORTH

immediately. ™~ that you know about the buffers, you can see
why we need . uu...‘-II: merely updating a buffer doesn't get it
written to disk.

You should also know that when you .. .USH|, the system "forgets"
that it has your block in a buffer and clears the buffer's update
flag. If you list or load the block again, FORTH will have to
read it from the disk again.

The effective opposite of [FLiuuy iS [unsT RS|, which also
makes the system "<--~--" any block it has2ars any update
flags. T o= is useful if you've accidently got

"garbage 1 iu d wuric: (=.9., you've deleted some important lines
and forgotten what you had originally, or generally messed up)
and you don't want it to get for-- " onto t"- disk. When you list
your block again, after entering juec™v BSUE..l8], the system won't
know it ever had your block in memc., and will bring it in off
the disk anew.}

Each buffer has an associated cell in memory called the "buffer
status cell." It contains the number of the block (e.g., 180).%
The system uses it to _tell whether a requested block is already in
memory. When you ~"7™™Y a block, all you are really doing is
changing the number u. che block in the buffer status cell and
updating the buffer. When it's time for the buffer to be written
to disk, it will be written to the new block.

The basic word that brings a block in from the disk, after first
finding an avai’-*le buffer and storing its contents on disk if
necessary, is [BL...,. For instance, if you say

205 BLOCK

the system will copy block 205 from disk into one of the buffers.
also leaves on the stack the address of the beginning of
the buffer that it used. We'll learn how to use this address in a
few sections.

tFor Beginners

"Garbage" is computer jargon for data which is wrong,
meaningless, or irrelevant for the use to which it is being put.

1 For Those Using a Multiprogrammed System

Careful! [EMPTY-B " empties evr — '~ buffers.

 For the Curious

The sign bit of the buffer status cell serves as the "update

fla- " If the number in the buffer status cell tests as negative
by -, then the buffer has been "updated."

10 I/0 AND YOU

257

If your application requires writing a lot of data to the disk
without reading what's on the disk already (e.g., to initialize a

A

avairarvic wurirl.

into the buffer.
block number has
to make sure that

UPDATE

EMPTY-BUFFERS

BLOCK

BUFFER

~-ts- ----'Jata, transfer tape to disk, etc.), then you'll want

BUFFE" “~esn't read the contents of the disk
Also, |[Buc s uR] doesn't check to see whether the
already been assigned to a buffer, so you have
no two buffers get assigned to the same number.

a by to assign a block number to the next

{(—) Marks the most recently
referenced block as
modified. The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

(—) Marks all block buffers as
empty without necessarily
affecting their actual
contents. Updated blocks
are not written to mass
storage.

(u = adr) Leaves the address of the
first byte in block u. If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block
occupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

(u —— adr) Obtains the next block
buffer, assigning it to
block u. The block is not
read from mases storage

258 Starting FORTH

Outp—-» "ot

The word T™IT| takes a single ASCII representation on the stack,
using the ..w-order byte only, and prints the character at your
terminal. For example, in decimal:

65 EMIT_Aok
66 EMIT F--

The word [TYPE| prints an entire string of characters at your
terminal, given the starting address of the string in memory and
the count, in this form:

(adr u -~)

We've already seen "‘"“El in our number-formatting definitions
without worrying abouc. tl'- -ddress and count, because they are
automatically supplied by |x-;.

Let's give an address that we know contains a character
string. Rewcwwoe. that the starting address of the input message
buffer is kept by the user variable ? Suppose we enter the
following command:

S0 @ 12 TYPE

This will type twelve characters from the input message buffer,
which contains the command we just entered:

SO @ 12 TYPEGETDM™" 7 12 TYPEok

Let's digress for a moment to look at the operation of @ At
compile time, when the compiler encounters a dot-quote, it
compiles the ensuing string right into the dictionary,
letter-by-letter, up to the delimiting double-quote. To keep
track of things, it also compiles the count of characters into the
dictionary entry. Given the definition

: TEST ." SAMPLE " ;

and looking at bytes in the dictionary horizontally rather than
vertically, here is what the compiler has compiled:

nfa A

|4— 'I"l-gl\‘llinlf_l """) ' "l]—C'I%Jm|E|'I:'I l:xl a\

T
address of
run-ti de

for ..

10 I/0 AND YOU 259

If we wanted to, we could type the word "SAMPLE" ourselves
(without executing TEST) with the phri

' TEST 3 + 7 TYPE
where
' TEST
gives us the pfa of TEST,
3+

offsets us past the address and the count, to the beginning of
the string (the letter "S"), and

7 TYPE
types the string "SAMPLE."

That little exercise may not seem too useful. But let's go a step
further.

Remember how we defined LABEL in our egg-sizing application,
using ---+-1 ™, [THEN| statements? We can rework our definition
using |..... «.rst let's make all the labels the same length and
"string them together" within a single definition as a string
array. (We can abbreviate the longest label to "XTRA LRG" so
that we can make each label eight characters long, including
trailing spaces.)

: "LABEL"
." REJECT SMALL MEDIUM LARGE XTRA LRGERROR " ;

Once we enter

' "LABEL" 3 +
to get the address of the start of the string, we can type any
particular label by offsetting into the array. For example, if we
want label 2, we simply add sixteen (2 x 8) to the starting
address and type the eight characters of the name:

16 + 8 TYPE
Now let's redefine LABEL so that it takes a category-number from
Zero through five and uses it to index into the string array, like
this:

: LABEL 8 * ['] "LABEL" 3 + + 8 TYPE SPACE ;

Recall that the word [[']] is just like [except that it may only
be used inside a definition to compile the address of the next

260 Starting FORTH

word in the definition (in this case, "LABEL").T Later, when we
execute LABEL, bracket-tick-bracket will push the pfa of "LABEL"
onto the stack. The number three is added, then the string offset
is added to compute the address of the particular label name that
we want.

This kind of string array is sometimes called a "superstring." As
a naming convention, the name of the superstring usually has
quotes around it.

Our new version of LABEL will run a little faster because it does
not have to perform a series of comparison tests before it hits
upon the number that matches the argument. Instead it uses the
argument to compute the address of the appropriate string to be
typed.

Notice, though, that if the argument to LABEL exceeds the range
zero through five, you'll be typing garbage. If LABEL is only
going to be used within EGGSIZE in the application, there's no
problem. But if an "end user," meaning a person, is going to use
it, you'd better "clip" the index, like this:

: LABEL 0 MAX 5 MIN LABEL ;

TYPE fadr u —) Transmits u characters,
beginning at address, to
the current output device.

tPORTH-79 Standard

See Appendix 3.

10 I/0 AND YOU 261

Out....‘_n__'.... [SR R, .cron_ e

We mentioned before that the word o...n, copies a given block
into an available buffer and leaves the address of the buffer on
the stack. Using this address as a starting-point, we can index
into one of the buffer's 1,024 bytes and type any string we care
to. For example, to print line 0 of block 214, we could say

CR 214 BLOCK 64 TYPEGETD
(_THIS IS BT~"K 214) k

To print line eight, we could add 512 (8 x 64) to the address, like
this:

CR 214 BLOCK 512 + 64 TYPE

Before we give a more interesting example **'~ time to introduce
two words that are closely associated with|.

1
~-TRAILING (adr ul — Eliminates trailing
adr u2) blanks from the string{trailin
that starts at the
address by reducing the
count from ul (original
byte count) to u2
(shortened byte count).

>TyPEt (adr u —) Same as TYPE except{ppcket-
that the output string tt”,a
is moved to the pad,
prior to output. Used
in multiprogrammed
systems to output
strings from disk
blocks.

Cinasusna| €can be used immediately before the ™™™ command to
adjust the count so that trailing blanks will not wc printed. For
instance, inserting it into our first example above would give us

CR 214 BLOCK 64 -TRAILING TYPEGHDED
(THIS ™ ™7~~~ 714) ok

TFORTH-79 Standard
is not required.

262 Starting FORTH

The word " ™™™ is only used on multiprogrammed systems to print
strings f.uvw uisk buffers. Instead of typing the string directly
from the address given, it first moves the entire string into the
pad, then types it from there. Because all users share the same
buffers, the system cannot guarantee that by the time [T""7] has
finished typing, the buffer will still contain the same bluun. It
can guarantee, however, that the buffer will contain the same
bloc™ “--*-3 the move to the pad.! Since each task has its own
pad, can safely type from there.

The following example uses [...'E|, but you may substitute [>TYPE| if
need be.

231 LIST
B (BUZZPHRASE GENERATOR -- VER. 1) EMPTY

1

2 181 LOAD (RANDOM NUMBERS)

3

4 : BUZZ 232 BLOCK + 18 CHOOSE 64 * + 20 -TRAILING TYPE ;
S : 1ARDJ @ Buzz

6 : 2ADJY 2@ BUZZ
K4
8
9

: NOUN 48 BUZZ
¢ PHRASE 1ADJY SPACE 2ADJ SPACE NOUN

~e

-

¢ PARAGRAPH
10 CR ." BY USING ™ PHRASE .” COORDINATED WITH *
11 CR PHRASE ." IT IS POSSIBLE FOR EVEN THE MOST "
12 CR PHRASE ." TO FUNCTION AS "
13 CR PHRASE " HWITHIN THE CONSTRRINTS OF
14 CR PHRASE ." "o

15 PARAGRAPH

(continued)

tPor Experts

In a multiprogrammed system, a task only releases control of the
CPU to the next task during I/O or upon explicit command, a
command which is deliberately left out of the definition of the
word which moves strings.

10 I/0 AND YOU

263

232 LIST
@ INTEGRATED MANAGEMENT CRITERIA
1 TOTAL ORGANIZATION FLEXIBILITY
2 SYSTEMATIZED MONITORED CAPABILITY
3 PARALLEL RECIPROCAL MOBILITY
4 FUNCTIONAL DIGITAL PROGRAMMING
S RESPONSIVE LOGISTICAL CONCEPTS
6 OPTIMAL TRANSITIONAL TIME PHASING
7 SYNCHRONIZED INCREMENTAL PROJECTIONS
8 COMPATIBLE THIRD GENERATION HARDWARE
S QUALIFIED POLICY THROUGH-PUT
1@ PARTIAL DECISION ENGINEERING
11
12
13
14
15

Upon loading the application block (in this case block 231), we
get something like the following output, although some of the
words will be different every time we execute PARAGRAPH.

BY USING INTEGRATED POLICY THROUGH-PUT COORDINATED WITH

COMPATIBLE ORGANIZATION CAPABILITY IT IS POSSIBLE FOR EVEN THE MOST
OPTIMAL THIRD GENERATION PROGRAMMING TO FUNCTION AS

SYSTEMARTIZED MONITORED CRITERIR WITHIN THE CONSTRAINTS OF
RESPONSIVE POLICY HARDHWARE.

of strings interspersed with the word PHRASE. If we execute
PHRASE alone, we get

As ﬁu can see, the definition of PARAGRAPH consists of a series

PHRASE “vSTEMATIZI~™ ~~~NAGEMENT MOBILITY ok

that is, one word chosen randomly from column 1 in block 232, one
word from column ZT and one from column 3.

Looking at the definition of PHRASE, we see that it consists of
three application words, 1ADJ, 2ADJ, and NOUN, each of which in
turn consists of an offset and the application word BUZZ. The
offset indicates which column we want to choose a particular word
from; that is, the number of bytes in from the left margin of
block 232 that the column begins. The definition of BUZZ breaks
down as follows:

232 BLOCK

264 Starting FORTH

moves block 232 into an available buffer and returns the address
of the buffer's beginning byte.

The word

+

adds the offset (0, 20, or 40} to offset us into the appropriate
column in the block.

10 CHOOSE

returns a random numbert between 0 and 10 to determine which
line to take our word from.

64 * +

multiplies the random number by 64 (the length of one line) and
adds this number to the buffer address, to offset into the
appropriate line. The address on the stack is the address of the
word we are going to type.

20 -TRAILING TYPE

adjusts the maximum count of 20 downwards so that the count
excludes any trailing blanks after the character string and types
the string.

Trhe random number generator is given in the following Handy
Hint.

10 I/0 AND YOU 265

A H‘—\—‘:.- I'_'I'-:-_.lE

A Rand~- *»—“-- “=nerator

This simple random number generator can be useful for games,
although for more sophisticated applications such as simulations,
better versions are available.

181 LIST
@ (RANDOM NUMBER GENERARTOR -- HIGH LEWVEL)
1 VARIABLE RND HERE RND !
e RANDOM RND @ 31421 * 6927 + DUP RND ! ;
3 CHOOSE (ul -——= u2)
4 RANDOM Ux SWAP DROP
S
6 (where CHOOSE returns a random integer within the range
7 B = or < U2 < ui.)
8
9

Here's how to use it:

To choose a random number between zero and ten (but exclusive of
ten) simply enter

10 CHOOSE

and CHOOSE will leave the random number on the stack.

266 Starting FORTH

Internal “*-*-- Tpe--*-ors

The commands for moving character strings or data arrays are
very simple. Each requires three arguments: a source address, a
destination address, and a count.

—

MovET (adrl adr2 u —-) Copies a region of 1 move}
memory u bytes long,
cell-by-cell beginning
at adrl, to memory
beginning at adr2. The
move begins with the
contents of adrl and
proceeds toward high
memory.

CMOVE (adrl adr2 u —-) Copies a region of G:—
memory u bytes long, \m
byte-by-byte beginning
at adrl, to memory
beginning at adr2. The
move begins with the
contents of adrl and
proceeds toward high
memory.

<CMOVE {adrl adr2 u —~) Copies a region of [back
memory u bytes long, c-
beginning at adrl, to |[meve
memory beginning at |
adr2, but starts at the g
end of the string and Y«
proceeds toward low Q@

|

memory. "1

tFORTH-79 Standard

The Standard's expects a cell count. | is not
required.

10 I/0 AND YOU 267

Notice that these commands follow certain conventions we've seen
before:

1. When the arguments include a source and a destination
(as they do with [COPY]), the source precedes the
destination.
2. When the argumenté include an address and a count (as
they do with [TYPE]), the address precedes the count.
And so with these three words the arguments are

(source destination count —)

To move the entire contents of a buffer into the pad, for
example, we would write

210 BLOCK PAD 1024 CMOVE

although on cell-address machines the move might be made faster
if it were cell-by-cell, like this:

210 BLOCK PAD 1024 MOVE

The word [<CMOVE| lets you move a string to a region that is
higher in memory but that overlaps the source region.T

f
TFor beginners

Let's say that you want to move a string one byte to the "right"
in memory (e.g., when you use the editor command El to insert a
character).

Using [CMOVE] | Using [<CMOVE]

L'V V If you were to use [CMOVE|, N
R the first letter of the F ¥
Talgh To. ,~| string would get copied to Hretr .. T
] —| the second byte, but that
- N — | would "clobber" the second
hjv|r] - | letter of the string. The _mltl'-l"l"l
.) final result would be a ,
) __T_ string composed of a single P E[EI:

character.

IululHlpf | ._......_Il_lnl
-~ _ " | Using in this

‘ situation keeps the string _L........- T |'_J_

from clobbering itself

during the move.

268 Starting FORTH

To blank an array, we can use the word [F which we introduced
earlier. For example, to store blanks in.. .J24 bytes of the pad,
we say

PAD 1024 32 FILL

Thirty-two is the ASCII representation of blank.t

Ciemts shavanter T-h

The word __,_fl awaits the entry of a single key from your terminal
keyboard and leaves the character's ASCII equivalent on the
stack in the low-order byte.

To execute it directly, you must follow it with a return, like
this:

KEY CEILD

The cursor will advance a space, but the terminal will n-* print
"ok"; it is waiting for your input. Press the letter 'n," for
example, and the screen will "echo" the letter "A," followed by

the "ok." The ASCII value is now on the stack, so enter [J:

KEY‘ L N
N RET] - ok

This saves you from having to look in the table to determine a
character's ASCII code.

You can also include inside a definition. Execution of the
definition will stop, when is encountered, until an input
character is received. For example, the following definition
will list a given number of blocks in series, starting with the
current block, and wait for you to press any key before it lists
the next one:

: BLOCKS (count ~-)
SCR @+ SCR @ DO I LIST KEY DROP LOOP ;

tFor polyFORTH Users

T R ATEs

You may use the word instead, as in

PAD 1024 BLANK

10 I/0 AND YOU 269

© < T Hint

Two Convenient *7****=== *p k- =4~

You might want to make the following two additions to your
editor vocabulary. The use of these words is a matter of
preference; they may or may not already be included with your
sys 1.

EDITOR DEFINITIONS

: K #I PAD 132 MOVE PAD #F 66 MOVE ;

: WIPE SCR @ BLOCK DUP 1024 32 FILL O SWAP ! UPDATE ;
FORTH DEFINITIONS

The word K will swap the contents of the find buffer with that
of the insert buffer. Here's an example of its use:

:"r\n "xVE THE RIGHT MA A ATTr TRIM T™NTias A TAT . 1,
DﬂvauENT B

K

F AINGEID

YOU HAVE THE RIGHT TQ REMAIN", ok
I I

[Lal

YOU HAVE THE ~75HT TO REMAIN SILENT. ok

Use of @ put "SILENT" in the find buffer, and K put it into the
insert buffer so that you could insert it where it belongs.

Or if you've just inserted a string in the wrong place, you can
put the string into the find buffer with K and then erase it
from the line with a simple [E]

The word WIPE blanks the current block and stores two nulls in
the first two character positions. (On most systems, nulls in
the block act just like the word [EYTT K to immediately terminate
interpretation of the block, shoulu .. be loaded.)

b —

10 1/0 AND YOU 271

The word ™ TECT| stops execution of the task and waits for input
from your ncyboard. It expects a given number of keystrokes or a
carriage return, whichever comes first. The incoming text is
stored beginning at the address given as an argument.

———

[ole] [m[>[-fw|

L

For example, the phrase
S0 @ 80 EXPECT

will await up to eighty characters and store them in the input
message buffer.

This phra=~ ie the one used in the definition of |[QUIT| to get the
input for ’RET].

In most systems, when you press return or when the limit is
reached, [FY™5CT| stores a null (zero) into the string to mark the
end, then a...ws execution to continue.}

T FORTH-79 Standard
This phrase is equivalent to the Standard word Qt‘“‘“"].
iFor Experts

You can use wua-uCT| to accept data from a serial line, such as a
measuring device. Since you supply the address and count, such
data can be read directly into an array. In a single-user
environment, you may read data into a buffer for storage on disk.
In a multi-user environment, however, you must use and later
move the data into the buffer, since another task may use "your"”
buffer,

272 Starting FORTH

Let's move on to the next higher-level string-input operator.
We've just explained that |[QI"™™ contains the phrase

... SO0 @ 80 EXPECT INTERPRET ...

But how does the text interpreter scan the input message buffer
and pick out each individual word there? With the phrase

32 WORD

The decimal number 32 is the ASCII representation for "space."
scans the input stream looking for the given delimiter, in
this case space, and moves the sub-string into a different buffer
of its own, with the count in the first byte of the buffer.
Finally, it leaves the address of its buffer on the stack, so that
(or anyone else) knows where to find it. [WORD|'s
buffer usually begins at ™ the dictionary pointer, so the
address given is [HERE|.

WUKVO
BUFFER
(50) 3 3
S0
[STACK
A
‘ INPUT
INFU I
BUFFER BUFFER
+ v
looks for the given an® —~—-s the the sub-string
delimiter in the input to [nusu,'s buffer, with the
message buffer, count in the first byte.

When you are executing words directly from a terminal, |wudD| will
scan the input buffer, starting at [S0]. As it goes along, it

advances the input buffer poin-~- called [>IN], so that each time
you execute , you scan the ucxt word in the input stream.

is a "relative pointer"; that is, it does not contain the
avwdal address but rather an offset that is to be added to the
~~+--1 address, which in this case is ™", For example, after

has scanned the string "STAR," thc value of is five.

10 I/0 AND YOU 273

SO0

m +IN

®
E[T_If\lkl I3|o| slP A|c gls|

Input . ves-qe Buffer

ignores initial occurrences of the delimiter (until any
other character is encountered). You could type

BBBYPSTAR

(that is, STAR preceded by several spaces) and get exactly the
same string in 's buffer as shown above.

When moves the sub-string, it includes a blank at the end
but dccs ..wc include it in the count.

We'll get back to '..v.lD| later on in this chapter. For now,
though, let's look at a word that uses ™"~ and that is more
useful for handling string input.

[TEXT], T like [WO™™ takes a delimiter and scans the input stream
until it finds L.< string delimited by it. It th~- ~oves the
string to the pad. What is especially nice about f] is that
before it moves the string, it blanks the pad ... at least
sixty-four spaces. This makes it very convenient for use with
T""™. Here's a simple example:

CREATE MY-NAME 40 ALLOT
: I'M 32 TEXT PAD MY-NAME 40 CMOVE ;

In the first line we define an array called MY-NAME. 1In the
second line we define a word called I'M which will allow us to
enter

I'M EDWARD_ ok

TFor Those Who Don't Seem to Have [Foom|

|-.....‘| is not required by the FORTH-79 Standard. Its definition,
however, is

: TEXT PAD 7? 32 FILL WORD COUNT PAD SWAP <CMOVE ;

If you have a polyFORTH system, the electives I'"~-" normally
does not load the block (usually 34) that contains . In this
case you must add "34 LOAD" to your electives bluux and reload
it.

274 Starting FORTH

The definition of I'M breaks down as follows: the phrase

32 TEXT
scans the remainder of the input stream looking for a space or
for the end of the line, which- - comes first. (The del*—**-r
that we give as an argument to ﬂ is actually used by ’
which is included in the defini..c.. Of T“""‘|.) TEXT| then wouves

the phrase to a nice clean "pad."
The phrase
PAD MY-NAME 40 CMOVE

moves forty bytes from the pad into the array called MY-NAME,
where it will safely stay for as long as we need it.

We could now define GREET as follows:

: GREET ." HELLO, " MY-NAME 40 -TRAILING TYPE
." , 1 SPEAK FORTH. " ;

so that by executing GREET, we get
GREET "77L~ EDI"""T T_£7FrF TTTIY ok

Unfortunately, our definition of I'M is looking for a space as its
delimiter. This means that a person named Mary Kay will not get
her full name into MY-NAME.

To get the complete input stream, we don't want to "see" any
delimiter at all, except the end of the line. Instead of "32
TEXT," we should use the phrase

1 TEXT

ASCII 1 is a control character that can't be sent from the
keyboard and therefore won't ever appear in the input buffer.
Thus "1 TEXT" is a convention used to read the entire input
buffer, up to the carriage return. By redefining I'M in this way,
Mary Kay can get her name into MY-NAME, space and all.

By using other delimiters, such as commas, we can "expect" a
series of strings and store each of them into a different array
for different purposes. Consider this example, in which the word
VITALS uses commas as delimiters to separate three input fields:

10 I/0 AND YOU 275

233 LIST
@ (FORM LOVE LETTER) EMPTY
1 VARIABLE NAME 12 ALLOT UARIABLE EYES 1@ ALLOT

2 VARIABLE ME 12 ALLOT

3 : VITALS 44 TEXT ¢ ,) PAD HAME 14 MOVE

4 44 TEXT PAD ZYES 12 MOVE

S 1 TEXT PAD ME 14 MOVE

6

7 ¢ LETTER PAGE

8 ." DEAR " NAME 14 ~TRAILING TYPE ."” "

9 CR ." I GO TO HEAVEN WHENEVER -1 SEE YOUR DEEP ™

1@ EYES 12 ~TRAILING TYPE .” EYES. CAN "
11 CR ." YOU GO TO THE MOVIES FRIDRY? "

12 CR 3@ SPACES ." LOVE.,”

13 CR 38 SPACES ME 14 ~TRAILING TYPE
14 CR ." P.S. MWEAR SOMETHING " EYES 12 —-TRAILING TYPE

15 ." TO SHOW OFF THOSE EYES! " 3

which allows you to enter
VITALS ALICE,BLUE,FRED ok
then enter
LETTER
It works every time.

So far all of our input has been "FORTH style"; that is, numbers
precede commands (so that a command will find its number on the
stack) and strings follow commands (so that a command will find
its string in the input stream). This style makes use of one of
FORTH's unique features: it awaits your commands; it does not
prompt you.

But if you want to, you may put ____ CT| inside a definition so
that it will request input from you under control of the
definition. For example, we could combine the two words I'M and
GREET into a single word which "prompts" users to enter their
names. For example,

nmam

¥YC

at which point execution stops so the user can enter a name:

GREET _
WHA™'™ *~"R_NAME? TRAVIS MC GEE
HELI VI~ “~ GEE, I “™3A” ™ RTH. ok

276 Starting FORTH

We could do this as follows:

: GREET CR ." WHAT'S YOUR NAME?" SO @ 40 EXPECT
0>IN! 1 TEXT CR ." HELLO, "
PAD 40 -TRAILING TYPE ." , I SPEAK FORTH. " ;

We've explained all the phrases in the above definition except
this one:

0 >IN !

Remember that because it uses [..W\D|, always uses |- ..., as
its reference pv.uv. But when the user enters the word GREET to
execute this definition, t-- -tring "GREET" will be stored in the
*-—ut _message buffer and l,M.| will be pointing beyond "GREET".

F~™ does -~ use ~7V| as its reference, so it will store the
weel o nale biy.aning oo [80], on top of GREET. If you were to
execute [TEXT] now, it would miss the first five letters of “*--
user’s name. It's -~~~essary to reset to zero so that [TI
will look where IE... ...vﬂ has put the name.

10 I/0 AND YQU 271

Tmboc Twt yes~itts

When you type a number at your terminal, FORTH automatically
converts this character string into a binary value and pushes it
onto the stack. FORTH also provides two commands which let you
convert a character string that begins at any memory location
into a binary value.t

— —
>BINARY or (dl adrl —- Converts the text be- [-
binary

CONVERT d2 adr2) ginning at adrl+l to a
binary value with re-
gard to BASE. The new
value is accumulated
into dl, being left as
d2; adr2 is the address
of the first non-
convertible character.

NUMBER (adr —— n or 4) Converts the text be-
ginning at adr+l, with
regard to BASE, to a
binary value that is
single-length if no
valid punctuation oc-
curs and double-length
if valid punctuation
does occur. The string
may contain a pre-
ceding negative sign;
adr may contain a
count, which will be
ignored.

exists on most systems and is usually the simpler to use.

ucrc o wi) €xample that uses [NUMBER|:
: PLUS 32 WORD NUMBER + ." =", ;

PLUS allows us to prove to any skeptic that FORTH could use infix
notation if it wanted to. We can enter

|
' FORTH-79 Standard

The Standard specifies the name, instead of [>BINARY].
In FORTH systems which use three-cha---~*-- uniqueness, however,
sni~ shoice conflicts with the name ,.....3XT|; hence the name

ARY[is used instead. [NUMBER| is not required by the
- cwaward,

278 Starting FORTH

2 PLUS 137 @_- ° -

When PLUS is executed, the "2" will be on the stack in binary
form, while the "3" will still be in the input stream as a string.
The phrase

32 WORD

reads the string; wuwuF™" converts it to binary and puts the
value on the stack; auw. the two values; and [] prints the sum.

expects on the stack the address of the string that is to
be converted, with the count in the first b~ -~ 4 --- *--iling
blank, so it's most appropriate for use after does
not actually use the count, however; it only auus Uhc uy.e O the
-?°r~~~ before beginning the conversion. Thus you can use
mvdl .. on a string that does not contain the count in the first
byte, simply by subtracting one byte from the starting address of
the string.

| is a_more frimitive definit’-- being used in the

ucssnscaon of ™V TOR, You can use 71 to create your own
specialized nuwuec. input conversicu iCuviucsS. Since |>“"""'“1
returns the address of the first non-convertible charac.c., ywu
can make decisions based on whether the character is a hyphen,
dot, or whatever. You can also make decisions based on the
location of the non-convertible character within the number. For
instance, you can write a routine that lets you enter a number
with a decimal point in it and then scales it accordingly.

To give a good example of the use of [>BINARY|, Figure 10-1 shows

a definition of [NUMBER|. This version reads any of the
characters

s, = </

as valid punctuation characters which cause the value to be
returned on the stack as a double-length integer. If none of
these characters appear in the string, the value is returned as
single-length. This definition uses the word WITHIN as we
defined it in the problems for Chap. 4.

Here we use the variable PUNCT to contain a flag that indicates
whether punctuation was encountered, We suggest that you use an
available user variable instead.

tFor polyFORTH Users
Your version of = %= -ahaves similarly and in addition leaves
in the user var R the number of characters that were
converted since uuc sas. punctuation was encountered.

10 1/0 AND YOU

279

Egrvnﬂ mn _l.

A nPPTNITION OF NUMBER

VARIABLE PUNCT

: NUMBER (adr -- n or 4d)

0 PUNCT !

DUP 1+ C@
45 (=) =
DUP >R

e

0 0 ROT

BEGIN >BINARY

DUP C@

32 -~ WHILE

DUP C@ DUP 58 =
SWAP 44 48 WITHIN +

DUP PUNCT !

NOT ABORT" ? "

REPEAT

DROP

R> IF DNEGATE THEN

PUNCT @ NOT IF
DROP THEN ;

Creates a flag that will contain true
if the number contains valid
punctuation.

Initializes flag: no punctuation has
occurred.

Gets the first digit.

Is it a minus sign?

Saves the flag on the return stack.

If the first character is "-", adds 1
(the flag itself) to the address,
setting it to point to the first digit.

Provides a double-length zero as an
accumulator.

Begins conversion; converts until an
invalid digit.

Fetches the invalid digit.

While it is not a blank, checks if it
is valid punctuation; that is,

a colon, or
a comma, hyphen, period, or slash.

Sets PUNCT to indicate whether valid
punctuation has occurred.

Otherwise issues an error message.

Exits here if a blank is detected;
otherwise repeats conversion.

Discards the address on the stack.
If the flag on the return stack is

true, negates d.

If there was no punctuation, returns a
single-length value by dropping the
high-order cell.

282 Starting FORTH

can be used to test either whether two character strings
wsw wydal or whether one is alphabetically greater or lesser than
the other.t! cChap. 12 includes an example of using to
determine whether strings match exactly.

Since for speed |—u~JXT| compares ¢~ “7-cell, you must take care
on cell-address machines to give |, even cell addresses only.
For example, if you want to compare a string that is being
entered as input with a strinq that is in an array, bring the
‘~~ut string to the pad (using ™™™ rather than ™" 7)) because
-...,[is an even address. Simiia..y, if you want to¢ ot a string
that is in a block buffer, you must either guarantee that the
string's address is even or, if you cannot know for sure, move the
string to an even address (using [CI"~"" before making the test.

By the way, the hyphen in [-T...| is as close as ASCII comes to
"5", the logical symbol meaning "not." This is why we
conventionally use this prefix for words which return a "negative
true" flag. (Negative true means that a zero represents true and
a non-zero represents false.) We pronounce such words R)
etc.

TFor Users of Intel, DEC, and Zilog Processors

To make the "alphabetical” test, you must first reverse the order
of bytes.

'%ORTH-79 Standard

aicluded in the Standard. If your system does not
u can load the high-level definition below. Of
is written in assembler code on all polyFORTH

oyocmsy wve wpced.

: -TEXT 2DUP + SWAP DO DROP 2+
DUP 2- @ I @ - DUP IF DUP ABS / LEAVE THEN
2 +LOOP SWAP DROP ;

10 I/0 AND YOU

283

Here's a list of the FORTH words covered in this chapter.

UPDATE (—)
EMPTY-BUFFERS (—)
BLOCK (P -= adr)
BUFFER u — adr)
TYPE {adr u —
-TRAILING (adr ul —
adr u2)

)

Marks the most recently
referenced block as
modified. The block will
later be automatically
transferred to mass storage
if its buffer is needed to
store a different block or
if FLUSH is executed.

Marks all block buffers as
empty without necessarily
affecting their actual
contents. Updated blocks
are not written to mass
storage.

Leaves the address of the
first byte in block u. If
the block is not already in
memory, it is transferred
from mass storage into
whichever memory buffer
has been least recently
accessed. If the block
occupying that buffer has
been updated (i.e.,
modified), it is rewritten
onto mass storage before
block u is read into the
buffer.

Obtains the next block
buffer, assigning it to
block u. The block is not
read from mass storage.

Transmits u characters,
beginning at address, to
the current output device.

Eliminates trailing blanks
from the string that starts
at the address by reducing
the count from ul (original
byte count) to u2
(shortened byte count).

284

Starting FORTH

MOVE

CMOVE

KEY

EXPECT

WORD

TEXT

>BINARY or
CONVERT

(adrl adr2 u ——~)

(adrl adr2 u -)

(adr u —)

(¢ — adr)

(c —)

(dl adrl —
d2 adr2)

Copies a region of memory
u bytes long, cell-by-cell
beginning at adrl, to
memory beginning at adr2.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Copies a region of memory
u bytes long, byte-by-byte
beginning at adrl, to
memory beginning at adr.
The move begins with the
contents of adrl and
proceeds toward high
memory.

Returns the ASCII value of
the next available
character from the current
input device.

Awaits u characters (or a
carriage return) from the
terminal keyboard and
stores them, starting at
the address.

Reads one word from the
input stream, using the
character (usually blank)
as a delimiter. Moves the
string to the address
(HERE) with the count in
the first byte, leaving the
address on the stack.

Reads a string from the
input stream, using the
character as a delimiter,
then sets the pad to blanks
and moves the string to the
pad.

Converts the text begin-
ning at adrl+l to a binary
value with regard to BASE.
The new value 1is
accumulated into dl, being
left as d2; adr2 is the
address of the first
non~-convertible character.

10 1/0 AND YOU 285

NUMBER {adr -~ n or 4) Converts the text
beginning at adr+l, with
regard to BASE, to a binary
value that is single-length
if no valid punctuation
occurs, and double-length
if valid punctuation does
occur. The string may
contain a preceding
negative sign; adr may
contain a count, which will
be ignored.

COUNT [adr =—— adr+l u) Converts a character
string, whose length is
contained in its first
byte, into the form
appropriate for TYPE, by
leaving the address of the
first character and the
length on the stack.

Additional Words Available in Some Systems

>TYPE (adr u —) Same as TYPE except that
the output string is moved
to the pad prior to output.
Used in multiprogrammed
systems to output strings
from disk blocks.

<CMOVE (adrl adr2 u —) Copies a region of memory
u bytes long, beginning at
adrl, to memory beginning
at adr2, but starts at the
end of the string and
proceeds toward low

memory.
-TEXT (adrl u adr2 — Compares two strings
f) that start at adrl and

adr2, each of length u.
Returns false if they
match; true if no match
(positive if binary string 1
> 2, negative if 1 < 2).

BLANK (adr n —) Stores ASCII blanks into n
bytes of memory, beginning

at adr.
—_— . —_— — —_—

286

Revie- ~f Terms

Buffer
status cell

Relative pointer

Superstring

Virtual memory

Starting FORTH

in the FORTH operating system, a cell in
resident memory associlated with each block
buffer (usually directly preceding it in memory)
which contains the number of the block
currently stored in the buffer and a flag (the
sign bit) which indicates whether the buffer
has been updated.

a variable which specifies a location in
relation to the beginning of an array or string
--not the absolute address.

in FORTH, a character array which contains a
number of strings. Any one string may be
accessed by indexing into the array.

the treatment of mass storage (such as the disk)
as though it were resident memory; also the
mechanisms of the operating system which make
this treatment possible.

10 I/0 AND YOU 287

P-~klg=~ - Chapter 10

1.

3.

Enter some famous quotations into an available block, say
228. Now define a word called CHANGE which takes two ASCII
values and changes all occurrences within block 228 of the
first character into the second character. For example,

65 69 CHANGE
will change all the "A"s into "E"s.

Define a word called FORTUNE which will print a prediction
at your terminal, such as "You will receive good news in the
mail." The prediction should be chosen at random from a
list of sixteen or fewer predictions. Each prediction is
sixty~-four characters, or less, long.

According to Oriental legend, Buddha endows all persons born
in each year with special, helpful characteristics
represented by one of twelve animals. A different animal
reigns over each year, and every twelve years the cycle
repeats itself. For instance, persons born in 1900 are said
to be born in the "Year of the Rat." The art of
fortune-telling based on these influences of the natal year
is called "Juneeshee."

Here is the order of the cycle:

Rat Ox Tiger Rabbit Dragon Snake
Horse Ram Monkey Cock Dog Boar

Write a word called .ANIMAL that types the name of the
animal corresponding to its position in the cycle as listed
here; e.qg.,

0 .ANIMAL RAT -*

Now write a word called (JUNEESHEE) which takes as an
argument a year of birth and prints the name of the
associated animal. (1900 is the year of the Rat, 1901 is the
Ox, etc.)

Finally, write a word called JUNEESHEE which prompts the
user for his/her year of birth and prints the name of the
person's Juneeshee animal. Define it so the user won't have
to press "return" after entering the year.

Rewrite the definition of LETTER that appears in this
chapter so that it uses names and personal descriptions that
have been edited into a block, rather than entered into
character arrays. In this way, you can keep a file on many
"prospects" and produce a letter for any one person with the

288

Starting FORTH

appropriate descriptions, just by supplying an argument to
LETTER, as in

1 LETTER

Now define LETTERS so that it prints one letter for each
person in your file.

In this exercise you will create and use a virtual array,
that is, an array which resides on the disk but which is
referenced like a memory-resident array (with and [1)).

First select an unused block in your range of assigned
blocks. There can be no text on this block; binary data will
be stored in it. Put this block number in a variable. Then
define an access word which accepts a cell subscript from
the stack, then computes the block number corresponding to
this subscript, calls [BT~~X] and returns the memary address
of the subscripted cell. .his access word should also call
FARRTME], Tegt your work so far.

Next use the first cell as a count of how many data items are
stored in the array. Define a word PUT which will store a
value into the next available cell of the array. Define a
display routine which will print the stored elements in the
array.

Now use this virtual array facility to define a word ENTER
which will accept pairs of numbers and store them in the
array.

Finally, define TABLE to print the data entered above, eight
numbers per line,

11 EXTENDING THE COMPILER:
DEFINING WORDS AND COMPILING WORDS

In comparison with traditional languages, FORTH's compiler is
completely backwards. Traditional compilers are huge programs
designed to translate any foreseeable, legal combination of
available operators into machine language. In FORTH, however,
most of the work of compilation is done by a single definition,
only a few lines long. Special structures like conditionals and
loops are -~t compiled by the compiler but by the words being
compiled (.., [D0], etc.).

Lest you scoff at FORTH's simple ways, notice that FORTH is
unique among languages in the ease with which you can extend the
compiler. Defining new, specialized compilers is as easy as
defining any other word, as you will soon see.

When you've got an extensible compiler, you've got a very
powerful language!

_T'"" = ~-astic” of Time

Before we get fully into this chapter, let's review one particular
concept that can be a problem to beginning FORTH programmers.
It's a question of time.

We have used the term "run time" when referring to things that
occur when a word is executed and "compile time" when referring
to things that happen when a word is ¢-——°"-? So far so good.
But things get a little confusing when a siuy.e word has both a
run-time behavior and a compile-time behavior.

In general there are two classes of words which behave in both
ways. For purposes of this discussion, we'll call these two
classes "defining words" and "compiling words."

A defining word is a word which, when executed, compiles a new
definition. A defining word specifies the compile-time and
run-time behavior of each member ¢~ '* - "7 1ily" of words that it
defines. Using the defining word | as an example, when
we say

80 CONSTANT MARGIN

289

290 Starting FORTH

we are -~ cuting the -—-mpile-t+‘~- behavior of [CONSTANT|; that is,
~oveT is compil...g a ne. .onstant-type dictionary entry
caired wnnGIN and storing the value 80 into its parameter field.
But when we say

MARGIN
we ¢-- ‘{ecutlng the run “‘me behr-*>r of [C that is,
Y f| is pushing the value 80 ¢uud the Staca. we 11 pursue

uciluauy words further in the next few sections.

The other type of word which possesses dual behavior is the
"compiling word." A compiling word is a word that we use ‘=~i<e
a colon definition and that actually does something ww....g
compilation of that definition.

One example is the word [["], which at compile time compiles a
text string into the dictionary entry with the count in the first

byte, and at run time tyr-- it. Other examples are
control-structure words like and [LOOP|, which also have

compile-time behaviors distinc. .com their run-time behaviors.
We'll explore compiling words after we've discussed defining
words.

How LN “Ac:—e - “Afif“._‘- W-_.:

Here are the standard FORTH defining words we've covered so far:
VARIABLE
2VARIABLE
CONSTANT
2CONSTANT

CREATE
USER

What do they all have in common? Each of them is used to define
a set of words with similar compile-time and run-time
characteristics.

And how are all these defining words #~<‘-~2d? First we'll answer
this question metaphorically.

Let's say you're in the ceramic salt-shaker business. If you plan
to make enough salt shakers, you'll find it's easiest to make a
mold first. A mold will guarantee that all your shakers will be
of the same design, while allowing you to make each shaker a
different color.

11 EXTENDING THE COMPILER 291

g

In making the mold, you must consider two things:

1. How the mold will work. (E.g., how will you get the clay
into and out of the mold without breaking the mold or
letting the seams show?)

2. How the shaker will work. (E.g., how many holes should
there be? How much salt should it hold? Etc.)

To bring this analogy back to FORTH, the definition of a defining
word must specify two things: the compile-time behavior and the
run-time behavior for that type of word.

Hold that thought a moment while we look at the most basic of the
Aafinin~ yords in the above list: [CREATE|. At compile time,

takes a name from the input stream and creates a
wsvesvnweY heading for it.

[CR- - -E] EXAMPLE

7

____ __, run~time
_X_L - : code (when
link I executed, pushes

the potential
pfa onto the

| core nninter _J
(pfa) - ! stack).

At run time, [CREATE| pushes the pfa of EXAMPLE onto the stack.

What happens if we use ””EATEI inside ~ “~finition? Consider
this example, which is th. .efinition for . .._{TABLH:

: VARIABLE CREATE 2 ALLOT ;

292 Starting FORTH

When we execute [VA E| as in

VARIABLE ORANGES

we are indirectly using ,.....TE| to create a dictionary r==4 with
the name ORANGES and a code pointer that points to | E's
run—-time code. Then we are allotting two bytes for the va..able
itself.

Since the run-time be*»~rf~~ of ~ ~-i~-h1~ jg jdentical to that of
a word defined by [o loes not need to have
run-time code of its Cwuy 1o ca J's run-time code.

How do we specify a diffe---* run-time behavior in a defining
word? By using the word |DL,, . as shown here:

: DEFINING-WORD CREATE (compile-time operations)
DOES> (run-time operations) ;

ite, the following c~+'4 »~ a valid definition for
(although in fact [C | is usually defined in

mavuins wwde):

: CONSTANT CREATE , DOES> @ ;

To see how this definition works, imagine we're using it to define
a constant named TROMBONES, like this:

76 CONSTANT TROMBONES

CREATE Creates a new dictionary entry
compile- (e.g., TROMBONES),
time
portion ’ Compiles the value (e.g., 76) for
the constant from the stack
into the constant's parameter
field.
DOES> Marks the end of the
compile-time behavior and the
run- beginning of the run-t*—-
time behavior. At run time, [D(
portion will leave the pfa of the ne.u

being defined on the stack.

@ Fetches the contents of the
constant, using the pfa that
will be on the stack at run
time.

11 EXTENDING THE COMPILER 293

The words that precede |DO..-, specify what the mold will do; the
words that “-"low |[°"™%3>] specify what the product of the mold
will do.

[1
DOES> run time: Used in creating a
(-—- adr) defining word; marks
the end of its compile-
time portion and the
beginning of its run-
time portion. The run-
time operations are
stated in higher-level
FORTH. At run time, the
pfa of the defined word
will be on the stack.

does

Defining *"-~"- “ou 7-~n Dr=--_ A
Here are some examples of defining words that you can create
yourself.
Recall that in our discussion of "String Input Commands" in Chap.
10, we gave an example that employed character-string arrays
called NAME, EYES, and ME. Every time we used one of these
names, we followed it with a character count. In the input
definition, we wrote

... PAD NAME 14 MOVE ...
and in the output definition we wrote

... NAME 14 -TRAILING TYPE ...
and so on.
Let's eliminate the count by creating a defining word called
CHARACTERS, whose product definitions will leave the address and
count on the stack when executed.
We'll use it like this: if we say

20 CHARACTERS ME

we will create an array called ME, with twenty bytes available
for the character string.

When we execute ME, we'll get the address of the array and the

294

count on the stack.
PAD ME MOVE
instead of

PAD ME 20 MOVE

or

Starting FORTH

Now we can write:

ME -TRAILING TYPE

instead of

ME 20 -TRAILING TYPE

Here's how we might define CHARACTERS:

compile-
time
portion

run-
time
portion

: CHARACTERS

CREATE

DUP , ALLOT

DOES>

DUP

SWAP @

Creates a new dictionary
entry (e.g., ME).

Compiles the count (e.g.,
twenty) into the first cell
of the array for future
reference. Then allots an
additional twenty bytes be-
yond the count for the
string.

Marks the beginning of
run-time code, leaving the
pfa of the product-word on
the stack at run time.

Copies the pfa.

Advances the address to
point past the count, to the
start of the character
string.

Swaps the string address with
the count address and
fetches the count. The stack
now holds (adr count --).

11 EXTENDING THE CTVIPILER 295

We've just extended our compiler! Our new word CHARACTERS is a
defining word that creates a data structure and procedure that we
find useful. CHARACTERS not only simplifies our input and output
definitions, it also allows us to change the length of any string,
should the need arise, in one place only (i.e., where we define
it).

Our next example could be useful in an application where a large
number of byte arrays are needed. Let's create a defining word
called STRING as follows:

: STRING CREATE ALLOT DOES> + ;
to be used in the form
30 STRING VALVE

to create an array thirty bytes in length. To access any byte in
this array, we merely say:

6 VALVE C@

which would give us the current setting of hydraulic valve 6 at
an oil-pumping station. At run time, VALVE will add the argument
6 to the pfa left by [DOES>|, producing the correct byte address.

If our application requires a large number of arrays to be
initialized to zero, we might include the initialization in an
alternate defining word called 0STRING:

: ERASED HERE OVER ERASE ALLOT ;
: OSTRING CREATE ERASED DOES> + ;

First we defi-~~ ERASED to |EF*“T]| the given number of bytes,
starting at |Huaw, before |ALLOT;c.ing the given number of bytes.

Then we simply substitute ERASED for |[i....., in our new version.

By changing the definition of a defining word, you can change
the characteristics of all the member words of that family. This
ability makes program development much easier. For instance, you
can incorporate certain kinds of error checking while you are
developing the program, then eliminate them after you are sure
that the program runs correctly.

Here is a version of STRING which, at run time, guarantees that
the index into the @array is valiad:

: STRING CREATE DUP , ALLOT
DOES> 2DUP @ U< NOT ABORT" RANGE ERROR " + 2+ ;

296 Starting FORTH

which breaks down as follows:

DUP , ALLOT Compiles the count and
allots the given number of
bytes.

DOES> 2DUP @ At run time, given the
argument on the stack,
produces:

(arg pfa arg count -~).

U< NOT Tests that the argument is
not less than the maximum,
i.e., the stored count.
Since is an unsigned
compare, negative
arguments will appear as
very high numbers and thus
will also fail the test.

ABORT" RANGE ERROR" Aborts if the comparison
check fails.

+ 2+ Otherwise adds the argu-
ment to the pfa, plus an
additional two to skip over
the cell that contains the
count.

Here's another way that the use of defining words can help during
development. Let's say you suddenly decide that all of the
arrays you've defined with STRING are too large to be kept in
computer memory and should be kept on disk instead. All you have
to do is redefine the run-time portion of STRING. This new
STRING will compute which block on the disk a giver “-te would
be contained in, read the block into a buffer using ..OCK|, and
return the address of the desired byte within the buffer. A
string defined in this way could span many consecutive blocks
(using the same technique as in Prob. 5, Chap. 10).

You can use defining words to create all kinds of data structures.
Sometimes, for instance, it's useful to create multi-dimensional
arrays. Here's an example of a defining word which creates
two-dimensional byte arrays of given size:

298 Starting FORTH

This calculation is what members of ARRAY must do at run time.
You'll notice that, to perform this calculation, each member word
needs to know how many rows are in each column of its particular
array. For this reason, ARRAY must store this value into the
beginning of the array at compile time.

For the curious, here are the stack effects of the run-time
portion of ARRAY:

Contents
Or--qtion of "=~

row col pfa
DUP @ row col pfa #rows
ROT row pfa #rows col
* row pfa col-index
+ + address
2+ corrected-address

It is necessary to add two to the computed address because the
first cell of the array contains the number of columns.

Our final example is the most visually exciting, if not the most
useful.

8 (SHAPES, USING A DEFINING WORD) EMPTY

1

2 : STAR 42 ENMIT

3 : .ROW CR 8 8 DO DUP 128 AND

4 IF STAR ELSE SPARCE THEN

S 2% LOOP DROP :

6

7 : SHAPE CREATE B8 8 DO C, LOOP

8 DOES> DUP 7 + DO I C@ .ROW -1 +LOOP CR
S

18 HEX 18 18 3C SA 99 24 24 24 SHAPE MAN

11 81 42 24 18 18 24 42 81 SHAPE EQUIS

12 AA AR FE FE 38 38 38 FE SHAPE CASTLE

13 DECIMAL

.ROW prints a pattern of stars and spaces that correspond to the
8~-bit number on the stack. For instance:

11 EXTENDING THE COMPILER 299

2 BASE !_ok
00111001 .ROW__

k% % QK
DECIMAL ok

Our defining word SHAPE takes eight arguments from the stack and
defines a shape which, when executed, prints an 8-by-8 grid that
corresponds to the eight arguments. For example:

MAN

ok

In summary, defining words can be extremely powerful tools. When
you create a new defining word, you extend your compiler.
Traditional languages do not provide this flexibility because
traditional compilers are inflexible packages that say, "Use my
instruction set or forget itr"

The real power of !defining words is that they can simplify your
problem. Using them well, you can shorten your programming time,
reduce the size of your program, and improve readability.
FORTH's flexibility in this regard is so radical in comparison to
traditional languages that many people don't even believe it.
Well, now you've seen it.

The next section introduces still another way to extend the
ability of FORTH's compiler.

How to Control the Colon "~mpiler

Compiling words are words used inside colon definitions to do
something at compile time. The most obvious examples of

comg '*° words are control-structure words such as [IF|, [THEN],
(DO}, etc. Because FORTH programmers don't often change

the .., ...ese particular words work, we're not going to study
them any further. Instead we'll examine the group of words that
control the colon compiler and thus can be used to create any
type of compiling word.

Recall that the colon compiler ordinarily looks up each word of a
source definition and compiles each word's address into the
dictionary entry--that's all. But the colon compiler does not

300 Starting FORTH

compile the address of a compiling word--it executes it.

How does the colon compiler know the difference? By checking
the definition's "precedence bit." If the bit is "off," the
address of the word is compiled. If the bit is "on," the word is
executed immediately; such words are called “"immediate" words.

The word |IMMEDIATE| makes a word "immediate.” It is used in the
form

: name definition ; IMMEDIATE

that is, it is executed right after the compilation of the
definition.

To give an immediate example, let's define
: SAY-HELLO ." HELLO " ; IMMEDIATE

We can execute SAY-HELLO interactively, just as we could if it
were not immediate.

SAY-HELLC """ LC -~"

But if we put SAY-HELLO inside another definition, it will
execute at compile time:

: GREET SAY-HELLO ." I SPEAK FORTH " ; """~ _ok
rather than at e '~ time:
GREET ™ ~™™\K FORTH -"

Before we go on, let's clarify our terminology. FORTH folks
adhere to a convention regarding the terms "run time" and
"compile time." 1In this example, the terms are defined relative
to GREET. Thus we would say that SAY-HELLO has a “compile-time
behavior" but no "run-time behavior." Clearly, SAY-HELLO does
have run-time behavior of its own, but relative to GREET it does
not.

To keep our levels straight, let's call GREET in this example the
"compilee"; that is, the definition whose compilation we're
referring to. SAY-~-HELLO has no run-time behavior in relation to
its compilee.

Here's an example of an immediate wor¢ '“ % you're familiar with:
the definition of the compiling word __.IN]. It's simpler than
you might have thought:

: BEGIN HERE ; IMMEDIATE

simply saves the address of i at compile time on the

11 EXTENDING THE COMPILER 301

stack. Why? Because sooner or later an {(UNTIL| or |[REPEAT| is
going to come along, and either has to know what address in the
dictionary to return to in the event that it must repeat. This is
the address that left on the stack.

___.'s compile-time behavior is leaving .._._, on the stack. But
P2GIN|] compi® -~ nothing into the compilee; there is no run-time

~wiavior for\,INI.

Unlike [BEGIN|, most compiling words °- have a run-time behavior.
To have a run-time behavior, a we.u has to compile into the
compilee the address of the run-time behavior, which must already
have been defined as a word.

A good example is [DO]. Li, wy| must provide, at comnile
time, a for [LOOP| or [+LOOP[to return to. But unlike [BE__..,
also has a run-time behavior: it must push the limit and the
index onto the return stack.

The run-time behavior of ™7 is defined by a lower-level word,
sometimes called or [a-sy. The definition of is this:

: DO COMPILE 2>R HERE ; IMMEDIATE

The word finds the address of the
next word in the definition (in this case
[2>R]) and compiles its address into the
compilee definition, so that at run time)
will be executed.T ' compilee definition

tFor the Very Curious

Another example is the definition of [j]. At compile time, semicolon
must do two things:

1., compile the address of into the dictionary entry being
compiled, and

2. leave compilation mode.
Here's the definition of semicolon:
HEH COMPILE EXIT R> DROP ; IMMEDIATE

The first phrase compiles [EXIT], providing the run-time behavior. The
second phrase, which is the compile-time behavior, gets us out of the
compiler. The top return address at this moment is pointing inside the
colon compiler, which is simply a ™~]...[UNTIL] loop. When semicolon
has finished be*~-~- -—-~*ed, eXvvu..on will return not to the colon
compiler, but to .

Don't worry about how we can use a semicolon to end the very
definition that defines it. The explanation requires an understanding
of polyFORTH's Target Compiler, which is beyond the scope of this book
(see Appendix 2).

11 EXTENDING THE COMPILER 303

M~~~ Compiler-controlling Words

As you may recall, a number that appears in a colon definition is
called a "literal." An example is the "4" in the definition

: FOUR-MORE 4 + ;

The use of a literal in a colon |
definition requires two cells.
The first contains the address
of a routine which, when
executed, will push the contents
of the second cell (the number

itself) onto the stack.t coae ooiriter
{ oAy}

The name of this routine may l, " L

vary; let's call it the "run-time a

~n~A~ =-- a literal," or simply | -

(~~-=-..0)]. When the colon
compiler encounters a number, it ' Al
first compiles the run-time code

for a literal, then compiles the

number itself.

|

The word you will use most often to compile a literal is [LITER™"
(no parentheses). [LITERALl compiles both the run-time code auu
the value itself. To illustrate:

4 : FOUR-MORE LITERAL + ;

Here the word [LITERAL| will compile as a literal the "4" that we
put on the stack before beginning compilation. We get a
dictionary entry that is identical to the one shown above.

For a more useful application of il], recall that in Chap. 8
we created an array called LIMI.. wuac consisted of five cells,
each of which contained the temperature limit for a different
burner. To simplify access to this array, we created a word
called LIMIT. The two definitions looked like this:

t For Memory Conservationists

While a literal requires two cells, a reference to a constant
requires only one cell. Since a constant takes only five cells
to define, you can see that if you're going to use the same value
six times or more, you will save memory by defining the value as
a constant. There is hardly any difference between the time
required to execute a constant and a literal.

304 Starting FORTH

VARIABLE LIMITS 8 ALLOT
: LIMIT 2% LIMITS + ;

Now let's assume that we will only access the array through the
word LIMIT. We can eliminate the head of the array (eight bytes)
by using this construction instead:

HERE 10 ALLOT
: LIMIT 2* LITERAL + ;

In the fire+ line we put the address of the beginning of the
array) on the stack. In the second line, we compile this
addrest uo o literal into the definition of LIMIT.

old n_ew“ 7
version hedd ‘FO?‘ version 5
LIMITS cells
5 head for Because we had to
cells add an extra cell
LIMIT for the literal to
the definition of
— — LIMITS, our net
- — savin is three
head for /ITED AT cells. 9
LIMIT
PA.
. . IMITQ
_+__|
eviT

There are two other compiler control words you should know. The
words [[] and [[] can be used inside a colon definition to stop
compilation and start it again, respectively. Whatever words
appear between them will be executed "immediately," i.e., at
compile time.

Consider this example:
: SAY-HELLO ." HELLO " ;

GREET [SAY-HELLO] ." I SPEAK FORTH " ; HF" ™" ok
GREET I SPEAK FORTH ok

11 EXTENDING THE COMPILER 305

In this example, SAY-HELLO is not an immediate word, yet when we
compile GREET, SAY-HELLO executes "immediately."

For a better example, imagine a colon definition in which we
need to type line 3 of block 180. To get the address of line 3,
we could use the phrase

180 BLOCK 3 64 * +
but it's time—consuming to execute

364 *
every time we use this definition. Alternatively, we could write

180 BLOCK 192 +

but it's unclear to human readers exactly what the 192 means.

| . e
The best solution is to write
(LITERAL)
180 BLOCK [3 64 *] LITERAL + —_
192
Here the arithmetic is performed only once,
at compile time, and the result is compiled ‘ N

as a literal.

Here's a silly example which may give you some ideas for more
practical applications. This definition must be loaded from a
disk block:

: LIST-THIS [BLK @] LITERAL LIST ;

When you execute LIST-THIS, you will list whichever block
LIST-THIS is defined in. (At compi'~ time, contains the
number of the block being loaded. iL_m.{AL| compiles this number
into the definition as a literal, so that it will serve as the

argument for T ™ at run time.)

By the way, here's the definition of [LITERAL|:
: 'ERAL COMPILE (LITERAL) , ; IMMEDIATE

First it compiles the address of the run-time code, then it
compiles the value itself (using comma).

11 EXTENDING THE COMPILER 307

An_Introductic- t~ ™IRT™ "lowch--*s

Flowcharts provide a way to visualize the logical structure of a
definition, to see where the branches branch and where the loops
loop. Old-fashioned flowcharting techniques haven't been
adequate for describing FORTH's structured organization. Instead,
various FORTH programmers have devised alternate schemes.

The question of which diagramming approach works best for FORTH
remains open; programmers use whatever methods work best for
them. The subject of flowcharting could occupy a chapter of its
own, but we're running out of chapters.

The diagrams that we will use are loosely based on a type of
flowchart called the "D-chart,” invented by Prof. Edsger W.
Dijkstra. Here's how our diagrams work:

Sequential statements are written one below the other, without
lines or boxes:

statement
next statement
next statement

Lines used to show non-sequential control paths (conditional
branches and loops). The FORTH statement

condition IF true ELSE false THEN statement

would be diagrammed

condition
true false
statement
L —_— - ————

If either phrase is omitted, a vertical line is drawn in its
place:

308 Starting FORTH

condition

true

statement

_— —

It is immaterial whether "true" is left or right.

alf J... TI] structure is diagrammed like this:

condition

The entire loop structure is shifted to the right from the
"normal" flow of execution, connected by a horizontal line at
the top. If additional levels of nested loops were to be shown,
they would be shifted still further to the right.

The black dot is the symbol for the end of the loop. It
indicates that control is returned to the return point, symbolized
by the circled X. The condition will cause the loop either to be
repeated or to be exited. The diagonal line sloping down to the
left indicates the return to the outer level of execution.

a of 1. iAT| loop is similar:

11 EXTENDING THE COMPILER 309

first phrase

condition

second phrase

O

We've given this brief introduction to FORTH flowcharts so that
we can visualize the structure of two very important words.

M Pl AT

This section gives us a
chance to say "Goodbye" to
the text interpreter and the
colon compiler and perhaps
to see them in a new light.

“~re is the definition of
... TERPRET| as it is found in
many FORTH systems (see page
216 for a discussion of
possible variations):

: INTERPRET BEGIN ~' IF NUMBER ELSE EXECUTE
?STACK ABORT" STACK EMPTY" THEN 0 UNTIL ;

- Ll .

We've already covered each --=-ds contained in this
definition; we can describe in English by simply
"translating" its definition, lince wuins

310 Starting FORTH

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number. If it is defined, execute it, then check to see
whether the stack is empty. (If it is, exit the loop and
print "STACK EMPTY.") Then repeat the infinite loop.

Now let's apply our flowcharting techniques to this definition.

M mRERPRE
TERPRE _) |

==*il end of line?
]

found

EXECUTE
NUMBER

?8TACK
W

As you can see, the FORTH text interpreter is a simple yet
powerful structure. Now let's compare its structure with that of
the colon compiler:

T'For the Very Curious

You may have wondered, if """ PRET| is an infinite loop, how do
we exit it and get back .v [QUIT|? The answer varies for
different implementations of FORTH, but the most common answer is
this:

When you enter a text from the terminal and press
"return," the word i places a "null"” (zero) at the end of
the input stream. Tuis uusr is actually a defined FORTH word; its
code field points directly to [EXIT]. The result: when
gets to the end of the line, it finds null in the dir**~nary and
executes it. immediately transports us up to [Cu..,. Simple
angd fast.

11 EXTENDING THE COMPILER 311

s] BEGIN -' IF (NUMBER) LITERAL
ELSE (check precedence bit) IF EXECUTE ?2STACK
ABORT" STACK EMPTY"
ELSE 2- , THEN THEN O UNTIL ;

The first thing you probably noticed is that the name of the
colon compiler is not [f] but [I]. The definition of [f] invokes [
after creating the dictionary head and performing a few other
odd jobs.

The next thing you may have noticed is that the compiler is
somewhat similar to the interpreter. Let's translate the above
definition into English:

Begin a loop. Within the loop, try to look up the next word
from the input stream. If it's not defined, try to convert it
as a number f and, if it is a number, compile it as a literal.

If it ‘-~ defined, then treat it as a word. If the word is
immed..awe, then execute it and check to see if the stack is
empty. If it is r-* immediate, change the pfa to a cfa
(code-field address, and compile this address. Then repeat
the infinite loop.

Picture it this way: m

immediadte

(NUMBER)
EXECUTE cfa
1
?STACK : LITERAL
ABORT"
TFor the Curious
The version of that the colon compiler uses is the 16-bit

version. That's wuy ywu can't have a double-length literal in a
colon definition (except by making it two single-length literals).

312 Starting FORTH

Compare this to the diagram of and you'll see that []_']
could be called an interpreter w..u cue aw.lity to decide whether
to execute or to compile any given word. 1t is the simplicity of
this design that lets you add new compiling words so easily.

In summary, we've shown two ways to extend the FORTH compiler:

1. Add new, specialized compilers, by creating new
defining words.

2. Extend the existing colon compiler by creating new
compiling words.

While traditional compilers try to be universal tools, the FORTH

compiler is a collection of separate, simple tools ... with room
for more. Which approach seems more useful:

COMPLEXITY \ or SIMPLICITY ?

11 EXTENDING THE COMPILER

313

Here's a summary of the words we've covered in this chapter:

DOES> run time:

(—— adr)
IMMEDIATE (—)
COMPILE xxx (—)
[COMPILE] xxx (—)
LITERAL compile time:

(n —)

run time:

(--n)

Used in creating a de-
fining word; marks the end
of its compile-time portion
and the beginning of its
run-time portion. The run-
time operations are stated
in higher-level FORTH. At
run time, the pfa of the
defined word will be on
the stack.

Marks the most recently
defined word as one which,
when encountered during
compilation, will be exe-
cuted rather than be
compiled.

Used in the definition of a
compiling word. When the
compiling word, in turn, is
used in a source defini-
tion, the code field ad-
dress of xxx will be com-
piled into the dictionary
entry so that when the new
definition is executed, xxx
will be executed.

Used in a colon definition,
causes the immediate word
xxx to be compiled as
though it were not imme-
diate; xxx will be executed
when the definition is
executed.

Used only inside a colon
definition. At compile
time, compiles a value
from the stack into the
definition as a literal. At
run time, the value will be
pushed onto the stack.

Leaves compile mode.

Enters compile mode.

314

T . - -

Compile-time
behavior

Compilee

Compiling word

Defining word

Flowcharts

Precedence bit

Run-time
behavior

Starting FORTH

1. when referring to °~“ining words: the
sequence of instructions wu.ch will be carried
out when the defining word is executed--these
instructions perform the compilation of the
member words;

2. when referring to compiling words: the
behavior of a compiling word, contained within
a colon definition, during compilation of the
definition.

a definition being compiled. In relation to a
compiling word, the compilee is the definition
whose compilation the compiling word affects.

a word used inside a colon definition to take
some action during the compilation process.

a word which, when executed, compiles a new
dictionary entry. A defining word specifies
the compile-time and run-time behavior of each
member of the "family" of words that it
defines.

a graphic representation of the logical
structure of a program or, in FORTH, of a
definition.

in FORTH dictionary entries, a bit which
indicates whether a word should be executed
rather than be compiled when it is encountered
during compilation.

1. when referring to defining words: the
sequence of instructions which will be carried
out when any member word is executed;

2. when referring to ~-—~°"*~~ words: a
routine which will be caccuccu When the
compilee is executed. Not all compiling words
have run-time behavior.

11 EXTENDING THE COMPILER 315

Pr~*'ems —— Ch;i—*-- 11

1.

3.

Define a defining word named LOADED-BY that will define
words which load a block when they are executed. Example:

6000 LOADED-BY CORRESPONDENCE

would define the word CORRESPONDENCE. When CORRESPONDENCE
is executed, block 6000 would get loaded.

Define a defining word BASED. which will create number
output words for specific bases. For example,

16 BASED. H.

would define H. to be a word which prints ~~- *op of the
stack in hex but does not permanently change |—..c..

DECIMAL
17 DUP H. .GEIGD 11 17 ok

Define a defining word called PLURAL which will take the
address of a word such as ™™ or STAR and create its plural
form, such as CRS or STARS. Jou'll provide PLURAL with the
address of the singular word by using tick. For instance,

the phrase
' CR PLURAL CRS
will define CRS in the same way as though you had defined it
: CRS ?DUP IF 0 DO CR LOOP THEN ;
The French words for " are TOURNE and RETOURNE.
Using the words . fine TOURNE and RETOURNE
as French "aliases.' uun ccoe wlem by writing yourself a

French loop.

The FORTH-79 Standard Reference Word Set contains a word
called ASCII that can be used to make certain definitions
more readable. Instead of using a numeric ASCII code within
a definition, such as

: STAR 42 EMIT ;
you can use
: STAR ASCII * EMIT ;
The word ASCII reads the next character in the input stream,

then compiles its ASCII equivalent into the definition as a
literal. When the definition STAR is executed, the ASCII

316 St ting 1 rH

\ is pushed onto the stack.

Defiir tI word ASCII.

6. | « lled LOOPS wh LW « & the . nder of
rean the carri: 1 urn, to pe executed
£ tir fied by tne vawe on tI ¢ k. For

7 LOOPS 42 EMIT SPACE

12 THREE EXAMPLES

Programming in FORTH is more of an "art" than programming in any
other language. Like painters drawing brushstrokes, FORTH
programmers have complete control over where they are going and
how they will get there. Charles Moore has written, "A good
programmer can do a fantastic job with FORTH; a bad programmer
can do a disastrous job." A good FORTH programmer must be
conscious of "style."

FORTH style is not easily taught; it's a subject that deserves a
book of its own. Some elements of good FORTH style include:

simplicity,

the use of many short definitions rather than a few longer
ones,

a correspondence between words and easy-to-understand
actions or data structures,

well-chosen names, and
well laid-out blocks, clearly commented.

One good way to learn style, aside from trial and error, is to
study existing FORTH applications, including FORTH itself. 1In
this book we've included the definitions of many FORTH system
words, and we encourage you to continue this study on your own.

This chapter introduces three applications which should serve as
examples of good FORTH style.

The first example will show you the typical process of
programming in FORTH: starting out with a problem and working
step-by-step towards the solution.

The second example involves a more complex application already
written: you will see the use of well-factored definitions and
the creation of an application-specific "language."

The third example demonstrates the way to translate a
mathematical equation into a FORTH definition; you will see how
speed and compactness can be increased by using fixed-point
arithmetic.

317

318 Starting FORTH

Wt ame

The example in this section is a refinement of the buzzphrase
generator which we programmed back in Chap. 10. (You might want
to review that version before reading this section.) The
previous version did not keep track of its own carriage returns,
causing us to force [CR|s into the definition and creating a very
ragged right margin. The job of deciding how many whole words
can fit on a line is a reasonable application for a computer and
not a trivial one.

The problem is this: to draft a "brief" which consists of four
paragraphs, each paragraph consisting of an appropriate
introduction and sentence. Each sentence will consist of four
randomly-chosen phrases linked together by fillers to create
gramatically logical sentences and a period at the end.

The words and phrases have already been edited into blocks 234,
235, and 236 in the listing at the end of this section. Look at
these blocks now, without looking at the two blocks that follow
them (we're pretending we haven't written the application yet).

Block 234 contains the four introductions. They must be used in
sequence. Block 235 contains four sets of fillers. The four sets
must be used in sequence, but any of the three versions within a
set may be chosen at random. Block 236 contains the three
columns of buzzwords from our previous version, with some added
words.

You might also look at the sample output that precedes the
listing of the application, to get a better idea of the desired
result.

"Top~down design” is a widely accepted approach to programming
that can help to reduce development time. The idea is that you
first study your application as a whole, then break the problem
into smaller processes, then break these processes into still
smaller units. Only when you know what all the units should do,
and how they will connect together, do you begin to write code.

The FORTH language encourages top-down design. But in FORTH you
can actually begin to write top-level definitions immediately.
Already we can imagine that the "ultimate word" in our
application might be called PAPER, and that it will probably be
defined something like this:

: PAPER 4 0 DO I INTRO SENTENCE LOOP ;

where INTRO uses the loop index as its argument to select the
appropriate introduction. SENTENCE could be defined

: SENTENCE 4 0 DO I FILLER PHRASE LOOP ;

12 THREE EXAMPLES 319

where FILLER uses the loop index as its argument to select the
appropriate set, then chooses at random one of the three versions
within the set. The function of PHRASE will be the same as
before.

Using FORTH's editor, we can enter these top-level definitions
into a block. Of course we can't load the block until we have
written our lower-level definitions.

In complicated applications, FORTH programmers often test the
logic of their top-level definitions by using "stubs" for the
lower~-level words. A stub is a temporary definition. It might
simply print a message to let us know its been executed. Or it
may do nothing at all, except resolve the reference to its name
in the high-level definition.

While the top-down approach helps to organize the programming
process, it isn't always feasible to code in purely top-down
fashion. Usually we have to find out how certain low~level
mechanisms will work before we can design the higher-level
definitions.

The best compromise is to keep a perspective on the problem as a
whole while looking out for low-level problems whose solutions
may affect the entire application.

In our example ap-'“‘-~ation, we can see that it will no longer be
possible to force . .ys at predictable points. Instead we've got
to invent a mechanism whereby the computer will perform carriage
returns automatically.

The only way to solve this problem is to count every character
that is typed. Before each word is typed, the application must
decide whether there is room to type it on the current line or do
a carriage return first.

So let's define the variable LINECOUNT to keep the count and the
constant RMARGIN with the value 78, to represent the maximum
count per line. Each time we type a word we will add its count
to LINECOUNT. Before typing each word we will execute this
phrase:

(length of next word) LINECOUNT @ + RMARGIN > IF CR
that is, if the length of the next word added to the current
length of the line exceeds our right margin, then we'll do a

carriage return.

But we have another problem: how do we isolate words with a
known count for each word? You got it, we use [WORD.

Let's write out a "first draft" of this low-level part of our
application. It will type a single word, making appropriate

320 Starting FORTH

calculations for carriage returns.

32 WORD Finds one word delimited by
a space.
COUNT DUP Leaves the count and a copy

of the count on the stack,
with the address of the first
character beneath.

LINECOUNT @ + Computes how long the
current line would be if the
word were to be included on
it.

RMARGIN > Decides if it would exceed

the margin.

IF CR 0 LINECOUNT ! If so, resets the carriage
and the count.

ELSE SPACE THEN Otherwise, leaves a space
between the words.

DUP 1+ LINECOUNT +! Increases the count by the
length of the word to be
typed, plus one for the

space.

TYPE Types the word using the
count and the address left
by COUNT.

»~-- *he problem is getting [""TD to look at the strings on disk.
gets its bearings from .n] and ™, so if we say,

23¢ Bk ! o0 >mN T

then [v.\.)] will begin scanning block 234, starting at the top
(byte zero).

TFor polyFORTH Users

The user variables and [F° ' are adjacent to each other in
the user table. This design w...ws you to fetch and store both
together with [28] and [2I]. For example,

234 0 >IN 2]

12 THREE EXAMPLES 321

This causes another problem: by storing new values into the
input stream pointers, we've destroyed the o0ld values. If we now
execute a definition that contains the above phrase, the
interpreter will -~* come back to us when it's done; it will
continue trying tu ...erpret the rest of block 234. To solve this
problem, our definition must ~-~7e the pointer values somewhere
before it changes them, then .c3tore them just before it's done.
Let's define a double-length variable called HOMEBASE, so we
have a place to save the pointers. Then let's write a word whose
job it will be to save the pointers in HOMEBASE. Finally, let's
write a word which will restore the pointers.

VARIABLE HOMEBASE 2 ALLOT
<WRITE BLK @ >IN @ HOMEBASE 2
WRITE> HOMEBASE 2@ >IN ! BLK

: !
: 1

Now we have to modify our highest-level definition slightly, by
editing in <WRITE at the beginning and WRITE> at the end:

: PAPER <WRITE 4 0 DO I INTRO SENTENCE LOOP WRITE> ;

The next question is: how do we know when we've gotten to the
end of the string?

Since we are typing word by word, we have to check whether
has advanced sixty-four places from its starting point every time
we have found a new word. But the limit is not always sixty-four
places; in the case of the buzzwords, the limit is twenty places.

For this reason, we should probably make the limit be an argument
to a word. For example, the phrase

64 WORDS

should type out the contents of the 64-byte string, word by word,
performing carriage returns where necessary.

How should we structure our definition of WORDS? Let's
re—-examine what it must do:

1. Determine whether there is still a word in the string to
be typed.

2. If there is, type the word (with margin checking), then
repeat. If there isn't, exit.

" Y

tworE‘"L -a this structure suggests that we need a
(i IN] o o o [Bas sasyee loop. Let's write our problem this way,
if Only to underscauu .o Oetter.

... BEGIN ANOTHER WHILE .WORD REPEAT ...

322 Starting FORTH

ANOTHER will do step 1l; .WORD will do step 2.

How should ANOTHER determine whether there is still a word to be
typed from the string? It must scan for the next word in the
block, by using the phrase

32 WORD
then compare the new value of “'Nl against the limit for ._'N|,
and finally return a "true" if tuc< value is less th-- -~ -~gqual to
the limit. This flag will serve as the argument for
How do we compute the limit for [IN]? Before we can begin the
above loop, we have to ad¢® *-- argument (sixty-four or whatever)
to the beginning value of and save this limit on the stack

for ANOTHER to use eacl ...e through the loop. Thus our
definition of WORDS might be

: WORDS (u--) >IN @ + BEGIN ANOTHER WHILE
.WORD REPEAT 2DROP ;

We need the '""™ROP] because, when we exit the loop, we will have
the address o. |AORD|'s buffer and the limit for on the stack,
neither of which we need any longer.

Now we can define ANOTHER. We've already decided that the first
thing it must do is find the next word, by using the phrase

32 WORD

At this point, there will be two values on the stack:
limit adr

We can perform the comparison with the phrase
OVER >IN @ < NOT

By using R] we save the limit on the stack for future loops.
Remember ..a. the phrase

< NOT
is the same as "greater than or equal to." Our definition of

ANOTHER, then, might be

32 CONSTANT BL
: ANOTHER (limit -- limit adr)
BL WORD OVER >IN @ < NOT ;

12 THREE EXAMPLES 323

(The abbreviation BL is a common mnemonicT for "blank." We have
used it here to improve program readability.)

How do we define .WORD? Actually, we've defined it already, a
few pages back, with the exception that

32 WORD

should be omitted from the beginning of the definition, since it
will have been performed in ANOTHER.

Now we have our word-typing mechanism. But let's see if we're
overlooking anything. For example, consider that every time we
start a new paragraph, we must remember to reset LINECOUNT to
zero. Otherwise our .WORD will think that the current line is full
when it isn't. We should ask ourselves this question: is there
ever a case in this application where we would want to perform a
[CR[without resetting LINECOUNT? The answer is no, by the very
nature of the application. For this reason we can define

:CR CR 0 LINECOUNT ! ;

to create a version of ..., that is appropriate for this
application. We can use thi in our definition of .WORD.

We should also consider our handling of spaces between words.
By using the phrase

IF CR ELSE SPACE THEN

before typing each word, we guarantee that there will be a space
between each pair of words on the same line but no space at the
beginning of successive lines. And since we are typing a space
- --- each word rather than after, we can place a period
wammcuracely after a word, as we must at the end of a sentence.

But there's still a problem with this logic: at the beginning of
a new paragraph, we will always get ~=~_~~1ice before the first
word. Our solution: to redefine (w.al , so that it will be
sensitive to whether or not we're at t| beginning of a line, and
will not space if we are:

: SPACE LINECOUNT @ IF SPACE THEN ;

If LINECOUNT is "0" then we know we are -* “he beginning of a
line, because of the way we have redefined

T -For Beginners

As a general term, a "mnemonic" is a symbol or abbreviation
chosen as an aid in remembering.

324 Starting FORTH

While we are redefining SPACE, it would be logical to include the
phrase

1 LINECOUNT +!

in the redefinition. Again our reasoning is that we should never
perform a space wi**~t incrementing the count. Now we can
eliminate the word .., from the definition of .WORD, thereby
eliminating a bug in the previous .WORD, namely that LINECOUNT
was getting incremented even at the beginning of the line.

Let's assume that we have edited our definitions into a block.
(In fact, we've done this already in block 237.) Notice that we
had very little typing to do, compared with the amount of
thinking we've done. FORTH source tends to be concise.t

Now we can define our in-between-level words——words like INTRO
and PHRASE that we have already used in our highest-level words,
but which we d4idn't define because we didn't have the low-level
mechanism.

Let's start with INTRO. First we must set our input-stream
pointers. The introductions are all in block 234, so the phrase

234 BLK !

takes care of them. Since each line is sixty-four bytes long, we
can calculate the desired offset into the block by multiplying
the loop index by sixty-four, then storing the offset into

Now we're ready to use WORDS to type all the words in the next
sixty-four bytes. The finished definition of INTRO looks like
this:

: INTRO (u-—)64 *>IN! 234 BLK! CR 64 WORDS ;
Our mechanism has given us a very easy way to select strings.
Unfortunately we cannot test this definition by itself, because it
does not reset the input-stream pointers to their original values
when it's done. But we can get around this by writing ourselves a
definition called TEST, as follows:

: TEST CR ' <WRITE EXECUTE WRITE> SPACE ;

Now we can say

TFor Experts

On the other hand, FORTH is not as compressed as APL, which in
our opinion is not nearly as readable as FORTH.

12 THREE EXAMPLES 325

0 TEST INTRO
™1 QHIS§ pPpTTn T oraTTT -)Hr\\1ﬂm-nnmn mrrAam o1

The "tick" in TEST will find the next word in the input stream,
INTRO, which will then be executed "between" <WRITE and WRITE>.
Notice that we put the argument to INTRO on the stack first.

The definition for FILLER will be a little more complicated.
Since we are dealing with sets, not lines, and since the sets are
four lines apart, we must multiply the loop index not by 64, but
by (64 * 4). To pick one of the 3 versions within the set, we must
choose a random number under three and multiply it by 64, then
add this result to the beginning of the set. Recalling our
discussion of compile-time arithmetic in Chap. 1ll., we can define

: FILLER (u-—) [464 *] LITERAL *
3 CHOOSE 64 * + >IN ! 235 BLK ! 64 WORDS ;

Again, we can test this definition by writing

3 TEST FILLE®
mN 'E'TTK'ICTION ,k

The remaining words in the application are similar to their
previous counterparts, stated in terms of the new mechanism.

Here is a sample of the output, followed by our finished listing.
(We've added block 239 as an afterthought so that we'd be able to
print the same paper more than once.)

IN THIS PAPER WE WILL DEMONSTRATE THAT BY RAPPLYING AVAILABLE
RESOURCES TOWARRDS FUNCTIONAL DIGITAL CARPABILITY COORDINATED WITH
COMPATIBLE ORGANIZATIONAL UTILITIES IT IS POSSIBLE FOR EVEN THE
MOST RESPONSIVE DIGITAL OUTFLOW TO AUVOID TRANSIENT UNILATERAL
MOBILITY.

ON THE ONE HAND, STUDIES HAVE SHOWN THAT WITH STRUCTURED DEPLOYMENT
OF TOTAL FAIL-SAFE MOBILITY BALANCED BY SYSTEMATIZED UNILATERAL

THROUGH-PUT IT BECOMES NOT UNFERSABLE FOR ALL BUT THE LEARST RANDOM
ORGANIZATIONAL PROJECTIONS TO RUOID RESPONSIVE LOGISTICAL CONCEPTS.

ON THE OTHER HAND, HOWEVER, PRACTICAL EXPERIENCE INDICATES THART
WITH STRUCTURED DEPLOYMENT OF QUALIFIED TRANSITIONAL MOBILITY
BALANCED BY REPRESENTATIVE LOGISTICAL THROUGH-PUT IT IS NECESSARY
FOR ALL REPRESENTATIVE UNILATERAL ENGINEERING TO FUNCTION AS
OPTIONAL DIGITAL SUPERSTRUCTURES.

IN SUMMARY, THEN, WE PROPOSE THAT WITH STRUCTURED DEPLOYMENT OF
RANDOM MANAGEMENT FLEXIBILITY BALANCED BY STAND~ALONE DIGITAL
CRITERIA IT IS NECESSARY FOR ALL QUALIFIED FAIL-SAFE OUTFLOW TO
AVOID PARTIAL UNDOCUMENTED ENGINEERING.

326 Starting FORTH

234 LIST
@ IN THIS PAPER WE WILL DEMONSTRATE THAT
1 ON THE ONE HAND, STUDIES HAVE SHOWN THAT
2 ON THE OTHER HAND, HOWEVER, PRACTICAL EXPERIENCE INDICATES THAT
3 IN SUMMARY, THEN, WE PROPOSE THAT
q
S
6
7
B
]
18
11
12
13
14
1S
23S LIST
8 BY USING
1 BY APPLYING AVAILABLE RESOURCES TOWARDS
2 WITH STRUCTURED DEPLOYMENT OF
a
4 COORDINATED WITH
5 TO OFFSET
6 BALANCED BY
7
8 IT IS POSSIBLE FOR EVEN THE MOST
9 IT BECOMES NOT UNFERSABLE FOR ALL BUT THE LERST
1@ IT IS NECESSARY FOR ALL
11
12 TO FUNCTION RS
13 70 GENERATE A HIGH LEVEL OF
14 TO AUVOID
15
236 LIST
@ INTEGRATED MANAGEMENT CRITERIRA
1 TOTAL ORGANIZATIONAL FLEXIBILITY
2 SYSTEMATIZED MONITORED CAPABILITY
3 PARALLEL RECIPROCAL MOBILITY
4 FUNCTIONAL DIGITAL PROGRAMMING
S RESPONSIVE LOGISTICAL CONCEPTS
6 OPTIMAL TRANSITIONAL TIME PHASING
7 SYNCHRONIZED INCREMENTAL PROJECTIONS
8 COMPATIBLE THIRD GENERATION HARDWARE
9 QUALIFIED POLICY THRQUGH-PUT
10 PARTIAL DECISION ENGINEERING
11 STAND-ALONE UNDOCUMENTED OUTFLOW
12 RANDOM CONTEXT SENSITIVE SUPERSTRUCTURES
13 REPRESENTATIVE FAIL-SAFE INTERACTION
14 OPTIONAL OMNIRANGE CONGRUENCE
1S TRANSIENT UNILATERAL UTILITIES
Copyright FORTH, Inc. 3786781 11:43 Starting FORTH

12 THREE EXAMPLES 327

237 LIST
@ ¢ BUZZPHRASE GENERATOR 1I -- MARGIN SETTING) EMPTY
1 181 LOAD (RANDOM NUMBERS)
2 32 CONSTANT BL 78 CONSTANT RMARGIN
3 VARIABLE LINECOUNT VARIABLE HOMEBASE 2 ALLOT
4 : <WRITE BLK @ >IN @ HOMEBASE 2!
S : WRITE> HOMEBASE 2@ >IN ! BLK ! ;
6
7 ¢ CR CR © LINECOUNT !¢ ;
8 : SPACE LINECOUNT @ IF SPACE 1 LINECOUNT +! THEN ;
9 i .WORD ¢ adr) COUNT DUP LINECOUNT @ + RMARGIN >
10 IF CR ELSE SPACE THEN
11 DUP LINECOUNT +! TYPE 3
12 : ANOTHER ¢ lim -- 1lim adr) BL WORD OVER >IN @ < NOT ;
13 : WORDS «w
14 >IN @ + BEGIN ANOTHER WHILE .WORD REPEAT 2DROP ;
15 238 LOAD 239 LOAD
238 LIST
8 (BUZZPHRASE GENERATOR -- HIGH LEVEL WORDS)
1
2 : Buzz 16 CHOOSE 64 = + >IN ! 236 BLK ! 28 WORDS ;
3 : 1ADJ @ BUZZ 3
4 : 2ADJ 20 BUZZ
S5 : NOUN 40 BUZZ
6 : PHRASE 1ADJ 2ADJ NOUN ;
7 ¢ FILLER (u) [4 64 * 1 LITERAL x
a8 3 CHOOSE 64 * + >IN ! 235 BLK ! 64 WORDS 3
9 : SENTENCE 4 @ DO I FILLER PHRASE toOOP ."™ ." CR ;
18 : INTRO Cw 64 x >IN | 234 BLK ! CR 64 WORDS ;
11
12 PAPER CWRITE CR CR 4 8 DO I INTRO SENTENCE LOOP WRITE> ;
13
14
15 : TEST CR 7 <WRITE EXECUTE WRITE> SPACE ;
239 LIST
@ (RETRIEVUAL OF MORE SUCCESSFUL PAPERS)
1
2 VARIABLE SEED
3
4 4POSTERITY RND @ SEED ! ;
5 (execute BEFORE producing a paper)
6
7 i REDO SEED @ RND ! 3
8 (execute AFTER a paper, to reprint it.
9 Usage: REDO PAPER)
18
11
12
13
14
15

Copyright FORTH, Inc. 3s,86-81 11:44 Starting FORTH

328 Starting FORTH

Our second example consists of a simple filing system.T It is a
powerful and useful application, and a good one to learn FORTH
style from. We have divided this section into four parts:

1. A "How to" for the end user. This will give you an idea
of what the application can do.

2. Notes on the way the application is structured and the
way certain definitions work.

3. A glossary of all the definitions in the application.

4, A listing of the application, including the blocks that
contain the files themselves.

Hc-- *2 Use the Simpl- ™ile S—~*m

This computer filing system lets you store and retrieve
information quickly and easily. At the moment, it is set up to
handle people's names, occupations, and phone numbers.! Not
only does it allow you to enter, change, and remove records, it
also allows you to search the file for any piece of information.
For example, if you have a phone number, you can find the
person's name; or, given a name, you can find the person's job,
etc.

For each person there is a "record" which contains four "fields."
The names which specify each of these four fields are

SURNAME GIVEN JOB PHONE

("Given," of course, refers to the person's given name, or first
name.)

TFor Serious File-Users
FORTH, Inc. offers a very powerful File Management Option.
IFor Programmers

You can easily change these categories or extend the number of
fields the system will handle.

12 THREE EXAMPLES 329

Fil- = ~i~--",

You can search the file for the contents of any field by using
the word FIND, followed by the field-name and the contents, as in

FIND JOB NEWSCASTEREEITI) DAN RATHER ok

If any "job" field contains the string "NEWSCASTER," then the
system prints the person's full name. If no such file exists, it
prints "NOT IN FILE."

Once you have found a field, the record in which it was found
becomes "current." You can get the contents of any field in the
current record by using the word GET. For instance, having
entered the line above, you can now enter

GET PHONEW [l = N 0 Vo Re Vol -1
The FIND command will only find the “*--* instance of the field
that you are looking for. To finu vu. if there is another
instance of the field that you last found, use the command
ANOTHER. For example, to find another person whose "job" is
"NEWSCASTER," enter

ANOTHER TEHOOTAR ARTTTMATY o).
and

ANOTHER D 'YK TT™OLDS ok

When there are no more people whose job is "NEWSCASTER" in the
file, the ANOTHER command will print "NO OTHER."

To list all names whose field contains the string that was last
found, use the command ALL:

'ITCH

3 O

\sn

Since the surname and given name are stored separately, you can
use FIND to search the file on the basis of either one. But if
you know the person's “-11 name, you can often save time by
locating both fields a. oOnce, by using the word FULLNAME.
FULLNAME expects the full name to be entered with the last name
first and the two names separated by a comma, as in

FULLNAME WONDER,STEVIF

330 Starting FORTH

(There must not be a space after the comma, because the comma
marks the end of the first field and the beginning of the second
field.) Like FIND and ANOTHER, FULLNAME repeats the name to
indicate that it has been found.

You can actually find -~-- =-*- of fields by using the word PAIR.
You must specify bo.. .hke .ield names and their contents,
separated by a comma. For example, to find a newscaster whose
given name is Dan, enter

PAIR JOB NEWSCASTER,GIVEN DAN{ —)_I'** ™*THER ok

Fi'~ “aintenance

To enter a new record, use the command ENTER, followed by the
surname, dgiven name, job, and phone, each separated by a comma
only. For example,

ENTER NUREYEV,RUDOLF,BALLET DANCER,555-1234GRMGD ok
To change the contents of a single field within the ~==--- -
record, use the command CHANGE followed by the name v« cuc
field, then the new string. For example,

CHANGE JOB CHOREOGRAPHERGET™ -~

To completely remove the current record, use the command REMOVE:
REMOVE™) -

After adding, changing, or removing records, and before turning
off the computer or changing disks, be sure to use the word

FLUSH ok

Comme =+~

This section is meant as a guide, for the novice FORTH
programmer, to the glossary and listing which follow. We'll
describe the structure of this application and cover some of the
more complicated definitions. As you read this section, study the
glossary and listing on your own, and try to understand as much
as you can.

12 THREE EXAMPLES 331

Turn to the listing now and look at block 242. This block
contains the definitions for all nine end-user commands we've
just discussed. Notice how simple these definitions are, compared
to their power!

This is a characteristic of a well-designed FORTH application.
Notice that the word -FIND, the elemental file-search word, is
factored in such a way that it can be used in the definitions of
FIND, ANOTHER, and ALL, as well as in the internal word, (PAIR),
which is used by PAIR and by FULLNAME.

We'll examine these definitions shortly, but first let's look at
the overall structure of this application.

One of the basic characteristics of this application is that each
of the four fields has a name which we can enter in order to
specify the particular field. For example, the phrase

SURNAME PUT

will put the character string that follows in the input stream
into the "surname" field of the current record. The phrase

SURNAME .FIELD

will print the contents of the "surname" field of the current
record, etc.

There are two pieces of information that are needed to identify
each field: the field's starting address relative to the
beginning of a record and the length of the field.

In this application, a record is laid out like this:

0 1A el 64

_) 52
[surname given L job _|_ phone —l

- v

16 12 24 12

For instance, the "job" field starts twenty-eight bytes in from
the beginning of every record and continues for twenty-four
bytes.

We chose to make a record exactly sixty-four “-tes long so that
the fields will line up in columns when we [L__7] the file. This
was for our convenience in programming, but this system could be

332 Starting FORTH

modified to hold records of any length and any number of fields.'

We've taken the two pieces of information
for each field and put them into a
double-length table associated with each
field name. Our definition of JOB,

therefore, is ro. ' .
CREATE JOB 28 , 24, v | B

Thus when we enter the name of a field, we link

are putting on the stack the address of the rode noper

table that describes the "job" field. We — R ———

can fetch either or both pieces of <

information relative to this address. 24 T

Let's call each of these entries a "field
specifying table," or a "spec table" for
short.

1.

For Those Who Want to Modify This File System

To change the parameters of the fields, just make sure that the
beginning byte ("tab") for each field is consistent with the
lengths of the fields that precede it. For example, if the first
field is thirty bytes long, as in

CREATE 1FIELD 0, 30,
then make the tab for the second field thirty, as in
CREATE 2FIELD 30, 12,

etc. Finally, set the value of R-LENGTH in line 4 to the length
of the entire record {(the last field's tab plus its length). Using
R-LENGTH, the system automatically computes the number of records
that can fit into a single block (1024 R-LENGTH /) and defines the
constant REC/BLK accordingly.

You may also change the location of the new file (e.g., to create
several different files) by changing the value of the constant
FILE in line 5. You may also change the maximum number of blocks
that your file can contain by replacing the "2" in the same line.
This value will be converted into a maximum number of records, by
being multiplied by REC/BLK, and kept as the constant MAXRECS.

12 THREE EXAMPLES 333

Part of the design for this application is derived from the
requirements of FIND, ANOTHER, and ALL; that is, FIND not only
has to find a given string within a given type of field, but also
needs to "remember" the string and the type of field so that
ANOTHER and ALL can search for the same thing.

We can specify the kind of field with just one value, the address
of the spec table for that type of field. This means that we can
"remember" the type of field by storing this address into KEEP.

KIND was created for this purpose, to indicate the "kind" of
field.

To remember the string, we have defined a buffer called WHAT to
which the string can be moved. (WHAT is defined relative to the
pad, where memory can be reused, so as not to waste dictionary
space.)

The word KEEP serves the dual purpose of storing the given field
type into KIND and the given character string into WHAT. If you
look at the definition of the end-user word FIND, you will see
that the first thing it does is KEEP the information on what is
being searched for. Then FIND executes the internal word -FIND,
which uses the information in KIND and WHAT to find a matching
string.

ANOTHER and ALL also use -FIND, but they don't use KEEP. Instead
they look for fields that match the one most recently "kept" by
FIND.

So that we can GET any piece of information from the record
which we have just "found," we need a pointer to the "current"
record. This need is met with the variable #RECORD. The
operations of the words TOP and DOWN in block 240 should be
fairly obvious to you.

The word RECORD uses #RECORD to compute the absolute address
(the computer-memory address, somewhere in a disk buffer) ~€ the
beginning of the current record. Since RECORD executes];.-um,‘K,
it also guarantees that the record really is in a buffer.

Notice tF-* ™7ICORD allows the file to continue over a -~~~ e of
blocks.] divides the value of #RECORD by the nuww<er of
records p<. ~lOock (sixteen in this case, since each record is
sixty-four bytes long). The quotient indicates which block the
record will be in, relative to the first block; the remainder
indicates how far into that block this record will be.

While a spec table contains the relative address of the field and

its length, we usually need t~ "~ ++~ field's absolute address
and length for words such as P [, and [-TEXT]. Look at

the definition of the word ..uud oo o<ce how it converts the
address of a spec table into an absolute address and length.

334 Starting FORTH

Then examine how FIELD is applied in the definition of .FIELD.
The word PUT also employs FIELD. Its phrase

PAD SWAP FIELD
leaves on the stack the arguments

adr-of-PAD absolute~adr-of-field count

for [MOVE| to move the string from the pad into the appropriate
field of the current record.

There are two things worth noting about the definition of FREE in
block 241. The first is the method used to determine whether a
record is empty. We've made the assumption that if the first byte
of a record is empty, then the whole record is empty, because of
the way ENTER works. If the first byte contains a character
whose ASCII value is less than thirty-three (thirty-two is blank),
then it is not a printing character and the line is empty.
(Sometimes an empty block will contain all nulls, other times all
blanks; either way, such records will test as "empty.") As soon
as an empty record is found, LEAVE ends the loop. #RECORD will
contain the number of the free record.

Another thing worth noting about FREE is that it aborts if the
file is full, that is, if it runs through all the records without
finding one empty. We can use a loop to run through all the
records, but how can we tell that the loop has run out before it
has found an empty record?

The best way is to leave a "1" on the stack, to serve as a flag,
before beginning the loop. If an empf " record is found, we can
change the flag to zero (with the word ..JT|]) before we leave the
loop. When we come out of the loop, we'll have a "1" if we never
found an empty ~~~-~rd, a "0" if we did. This flag will be the
argument for

We use a similar technique in the definition of -FIND. -FIND must
return a flag to the word that executed it: FIND, ANOTHER, ALL,
or (PAIR). The flag indicates whether a match was found before
the end of the file was reached. Each of these outer words needs
to make a different decision based on the state of this flag.
This flag is a "1" if a match is not found (hence the name -FIND).
The decision to use negative logic was based on the way -FIND is
used.

Because the flag needs to be a "1" if a match is not found, the
easiest way to design this word is to start with a "1" on the
stack and change it to a "0" only if a match is found. But
notice: while the loop is running, there are two values on the
stack: the flag we just mentioned and the spec table address for
the type of field to be searched. Since we need the address

12 THREE EXAMPLES 335

every time through the loop and the flag only once, if at all, we
have decided to keep the address on top of the stack and the
flag underneath. For this reason, we use the phrase

SWAP NOT SWAP

By the way, we could have avoided the problem of carrying both
values on the stack by putting the phrase

KIND @ FIELD
“~=*de the loop, instead of

KIND @
at the beginning and

DUP FIELD
inside. But we didn't, because we always try to keep the number
of instructions inside a loop to a minimum. Naturally, it is the
loops that take the most time running.
Now that you understand the basic design of this application, you

should have no trouble understanding the rest of the listing,
using the glossary as a guide.T

TFor polyFORTH Users

This type of glossary is generated by an application called
DOCUMENTOR, which is included in the File Management Option.

336 Starting FORTH

FORTH, Inc. Page 1 3/06/81
SIMPLE FILES GLOSSARY

WORD VOCABULARY BLOCK STACK EFFECTS

HRECORD FORTH 249 (-- adr)

R variable that points to the current record.

(PRIR) FORTH 241 ¢ adr)
Starting from the top., attempts to find a match on the contents
of WHAT, using KIND to indicate the type of field. If a match
is made, then attempts to match a second field, whose type is
indicated by adr, with the contents of PAD. If both match.
prints the name; otherwise repeats until a match is made or
until the end of the file is reached, in which case prints
an error message.

-FIND FORTH 241 « =—- §3
Beginning with ®HRECORD and proceeding down, compares the contents
of the field indicated by KIND against the contents of WHAT.

.FIELD FORTH 249 (adr3
from the current record, types the contents of the field that is
associated with the field-specifying table at adr.

. NAME FORTH 240
From the current record, types the name. first name first.

ALL FORTH 242
Beginning at the top of the file, uses KIND to determine type of
field and finds all matches on WHAT. Types the full name(s}.

ANOTHER FORTH 242
Beginning with the next record after the current one. and using
KIND to determine type of. field, attempts to find a match on WHAT.
If successful, types the name; Ootherwise an error message.

CHANGE FORTH 242
Changes the contents of the given field in the current record.
usage: CHANGE field-name new~contents

DOWN FORTH 240
Mpues the record pointer douwn one record,

ENTER FORTH 242
Finds the first free record, then moves four strings separated
by commas into the surname, given, job, and phone fields of
that record.

FIELD FORTH 240 { adr -~ adr length)
Given the address of a field-specifying table, insures that
the associated field in the current record is in a disk buffer
and returns the address of the field in the buffer along with
its length.

FILES FORTH 24@ (¢ - u)
The number of the block where the files begin.

12 THREE EXAMPLES 337

FORTH, Inc. Page 2 3s706-81
SIMPLE FILES GLOSSARY

WORD VOCABULARY BLOCK STACK EFFECTS

FIND FORTH 242

Finds the record in which there is a match between the caontents
of the given field and the given string.
Usage: FIND field-name string

FREE FORTH 241
Starting at the top of the file, finds the first record that is
free, that is, whose first byte contains a blank or zero.
Aborts if the file is full.

FULLNAME FORTH 242
Finds the record in which there is a match on both the first and
last names given. Usage: FULLNAME lastname,firstname

GET FORTH 242
Prints the contents of the given type of field from the current
record.

GIVEN FORTH 240 (—— adr)

Returns the address of the field-specifying table for the
“given" (first name) field.

JOB FORTH 240 ¢ -~ adr)
Returns the address of the field-specifying table for the
“job" field.

KEEP FORTH 241 C adr)

Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into WHAT, and saves the
address of the given field-specifying table in KIND, for future
use by -FIND.

KIND FORTH 240 ¢ —— adr)
A variable that contains the address of the field-specifying
table for the type of field that was last searched for by FIND.

MAXRECS FORTH 240 C == u)
The maximum number of records to be allowed in the system.

MISSING FORTH 241
Prints the message "NOT IN FILE."

PAIR FORTH 242
Finds the record in which there is a match between both the
contents of the first given field and the first given string. and
and also the contents of the second given field and the second
given string. Comma is the delimiter.
usage: PAIR fieldl stringl,field2 string2

PHONE FORTH 240 ¢ ~=~ adr)
Returns the address of the field-specifying table for the
“phone"” field.

338 Starting FORTH

FORTH, Inc. Page 3 3/86/81
SIMPLE FILES GLOSSARY

WORD VOCABULARY BLOCK STACK EFFECTS

PUT FORTH 241 ¢ adr)

Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into the field whose
field-specifying table address is given on the stack.

R-LENGTH FORTH 240 « -— u)
The length in bytes of a single record.

RERD FORTH 241
Moves a character string, delimited either by a comma or by a
carriage return, from the input stream into PRD.

REC/BLK FORTH 240 C — uw)
The number of records that will fit in a single block,
given MAXRECS.

RECORD FORTH 248 ¢ —-- adr}
Insures that the current record is in a disk buffer., and
returns the address of the first byte of that record.

REMOVE FORTH 242
Erases the current record.

SURNARME FORTH 242 (-- adr)
Returns the address of the field-specifying table for the
“surname* (last name} field,

TOP FORTH 240
Resets the .record pointer to the top of the file.

WHART FORTH 240 { ~- adr)
Returns the address of a buffer that contains the string that
is being searched for, or was last searched for, by FIND.

12 THREE EXAMPLES

248 LIST

]
1
2
3
4
S
[
7
=]

9
18
11
12
13
14
15

¢

CR
CR
64
24
uAa

o me ee

24

241 LIST

VONOTURLONFE®

(

339

SIMPLE FILES) EMPTY
(tab length) (tab length)

EATE SURNAME ® ., 16 . CREATE GIVEN 16 . 12 ,
EATE JOB 29 » 24 ., CREATE PHONE S2 » 12 .
CONSTANT R-LENGTH 1824 R-LENGTH 7 CONSTANT REC/BLK
3 CONSTANT FILES 2 REC/BLK x CONSTANT MAXRECS
RIABLE HRECORD UARIABLE KIND

WHAT (~- adr) PAD 80 + ;

RECORD (-~ first adr of current record)

HRECORD @ REC/BLK /MOD FILES + BLOCK SWAP R-

LENGTH x +

FIELD (field -~adr length) 2@ RECORD + SWAP

TOP @ HRECORD ! 3

DOKN i HRECORD +! ;

.FIELD (field) FIELD -TRAILING TYPE SPACE
. NAME GIVEN .FIELD SURNAME .FIELD ;

1 LOAD 242 LOAD

SIMPLE FILES, CONT’D)
RERD 44 TEXT 3

PUT (field) READ PAD SWAP FIELD MOUE UPDATE ;

KEEP (field) DUP KIND !
2+ @ READ PAD WHAT ROT MOVE
FREE 1 MAXRECS ® DO I HRECORD ! RECORD C@
¢ ASCII) 33 < 1IF NOT LEAUE THEN LOOP ABORT"

—-FIND == f) 1 KIND @ MAXRECS HRECORD @
I HRECORD ! DUP FIELD WHAT -~-TEXT NOT IF
SWAP NOT SWAFP LEAVE THEN LOOP DROP
MISSING . NOT IN FILE “ 3
(PAIR) ¢ field) MAXRECS @ DO I HRECORD !

.
’

FILE FUuLL "

DO

N
’

—FIND If MISSING LERVE ELSE DUP FIELD PAD ~TEXT NOT

IF .NAME LEAVE THEN THEN

SIMPLE FILES -- END USER WORDS)
ENTER FREE SURNAME PUT GIVEN PUT
JOB PUT PHONE PUT ;

REMOUE RECORD R-LENGTH 32 FILL UPDATE :
CHANGE * PUT

LOOP DROP ;

FIND ’ KEEP TOP -FIND IF MISSING ELSE .NAME THEN ;

GET ’ JFIELD ;

ANOTHER DOWN -FIND IF . NO OTHER " ELSE .NAME THEN ;
ALL TOP BEGIN CR -FIND NOT WHILE .NAME DOWN REPEAT

PAIR ’ KEEP ’ READ (PAIR)
FULLNAME SURNAME KEEP GIVEN READ (PRIR) ;

Copyright FORTH, Inc. 3/B6/81 11:44 Starting

FORTH

340

243 LIST

244

245

Copyright FORTH.

VONONAEWLDNF-EO

FILLMORE
LINCOLN
BRONTE
RATHER
FITZGERALD
SAVITCH

MC CARTNEY
WASHINGTON
REYNOLDS
SILLS

FORD
DEWHURST
WONDER
FULILER
RAKLES
TRUDEAU

LIST

VOoONOTULEWNNRED

e A A R e
NaNrR®

UAN BUREN
ABZUG
THOMPSON
SINATRA
JABBAR

MC GEE
DIDION
FRAZETTA
HENSON

LIST

VONOULAEWN-D

Inc.

Starting FORTH

MILLARD PRESIDENT
ABRAHAM PRESIDENT

EMILY WRITER

DAN NEWSCASTER

ELLA SINGER

JESSICA NEWSCASTER

PAUL SONGWRITER
GEORGE PRESIDENT

FRANK NEWSCASTER
BEVERLY OPERA STAR
HENRY CAPITALIST
COLEEN ACTRESS

STEVIE SONGWRITER
BUCKMINSTER WORLD ARCHITECT
JOHN PHILOSOPHER
GARRY CARTOONIST
ABIGAIL COLUMNIST

BELLA POLITICIAN
HUNTER S. GONZO JOURNALIST
FRANK SINGER

KAREEM ABDULBASKETBALL PLAYER

TRAVIS FICTITIOUS DETECTIVE
JOAN WRITER
FRANK ARTIST
JIM PUPPETEER
3786781 11:44

NO PHONE
NO PHONE
NO PHONE
555-9876
$55-6769
555-8653
S555-1212
NO PHONE
555-8765
555-8876
NO PHONE
S555-9876
S555-08387
555-7604
555-9721
S555-3832

SS5-8743
555-4443
555-9854
555-9412
555-4439
555-8887
S55~@a8es
5$56~9991
S55~-aeai1

Starting FORTH

12 THREE EXAMPLES 341

Tm TPl
F

Our final example is a math problem which many people would
assume could only be solved by using floating point. It will
illustrate how to handle a fairly complicated equation with
fixed-point arithmetic and demonstrate that for all the
advantages of using fixed-point, range and precision need not
suffer.

In this example we will compute the weight of a cone-shaped pile
of material, knowing the height of the pile, the angle of the
slope of the pile, and the density of the material.

To make the example more "concrete," let's weigh several huge
piles of sand, gravel, and cement. The slope of each pile,
called the "angle of repose," depends on the type of material.
For example, sand piles itself more steeply than gravel.

L B

san cement loose gravel

(In reality these values vary widely, depending on many factors;
we have chosen approximate angles and densities for purposes of
illustration.)

Here is the formula for computing the weight of a conical pile h
feet tall with an angle of repose of § degrees, where D is the
density of the material in pounds per cubic foot:T

tFor Skeptics

The volume of a cone, V, is given by

= 1.2
V—31Tbh

where b is the radius of the base and h is the height. We can
compute the base by knowing the angle or, more specifically, the
tangent of the angle. The tangent of an angle is simply the
ratio of the segment marked h to the segment marked b in this
drawing:

h{

N

(continued...)

342

mh 3D
3 tan?,u,

Starting FORTH

This will be the formula which we must express in FORTH.

Let's design our application so that we can enter the name of a

material first, such as
DRY-SAND

then enter the height of a pile and get the
result for dry sand.

Let's assume that for any one type of
material the density and angle of repose
never vary. We can store both of these
values for each type of material into a
table. Since we ultimately need each
angle's tangent, rather than the number of
degrees, we will store the tangent. For
instance, the angle of repose for a pile of
cement is 359, for which the tangent is
.700. We will store this as the integer 700.

131
I 7nn

Bear in mind that our goal is not just to get an answer; we are
programming a computer or device to get the answer for us in the
fastest, most efficient, and most accurate way possible. As we
indicated in Chap. 5, to write equations using fixed-point
arithmetic requires an extra amount of thought. But the effort

pays off in two ways:

For Skeptics (continued)

If we call this angle "6" (theta), then

_h
tanG—E

Thus we can compute the radius of the base with

h

b=tane

When we substitute this into the expression for V, and then
multiply the result by the density D in pounds per cubic foot, we

get the formula shown above.

12 THREE EXAMPLES 343

1. vastly improved run-time speed, which can be very
important when there are millions of steps involved in a
single calculation, or when we must perform thousands of
calculations every minute. Also,

2. program size, which
would be critical if,
for instance, we wanted
to put this application
in a hand-held device
specifically designed
as a pile-measuring
calculator, FORTH is
often used in this type
of instrument.

Let's approach our problem by first considering scale. The
height of our piles ranges from 5 to 50 feet. By working out our
equation for a pile of cement 50 feet high, we find that the
weight will be nearly 35,000,000 pounds.

But because our piles will not be shaped as perfect cones and
because our values are averages, we cannot expect better than
four or five decimal places of accuracy.t If we scale our result
to tons, we get about 17,500. This value will comfortably fit
within the range of a single-length number. For this reason,
let's write this application entirely with single-length
arithmetic operators.

Applications which require greater accuracy can be written using
double-length arithmetic; to illustrate we've even written a
second version of ““*- application using 32-bit math, as you'll
see later on. But w~c .ucend to show the accuracy that FORTH can
achieve even with 16-bit math.

By running another test with a pile 40 feet high, we find that a
difference of one-tenth of a foot in height can make a
difference of 25 tons in weight. So we decide to scale our input
to feet and inches rather than merely to whole feet.

vtFor Math Experts:

In fact, since our height will be expressed in three digits, we
can't expect greater than three-digit precision. But for purposes
of our example, we'll keep better than four-digit precision.

344 Starting FORTH

We'd like the user to be able to enter
15 FOOT 2 INCH PILE

where the words FOOT and INCH will convert the feet and inches
into tenths of an inch, and PILE will do the calculation. Here's
how we might define FOOT and INCH:

: FOOT 10 * ;
: INCH 10012 */ S5+ 10 / + ;

The use of INCH is optional.

(By the way, we could as easily have designed input to be in
tenths of an inch with a decimal point, like this:

15.2

In this case, NUMBER would convert the input as a double-length
value. Since we are only doing single-length arithmetic, PILE
could simply begin with ™™°7, to eliminate the high-order byte.)

In writing the definition of PILE, we must try to maintain the
maximum number of places of precision without overflowing 15
bits. According to the formula, the first thing we must do is
cube the argument. But let's remember that we will have an
argument which may be as high as 50 feet, which will be 500 as a
scaled integer. Even to -~~¢~- 500 produces 250,000, which
exceeds the capacity of siny.c-lecuyth arithmetic.

We might reason that, sooner or later in this calculation, we're
going to have to divide by 2000 to yield an answer in tons. Thus
the phrase

DUP DUP 2000 */

will square the argume~*- -nd convert it to tons at the same time,
taking advantage of 's double-length intermediate result.
Using 500 as our test a.yuwent, the above phrase will yield 125.

But our pile may be as small as 5 feet, which when squared is only
25. To divide by 2000 would produce a zero in integer arithmetic,
which suggests that we are scaling down too much.

To retain maximum accuracy, we should scale down no more than
necessary. 250,000 can be safely accommodated by dividing by 10.
Thus we will begin our definition of PILE with the phrase

DUP DUP 10 */

The integer result at this stage will be scaled to one place to
the right of the decimal point (25000 for 2500.0).

12 THREE EXAMPLES 345

Now we must cube the argument. Once again, straight
multiplication will produce a double-length result, so we must use

to scale down. We find that by using 1000 as our divisor, we
can stay just within single-length range. Our result at this stage
will be scaled to one place to the left of the decimal point
(12500 for 125000.) and still accurate to 5 digits.

According to our formula, we must multiply our argument by pi. We
know that we can do this in FORTH with the phrase

355 113 */

We must also divide our argument by 3. We can do both at once
with the phrase

355 339 */
which causes no problems with scaling.

Next we must divide our argument by the tangent squared, which we
can do by dividing the argument by the tangent twice. Because
our tangent is scaled to 3 decimal places, to divide by the
tangent we multiply by 1000 and divide by the table value. Thus
we will use the phrase

1000 THETA @ */

Since we must perform this tw1ce, let's make it a definition,
called /TAN (for divid ~~--* and use the word /TAN
twice in our definitioi wsi rswm. wus .cSult at this point will
still be scaled to one place to the left of the decimal (26711 for
267110, using our maximum test values).

All that remains is to multiply by the density of the material, of
which the highest is 131 pounds per cubic foot. To avoid
overflowing, let's try scaling down by two decimal places with
the phrase
DENSITY @ 100 */
But by testing, we find that the result at this point for a 50-foot
pile of cement will be 34,991, which just exceeds the 15-bit limit.
Now is a good time to take the 2000 into account. Instead of
DENSITY @ 100 */
we can say
DENSITY @ 200 */

and our answer will now be scaled to whole tons.

You will find this version in the listing of block 246 that

346 Starting FORTH

follows. As we mentioned, we have also written this application
using double-length arithmetic, in block 248. 1In this version you
enter the height as a double-length number scaled to tenths of a
foot, followed by the word FEET, as in 50.0 feet.

By using double-length integer arithmetic, we are able to compute
the weight of the pile to the nea -~ whole pound. The range of
double-length integer arithmet.. compares with that of most
floating-point arithmetic. Below is a comparison of the results
obtained using a l10-decimal-digit calculator, single-length
FORTH, and double-length FORTH. The test assumes a 50-foot pile
of cement, using the table values.

in pounds in tons
calculator 34,995,634 17,497.817
FORTH 16-bit - 17,495
FORTH 32-bit 34,995,634 17,497.817

Here's a sample of our application's output:

246 LOAD_ok

CEMEN™ -~%

10 FOC;. ...fLE —_ 1£ MAVMTS AT AYarT™AaTMm T

10 FOOT 3 INe.. .ILI k

DRY-SAND ok

10 FOOT PILE cwT 2T DU T ok

248 LOAD CEMuues_on

10.0 FEET = 279939 POUNDS QF ~™“E™ ~= *°° ~7~ === ok

The defining word MATERIAL takes three arguments for each
material, one of which is the address of a string. .SUBSTANCE
uses this address to type the name of the material.

To put the string in the dictionary and to give an address to
MATERIAL, we have defined a word called ". As you can see from
its definition, " compiles the string (delimited by a second
quotation mark, ASCII 34) into the dictionary, with the count in
the first byte, and leaves its address on the stack for MATERIAL.

To compile the ~~'~% and str*-- *-*o the dicti-—--- --- simply
have to execute [nu.., since buffer is [I get the

string's address as a fillip, S.uee wJRD| also le:

All that remains is to @ the appropriate number of bytes.
This number is obtained b, .<.ching the count from the first byte
of the string and adding one for the count's byte.

347

.
H

12 THREE EXAMPLES
246 LIST
@ (WEIGHT OF CONICAL PILES -- SINGLE-LENGTH) EMPTY
1 UVUARIABLE DENSITY VARIARBLE THETA UARIABLE STRING
2 34 CONSTANT QUOTE
3 : " QUOTE WORD DUP C@ 1+ ALLOT
4 @ ,SUBSTANCE STRING @ COUNT TYPE SPACE ;
S
6 : MATERIAL (STRING DENSITY THETA) CRERTE . , .
7 DOES> DUP @ THETA ! 2+ DUP @ DENSITY | 2+ @ STRING ! ;
=]
9 ! FOOT 10 » ;
10 ¢ INCH 100 12 %/ 5 + 10 7 + ;
11
12 : /TAN 1888 THETA €@ %/ ;
13 : PILE DUP DUP 10 %/ 1000 %/ 355 339 »- /TAN /TAN
14 DENSITY @ 280 %/ .» = " ." TONS OF " .SUBSTANCE
1S 247 LOAD
247 LIST
@ (TABLE Of MATERIALS)
1 ¢ STRING-ADDRESS DENSITY THETAR)
2 " CEMENT" 131 700 MATERIAL CEMENT
3 " LOOSE GRAVEL" 93 649 MATERIAL LOOSE~GRAVEL
4 " PACKED GRAVEL" 100 700 MATERIAL PACKED~GRAVEL
S " DRY SAND" 98 754 MATERIAL DRY-SAND
6 " WET SAND" 118 =11 MATERIAL WET-SAND
7 " CLAY" 128 727 MATERIAL CLAY
8
9
ie
11
12
13
14 CEMENT
15
248 LIST
8 (WEIGHT OF CONICAL PILES -- DOUBLE-LENGTH) EMPTY
1 VARIABLE DENSITY VUARIABLE THETA VARIABLE STRING

Copyright FORTH, Inc. 3786781 11:45

2 34 CONSTANT QUOTE

3: " QUOTE WORD DUP C@ 1+ ALLOT :

4 .SUBSTANCE STRING @ COUNT TYPE SPACE
S : u.3 < # # & 46 HOLD ##S #> TYPE SPACE

6 MATERIAL (STRING DENSITY THETA) CRERTE ., , .

7 DOES> DUP @ THETA ! 2+ DUP @ DENSITY !

8

9 : CUBE (d -— d> 2DUP OVER 10 Mx/ DROP 10 Mwx/ ;
18 : /TAN (d--d) 1888 THETA € M¥x/ ;

11 : FEET (d -——- o) CUBE 355 339 Mxs/ DENSITY @ 1

12 /TAN /TAN S M+ 1 18 M¥/

13 @bup . = " D. ." POUNDS OF " .SUBSTANCE
14 1 2 Mxs P OR M U.3 . TONS * 5

15 247 LOAD

;

2+ @ STRING

Mx/

Starting FORTH

’

APPENDIX 1
ANSWERS TO PROBLEMS

Cha=*-- 7

1. : GIFT ." BOOKENDS " ;

GIVER ." STEPHANIE " ;

: THANKS ." DEAR " GIVER ." , THANKS FOR THE "
GIFT ." . " ;

2. : TEN-LESS -10 +; or
: TEN-LESS 10 - ;

3. When THANKS was compiled, the definition included a
reference to the first version of GIFT (the only version of

GIFT at that time). Thus THANKS will always execute the same
version of GIFT.

M~ o 2

1. DUPDUP: (12 -—-1222)
2DUP: 2 1212

2. SWAP 2SWAP SWAP

3. : 3DUP DUP 20VER ROT ;

4, :2-4 OVER + * +;

5. : 2-5 2DUP - ROT ROT + / ;

CONVICTED-OF O ;
WILL-SERVE . ." YEARS "

HOMICIDE 20 + ;
ARSON 10 + ;
BOOKMAKING 2 + ;
TAX-EVASION 5 + ;

e
~
s se ss e

7. : EGG.CARTONS 12 /MOD . ." CARTONS AND "
. ." LEFTOVERS " ;

Chapte~
1. 10=NOT. ' -k
0 0= NOT . K

200 0= NO%. . . ok

2. Don't ask.

1-2 Answers Starting FORTH

3. (assuming the legal age is 18 or over:)

: CARD' 17 > IF ." ALCOHOLIC BEVERAGES PERMITTED "
ELSE ." UNDER AGE " THEN ;

4. : SIGN.TEST DUP 0= IF ." ZERO " ELSE
DUP 0< IF ." NEGATIVE " ELSE
." POSITIVE " THEN THEN DROP
(or anything else that works)

5. : STARS 7?DUP IF STARS THEN ;

6. : <ROT ROT ROT ;
: WITHIN <ROT OVER > NOT <ROT > AND ;
Or here's a more efficient version, using tricks introduced in
the next chapter:
: WITHIN >R 1- OVER < SWAP R> < AND ;

7. : GUESS (answer guess — answer or —)
2DUP = IF .“ CORRECT! " 2DROP ELSE
2DUP < IF ." TOO HIGH " ELSE ." TOO LOW *
THEN DROP THEN ;

8. ¢ SPELLER DUP ABS 4 > IF ."OUT OF RANGE " ELSE
DUP 0< IF ."™ NEGATIVE " ABS THEN
DUP 0= IF ." ZERO " ELSE

DUP1l = IF ." ONE " ELSE
DUP 2 = IF ." TWO " ELSE
DUP 3 = IF ." THREE " ELSE

." FOUR "
THEN THEN THEN THEN THEN DROP ;

9. assuming <ROT and WITHIN are still loaded:

: 3DUP DUP 20VER ROT ;

: TRAP (answer low-try hi-try -- answer or --
3DUP OVER = <ROT = AND IF ." YOU GOT IT! " DROP ELSE
3DUP SWAP 1 + SWAP WITHIN IF ." BETWEEN "

ELSE ." NOT BETWEEN " THEN THEN 2DROP ;

Chapter 5

1. */ MINUS 4, F>C 32 - 1018 */;
C>F 1810 */ 32 +
K>C 273 - ;
C>k 273 +;
F>K F>C C>K
K>F K>C C>F

.
14

2. MAX MAX MAX .

3. a) 032- 1018 %/, 7 ~-
b) 212 32 - 10 18 */
c) -3232- 10 18 */
d) 161810 */ 32 + . vu un
e) 233273 - . -4" k

e =

APPENDIX 1 Answers 1-3

186 LIST
@ { ANSHERS, CHAP. 6) EMPTY
1 (PROBLEMS 1 -~ 6)
2 ! STARS @ DO ." *" LOOP
3 ¢ BOX 8 DO CR DUP STARS LOOP DROP ;
4 \STARS { ##~of-1ines) © DO CR 1 SPACES 1@ STARS LOOP ;
S5 { /STARS (H~of-liries) 1 SWAP DO CR I SPACES 10 STARS
6 ~1 +LOOP
7 ¢ (USING BEGIN & UNTIL FOR /STARS :)
8 { A/STARS (#-of-lines) BEGIN CR DUP SPACES 18 STARS
g 1- DUP @z UNTIL DROP ;
10

11 (DIAMONDS DEFINED IN THO STAGES:)
12 ¢ TRIANGLE DO CR 9 I - SPACES

13 I 2% 1+ STARS DUP +LOOP DROP ;
14 : DIAMONDS @ DO 1 18 @ TRIANGLE
15 -1 @ 9 TRIANGLE LOOP J
187 LIST
B ¢ ANSHWERS, CHAP. 6, CONT’D) EMPTY
1
2 (PROB. 7)
3:Rx 10 %/ 5 + 10 7 ;
4 : DOUBLED (AMT INT --)
5 OVER 2% ROT ROT SWAP 21 1 DO
6 CR ." YEAR " I 2 U.R 3 SPACES
7 2DUP R% + DUP .” BAL "
8 DUP 20VUER DROP > IF
5 CR CR ."” MORE THAN DOUBLED IN " I . ." YEARS " LEAVE

10 THEN LOOP 2DROP DROP ;
11
12 ¢ PROB. B)
13 ¢ X 1- ?DUP 1IF
14 OVER ROT ROT @ DO OVER * LOOP SHWAP DROP THEN
15
188 LIST
@ (ANSHWERS., CHAP. 7) EMPTY
1 ¢ PROB. 1)
2 ¢ N-MAX ® BEGIN 1+ DUP ©< UNTIL 1- . 3
3 (Keeps incrementing the number on the stack by one until
4 it looks negative, which means the limit has been passed.
S The final 1- sets it back to what it was just before it
6 surpassed the limit.)
7 ¢ PROB. 2 ~~ Assume that HUMOROUS and SENSITIVE are
8 both true. The "anded" result is “1“. Now assume
9 that ART-LOVING and MUSIC-LOVING are also both true.
10 If we "+" their flags instead of "OR"ing them, we get "2."
11 But 8081 [onel
12 ANDed with 8010 [twol
13 gives @800, which is false.)
14
15

Copyright FORTH, Inc. 3/86/81 11:40 Starting FORTH

1-4 Answers Starting FORTH
189 LIST

@ (ANSWERS, CHAP. 7 ~- CONT’D) EMPTY

1 ¢ PROB. 3)

2 ! BEEP " BEEP 7 EMIT

3 ! DELRY 20008 @ DO LOOP ;

4 : 3BELLS BEEP DELAY BEEP DELAY BEEP ;

S

6 (PROB. 4-a)

7 : F>C -328 M+ 10 18 Mx/ ;

8 : COF 18 18 M%x/ 326 M+ ;

9 I K> -2732 M+ ;

18 : OOk 2732 M+

11 1 FK F> C>

12 : KOF K> CO>F

13 (PROB. 4-b)

14 : .DEG SWAP OVER DABS

15 <# # 46 HOLD #S SIGN #> TYPE SPRCE ;
198 LIST

@ (ANSHWERS, CHRAP. 7 —-- CONT’'D)

1 (PROB. 5)

2 ¢ DPOLY ¢ x -— dv)

3 DUP 7 Mx 20 M+ ROT 1 Mixs 5 M+

4 : 7DMAX @ BEGIN 1+ DUP DPOLY @ @ D< UNTIL 1- . ;

5 ?DMAX /rets 17513 ok -- this takes a while)

6

7

8 (PROB. 6)

9 : BINARRY 2 BRSE ! ;

18 : 3-BASES

11 17 @ DO CR ." DECIMAL" DECIMAL I 4 U.R 8 SPACES

12 OHEX HEX I 3 U.R 8B SPRCES

13 . BINARY™ BINARY I B U.R 8 SPACES

14 LOOP DECIMAL ;

15
191 LIST

@ (ANSKERS, CHRP. 7 -— CONT'D)

1 ¢ PROB. 7 -- It tells you that double-length routines are

2 loaded. Two dots are interpreted as a double-length zero.?

3

4 (PROB. B)

S ¢ .PHH# <# # #H o H 45 HOLD u # #

6 OVER IF 47 HOLD #S THEN #> TYPE SPACE ;

7 (OVER supplies IF with the low-order cell of the

8 number being converted. This cell contains zero only

9 when conversion has completely "used up" the number.}

i@

11

12

13

14

15

Copyright FORTH, Inc.

3/06/81

11:40

Starting FORTH

APPENDIX 1 Answers
192 LIST
@ (ANSWERS, CHAP. B8) EMPTY
1 ¢ PROB. 1-a)
2 VARIABLE PIES e PIES !
3 : BAKE-PIE 1 PIES +! ;
4 : ERT-PIE PIES @ 1IF -1 PIES +! ." THANK YOU *
s ELSE ." WHAT PIE? * THEN ;
6 (PROB 1i-b)
7 UARIABLE FROZEN-PIES 8 FROZEN-PIES !
8 : FREEZE-PIES PIES @ FROZEN-PIES +! @ PIES ! ;
9 (PROB. 2)
1@ : .BASE BASE @ DUP DECIMAL . BRSE ! ;
11 (PROB. 3)
12 VARIABLE PLACES @ PLACES !
13 : M, SWAP OVER DABS <(#
14 PLACES @ ?DUP IF © DO # LOOP 46 HOLD THEN
15 #5 SIGN #> TYPE SPACE ;
193 LIST
® (ANSWERS, CHAP. 8 —— CONT’D) EMPTY
1
2 (Prob., 4)
3 VARIABLE HPENCILS 6 ALLOT
4 @ CONSTANT RED 2 CONSTANT BLUE
S5 4 CONSTANT GREEN 6 CONSTANT ORANGE
6
7 t PENCILS HPENCILS + ;
8
9 23 RED PENCILS !
1@ 15 BLUE PENCILS !
11 12 GREEN PENCILS !
12 © ORANGE PENCILS !
13
14 (To test, we can enter
15 BLUE PENCILS ? 15 ok)
194 LOAD
PLOT
194 LIST @
1 %
® (ANSWERS, CHAP. 8, CONT’D) EMPTY 2 xx
1 3 kKX
2 ¢ PROB. 5) 4 kokokk
3 CREATE ’SAMPLES 20 ALLOT (10 CELLS) S kKoK
4 : STARS ?DUP IF @ DO 42 EMIT LOOP THEN ; B kdkdokk
5 : SAMPLES (index# -- adr) 2% *SAMPLES + ; ?
6 : INIT-SAMPLES C - 8 x
7 11 DO I 7 MOD I SAMPLES ! LOOP ; 9 xx
8 18 »oxx
9 : PLOT « --
18 11 8 D0 CR I 2 U.R SPARCE I SAMPLES @ STARS LOOP CR ;
11
12 INIT-SAMPLES
13
14
15
Copyright FORTH, Inc. 3/96-81 11:41 Starting FORTH

1-6 Answers Starting FORTH
195 LIST
B (ANSHERS, CHRP. 8) EMPTY
1 (PROB. 6)
2 URRIABLE BOARD 7 ALLOT
3 : CLERAR BOARD 18 @ FILL CLERR
4 : SQR BOARD +
5 1 BAR A |
6 : DASHES CR 9 @ DO .” =" LOOP CR ;
7 ¢ .BOX SR C@ DUP ©:= IF 2 SPACES ELSE
8 DUP 1 = IF .” X " ELSE
9 .o THEN THEN DROP ;
18 : DISPLAY CR 9 @ po
11 I IF I 3 MOD 8= IF DASHES ELSE BRR THEN THEN
12 I .BOX LOOP CR QUIT ;
13 : PLAY 1- 8 MAX B MIN SQR C!
14 @ X! 1 SWAP PLAY DISPLAY ;
15 : 0! -1 SWAP PLAY DISPLAY ;
196 LIST
@ (ANSHKERS., CH. 9) EMPTY
1 (PROB. 1)
2 @ COUNTS ~’ ROT ROT 8 DO OVUER EXECUTE LOOP SWAP DROP ;
3
4 (PROB. 2)
S ¢ You can find out by entering
6 EMPTY HERE .)
7
8 (PROB. 3
9 (You can find out by entering
10 PAD HERE - .)
11
12 ¢ PROB. &)
13 (a. No difference. AR VRRIRBLE returns its ouwn pfa.
14 b. A user variable returns the address of a cell in the user
15 table. The dictionary entry, which ° finds, is elsewhere.)
197 LIST
B (ANSKERS, CHAP. 9, CONT’D)
1 (PROB. S, SOLUTION #1)
2 UARIABLE ’TO-DO 1@ ALLOT (6 CELLS)
3 : To-DO (index -- adr) 1- 2% ’TO-DO + ;
4
S : GREET ." HELLO, I SPEAK FORTH. * ;
6 ! SEQUENCE 11 1 DO I . LOOP ;
7 ¢ TILE 18 S BOX (see answers, Ch. 6)
8 ! NOTHING :
9
18 GREET 1 TO-DpO ! * SEQUENCE 2 TO-DO !
11 * TILE 3 TO-DO ! * NOTHING 4 TO-DO !
12 ’ NOTHING S T0-DO ! ’ NOTHING 6 TO-DO !
13
14 : DO-SOMETHING ¢ index -—) TOo-DO @ EXECUTE
15
Copyright FORTH, Ine. 3/86-81 11:41 Starting FORTH

APPENDIX 1 - Answers
198 LIST

@ (ANSKERS, CHAP. 9, CONT’D)

1 (PROB. 5, SOLUTION #2)

2 VARIABLE ’"TO~-DO 18 ALLOT (6 CELLS)

3 : T0-DO (index -- adr) 1- 2x ’'TO-DO + ;

4

5 ! GREET ." HELLO, I SPEAK FORTH. "

6 ! SEQUENCE 11 1 DO I . LOOP ;

? ¢ TILE 18 5 BOX ; (see answers, Ch. 6)

B ¢ NOTHING

9

1@ : INIT“TO-DO" (=-) 7 1 DO [’) NOTHING I TO-DO ! LOOP

11 [’] GREET 1 TO-DO ¢ £’]1 SEQUENCE 2 TO-DO !

12 £’1 TILE 3 TO-DO !

13 INIT"TO-DO"

14

15 ¢ DO-SOMETHING (index ~-) T0-DO @ EXECUTE
199 LIST

B (ANSHERS, CHAP. 1@ EMPTY

1

2 ¢ PROB. 1)

3 : CHANGE (c1c2 ~~) (changes c1 to c2)

4 SHAP 228 BLOCK 1824 OVER + SWAP DO

5 2DUP I C@ = IF I C{ ELSE DROP THEN

6 LOOP 2DROP :

7

B (PROB. 2)

9 181 LOAD (¢ RANDOM NUMBERS)

18 ¢ FORTUNE CR 16 CHOOSE 64 * (block#) BLOCK +

11 64 ~TRAILING TYPE SPACE

12 (You’ll have to inuent your own "fortunes"™. Edit them

13 into an available biock, one per line. Then edit the

14 block number into line 11 above, where indicated.)

15
200 LIST

B ¢ ANSWERS, CHAP. 18, CONT'’D)

1 (PROB. 3)

2 : ANIMALS ." RAT ox TIGER RABBITDRAGONSNAKE HORSE RAM

3 ONKEYCOCK DOG BOAR " ;

4 : .ANIMAL (u --)

5 6 x (’] ANIMALS 3 + + 6 —-TRAILING TYPE ;

6 ¢ .ANIMAL takes an argument from @ to 11.)

?

B8 : (JUNEESHEE) ¢ yo ——)

9 1988 - 12 MOD

10 ." YOU WERE BORN IN THE YEAR OF THE " . ANIMAL

11 46 EMIT (dot) CR ;

12

13 : JUNEESHEE CR

14 -" IN WHART YEAR WERE YOU BORN? *

15 S8 @ 4 EXPECT B >IN !t 1 WORD NUMBER CR (JUNEESHEE)
Copyright FORTH, Inc. 3/86/81 11:42 Starting FORTH

1-7

M

1-8 Answers Starting FORTH

201 LIST
@ ¢ ANSKERS, CHRAP. 18, CONT’D) EMPTY
1 (PROB. 4)
2
3 : NAME 64 *x 282 BLOCK + 24 ~TRAILING TYPE :
4 : HAIR 64 * 202 BLOCK + 24 + 28 -TRAILING TYPE ;
S : EYES 64 x 202 BLOCK + 44 + 20 -TRAILING TYPE ;
6
7 : LETTER CR CR DUP DUP
8 ." DEAR " NAME . " CR
9 CR .'" YOU’RE THE ONLY ONE FOR ME. LET ME RUN MY FINGERS "
1@ CR ." THROUGH YOUR NICE " HARIR ."” HAIR. LET ME LOOK INTO "
11 CR .”™ YOUR DEEP " EYES ."™ EYES. " 3}
12
13 : LETTERS 4 @ DO I LETTER LOOP ;
14
15
202 LIST
B8 LATICIA BLACK BROWN
1 ALICE BLONDE BLUE
2 STACEY BROWN HAZEL
3 BARBARA BROWN GREEN
4
S
6
7
8
9
10
11
12
13
14
15
203 LIST
@ (ANSKWERS, CHAP. 1@, CONT’D) EMPTY
1 (PROB. 5)
2 VRARIABLE HSTART 222 HSTART ! (file begins at block 222)
3 ! ELEMENT (index —-- adr)
4 2% 1824 /MOD HSTART @ + BLOCK + UPDATE ;
S (Test virtual array:)
6 : INIT-ARRAY 500 @ DO I I ELEMENT ¢ LOOP ;
7 * .ARRAY @ PO CR I . SPARCE I ELEMENT ? LOOP ;
B
9 (Now make the wvirtual array into a file:)
1@ : AVAILABLE (-- adr) #START @ BLOCK UPDATE ;
11 @ AVUAILABLE !
12 ¢ Redefine ELEMENT to skip over AVAILABLE:}
13 : ELEMENT (index -- adr)
14 1+ 2% 10624 /MOD HSTART @ + BLOCK + UPDATE ;
15

Copyright FORTH, Ing¢. 3/86-/81 11:42 Starting FORTH

APPENDIX 1

Answers

1-9

LOOP DROP ;

284 LIST
@ (ANSWERS, CHAP. 1@, CONT’D}
1 (PROB. 5, CONT’D)
2
3 : PUT ¢ value --) AVAILABLE @ ELEMENT ! 1 AVARILABLE +!
4
5 ¢ SHOW ¢« =-=) AVAILABLE ¢ @ DO CR I .
6 I ELEMENT 7 LOOP
7
8 @ ENTER (valuel valuez --) SWAP PUT PUT 3
9
18 @ TABLE AVAILABLE @ 7?DUP IF
11 CR 8 DO I 8 MOD 8=z IF CR THEN
12 I ELEMENT @ 8 U.R LOOP CR
13 THEN
14
15
205 LIST
@ { ANSWERS, CHAP. 11) EMPTY
1 (PROB. 1)
2 : LOADED-BY CREATE DOES> @ LOAD ;
3
4 ¢ PROB. 2)
S ! BASED. CREATE DOES> @ BASE @ SWAP BASE !
6 SWAP . BASE ! ;
7
8 (PROB. 3)
9 : PLURAL (adr ~-) CRERTE
i@ DOES> @ SWAP ?DUP IF © DO DUP EXECUTE LOOP THEN DROP ;
11 ’ CR PLURAL CRS
12 5 CRS
13 : BEEP 7 EMIT 2pee® @ DO LOOP ; * BEEP PLURAL BEEPS
14 4 BEEPS
15
286 LIST
@ (ANSWERS, CHAP. 11, CONT’D)
1
2 (PROB. 4)
3 : TURNE C[COMPILE] DO ; IMMEDIATE
4 ! RETURNE [COMPILE] LOOP : IMMEDIRTE
5 ¢ TRY 16 8 TURNE I . RETURNE 3
)
7 ¢ PROB. 5)
8 + RSCII 32 WORD 1+ C@ [COMPILE] LITERAL 3 IMMEDIATE
9 ¢ STRR ASCII *x EMIT
18
11 ¢ PROB. 6)
12 : LOOPS >IN @ SWARP @ DO DUP >IN ! INTERPRET
13 12 LOOPS CR 38 SPRCES STAR
14
15
Copyright FORTH, Inc. 386,81 11:42 Starting FORTH

APPENDIX 2
FURTHER FEATURES OF polyFORTH

polyFORTH is a total software development environment designed
especially for the professional programmer. polyFORTH is
currently available for the most popular minicomputers and
microprocessors.

In this book we've covered all the polyFORTH commands that might
be used in a high-level, single-task application. We've left out
several categories of words that are also included in polyFORTH.
These categories are:

The *---—“ler

All versions of FORTH, not just polyFORTH, include an assembler
vocabulary. Using the assembler, it is possible to code directly
in the assembly language of a particular processor.

The assembler is primarily used to code time-critical words in a
real-time application. Often an entire application can be coded
in high-level FORTH, then after the application has been tested,
critical low-level words can be redefined in machine code.

polyFORTH's assembler vocabulary includes interrupt-handling
capability.

polyFORTH provides a multiprogrammed task that sends output to a
printer instead of your terminal. Among the printing utility
commands are several which list disk blocks in the standard
format of three to a page.

Date and Time <~—~7rt

The current date and, when supported by a system clock, time of
day are maintained by the system.

2-1

2-2 Starting FORTH

The Mir**"~rog--~mer

As many tasks as are needed, either terminal or control tasks, can
be easily added. A single command builds a new task, given
certain size parameters. Another command activates the task and
gives it a specified behavior.

2.‘ P) ﬂ "L:‘litiz

polyFORTH includes commands for copying entire disks or portions
thereof, for error checking, and for formatting when it is needed
by the system.

T--~2t Compiler

POlyFORTH provides the capability to develop an application that
ultimately will run on a different processor, in some cases even a
different variety of processor. The compiled code can either be
executed directly or be compressed and burned into ROM.

FORTH, Inc., which licenses and sells polyFORTH, was founded in
1973 by the inventor of FORTH, Charles H. Moore, and his
associates. FORTH, Inc. also provides full documentation,
hot-line support, educational services in all parts of the
country, software options, and custom application programming.
For further information write or call FORTH, Inc., 2309 Pacific
Coast Hwy., Hermosa Beach, CA, 90254, 213/372-8493, TWX 910
344-6408.

APPENDIX 3
FORTH-79 STANDARD

The purpose of PORTH-79 Standard is to allow transportability of
standard FORTH programs in source form among standard FORTH
systems. A program written according to the Standard will run
equivalently on any FORTH system that adheres to the Standard.

The current Standard was developed by the FORTH Standards Team.
(The Standards Team is not affiliated with FORTH, Inc., but the
company does have three voting members on the team.) This
Standard is a descendant of FORTH-~78 (proposed by the FORTH
International Standards Team) and before that of FORTH-77 (the
work of an informal group of European and American FORTH users).
Efforts at standardization go back as far as 1973, at Kitt Peak
Observatory in Arizona.

Having voted to accept the FORTH-79 Standard, FORTH, Inc.
revised its product line to adopt most of the Standard's features
and naming conventions. Of course the Standard attempts to
cover only a minimal system. Therefore it doesn't address many
powerful words and features included in FORTH, Inc.'s polyFORTH,
which represents the state-of-the-art in FORTH implementations.
In this book we've included many words which we feel are likely
to be adopted by future Standards.

A small number of issues raised by the FORTH-79 Standard remain
controversial. In a few cases, the functions of words as
described in this book don't follow the FORTH-79 Standard, but
rather the FORTH, Inc. product line. Most of these discrepancies
have been marked with footnotes; however, a few are more general
in nature and deserve special discussion.

The most noticeable difference is in the length of the name field
for each dictionary entry. The Standard specifies that
dictionary entries include up to 31 characters of the name to
avoid "collisions." FORTH, Inc. implementations use a count and
three characters not only to save memory, but also to support
dictionary search routines that are significantly faster than any
31 character implementation seen to date. FORTH, Inc. is
presently researching algorithms which may offer users greater
flexibility in naming, without unacceptable sacrifice in
performance.

The FORTH-79 Standard includes a few words which change their
behavior depending on a variable called STATE, which indicates
whether the user is in "compile mode." One is [["]. In FORTH,

3-2 Starting FORTH

Inc. implementations, is a compiling word, and therefore it
may only be used inc.ue a colon definition. In FORTH-79
languages, it has two functions: if the system is in execution
mode, it will type the string which follows it at the terminal
from which it was just entered.

A more significant controversy related to STATE is the behavior
of the word [] ‘**7k). In FORTH, Inc. languages, tick always reads
the next word ... the input stream when *‘~k is executed. The

Standard ¢t~ however, has two behavior.. when the system is in
executione, it be* -~ -s in the normal way, but in compile
mode it behaves like |, 4 (brack-* " “~ac*~*'; that is, it

compiles the address of the next wuru i1u che ucfinition as a
literal. To define a word which must "tick" the next word in the
input stream when the word 1s executed, you must use the phrase

[COMPILE] '
if you're using the Standard tick .

There's one other difference worth mentioning here. The FORTH-79
Standard does not make the assumption that the [DO| loop index
and limit will be kept on the return stack. Presumably a system
may have a third stack. For this reason, the Standard includes
the word R@ to copy the top value from the return stack onto the
parameter stack. In all systems that we know of, however, R@
would be identical to the FORTH [I.

For more information or for copies of the FORTH-79 Standard,
write to the FORTH Interest Group (FIG), P.O. Box 1105, San Carlos,
CA 94070.

word
ARITHMF™™"

S-{ —\nle_1 Armrrdta

N o+

/MOD
MOD
*/

* /MOD
U*
U/MOD
1+

1_

2+

2—-

2*

2/
ABS
NEGATE

AT PN

D+

D-
DNEGATE
DABS

LY I O B R A

M+
M/
M*
M*/

APPENDIX 4

SUMMARY OF FORTH WORDS

page

123

178
178
178
178

179
179
179
179

éﬂf"r'r ﬁr“lf‘gﬂnﬂ-
Any oUIvowmwal

See table on p. 157

4-1

word page
KEY 284
EXPECT 284
WORD 284
TEXT 284
COUNT 285

CHAP*~"™=R OUT™"""

CR 27
SPACE 27
SPACES 27
EMIT 27
" 27
PAGE 143
TYPE 283
>TYPE 285
~TRAILING 283
COMPARTe~15
~2e_ ;!le_'| PSS N
= 103
- 103
< 103
U< 177
> 103
= 103
0< 103
0> 103
MIN 123
MAX 123

D esi~m-th

= 179
DO0= 179
D< 179
DU< 179

4-2

word

DMIN
DMAX

Freing

-TEXT

COMPII " ™ ON

’

¢,

('l

DOES>
IMMEDIATE
COMPILE
[COMPILE]
LITERAL

[

1

COv=TANTS

0
1
0.

nﬂﬂT“TE i(\hnc

I
CONSTANT
VARIABLE
CREATE
2VARIABLE
2CONSTANT

page

179
178

285

209
210
247
313
313
313
313
313
313
313

210
210
210

27

27
209
209
209
210
210

D_I(-um-rt\‘rn nqr- M TR n'l:!M_E-ll"H

FORGET
EMPTY
ALLOT
HERE

84
84
209
246

starting FORTH

word

page

All appear on pp. 84,5

Ibvmﬂi\ﬂhﬂm LY rrn:ON

(

INTERPRET

T ANTH

NOT
AND
OR

MEMORY

1

@

+1

c!

ca

2!

2@
MOVE
CMOVE
<CMOVE
FILL
ERASE
BLANK
DUMP

AMITMDDD INorTm CONH-nnn-rON

>BINARY or
CONVERT
NUMBER

E"‘.ﬂnn:_ OUTPUT

U.R
U.
D.
D.R

84
246
246

103
103
103

209
209
209
209
209
210
210
284
284
285
209
210
285
210

284

285

27

143

177

179
179

Starting FORTH

word

page

Bresmenmn PATMATTING

<#

#

#S
HOLD
SIGN
>

nDE‘RA l'I'lT\‘G F\rﬂl’ﬂl‘.\u

-~

q—-=a-

ABORT"
?STACK
EXECUTE
QUIT
EXIT
HEX
OCTAL
DECIMAL
HERE

ASSEMBLER
DEFINITIONS

User ""--*ables

SO

SCR

R#

BASE

H
CONTEXT
CURRENT
>IN

BLK
OFFSET

RETURN ST*"v

>R
R>
I
Il
J

177
177
178
178
178
178

103
103
246
246
246
177
177
177
246
246
247
246
246
246
246

247
247
247
247
247
247
247
247
247
247

123
123
123
123
123

word

page

oma e MANT“",IATION

Single-'~~gth

SWAP
DUP
OVER
ROT
DROP
?DUP

Double-l¢~~*h

2SWAP
2DUP

20VER
2DROP

53
53
53
53
53
103

53
53
53
53

STR ™™ ™ rn\"!\nnri

iF
ELSE
THEN
DO
LOOP
+LOOP
/LOOP
LEAVE
BEGIN
UNTIL
WHILE
REPEAT

Enmrv'ﬁ -M_Ellnn"

LIST

LOAD

FLUSH

COPY

WIPE

UPDATE
EMPTY-BUFFERS
BLOCK

BUFFER

EXIT

103
103
103
143
143
143
177
143
143
143
143
143

84
84
84
84

283
283
283
283
246

4-3

	Front Matter
	About the Author
	Foreword
	About this Book
	Acknowledgements
	Table of Contents
	Introductions
	1. Fundamental Forth
	2. How to Get Results
	3. The Editor (And Staff)
	4. Decisions, Decisions…
	5. The Philosohpy of Fixed Point
	6. Throw It for a Loop
	7. A Number of Kinds of Numbers
	8. Variables, Constants, and Arrays
	9. Under the Hood
	10. I/O and You
	11. Extending the Compiler
	12. Three Examples
	Appendix 1 — Answers to Problems
	Appendix 2 — Further Features of polyFORTH
	Appendix 3 — Forth-79 Standard
	Appendix 4 — Summary of Forth Words

