American National Standard
for Information Systems —

Programming Languages —
Forth

Secretariat

Computer and Business Equipment Manufacturers Association

Approved March 24, 1994
American National Standards Institute, Inc.

ANSI X3.215-1994

Special Electronic Edition

Copyright (c) 1994 by American National Standards Institute. All rights reserved. Provided that this entire
notice of copyright and purpose is included on the first page of paper documentation or prominently in
online or machine-readable documentation, this document may be copied in its entirety without alteration
or as altered by (1) adding text that is clearly marked as an insertion; (2) shading or highlighting existing
text; and/or (3) deleting examples.

NOTE: This file is provided to facilitate preparation of documentation and textbooks for ANS Forth
systems. Itis NOT intended as a substitute for obtaining a paper copy of this document. Please contact
Global Engineering Documents at (800) 854-7179 or FAX (303) 843-9880 to obtain a paper copy. Thank
you very much for your interest.

ANSI X3.215-1994

Contents

FOTBWOIT. ...ttt bbbt sb et b et nb e ebe e vii
X3 MEMDEISNIP 1.t viii
DN YT 1o T=T £ 4o S iX
I 1011 0 1o [0 o1 T o IO OSSPSR 1
O U 4 T 1T USSP PP UPRTRN 1

L2 SCOPE ottt bbb ans 1
121 INCIUSIONS...cviiiiiiieicie et et e 1

O (ol [1] o] PSSR 1

1.3 DOCUMENE OFQANIZALIONciviieiiiieieie ittt 2
L.3.1 WWOKA SBES...cveiiiieiie ettt sttt e 2

132 ANNEXES ..ottt e r e 2

1.4 FULUIE AITECHIONS ...vevveiiieeieiecie ettt sttt b eere s 2
0 R [V (<ol T g To] (o Y2 2

1.4.2 ODbSOIeSCENt FEALUMESecvvieeeeeeieeerie et 2

2. Terms, notation, and FEfErENCES........ccuvi i e 3
2.1 Definitions OF tBIMSoviiieiciiee e 3

2.2 NOTBEION ©eviecee bbbt 5
221 NUMEIIC NOLALIONeovviieiiiiieeiieieie e 5

2.2.2 StACK NOTALION ..o 5

2.2.3 Parsed-text NOTAtIONccvevierieiiie et 5

2.2.4 GloSSary NOLAtION........ccvieieeieece s 6

2.3 REIBIBNCES. ...ttt 7

3. USAQE FEQUITEMENTS ...c.veveiiecticiecieee sttt st be e sa e te e e s e e et e b sbesresneereenes 8
3.l DALA LYPES wvviiiieeiitie ittt bbb 8
3.1.1 Data-type relationships.......ccccceveriiiiiiiiiiiie e 8

3,12 CharaCter TYPES ...ecveeeieiterieieete ettt sttt ettt 8

3.1.3 SINGIE-CEII TYPES .t 10

314 Cell-Pair tYPES ...ooveiviciieiceee e 11

3.1 SY S M EYPES e ce e e 11

3.2 The implementation NVIrONMENLccccveveieerieierere e 12
B0 N[0 1] o< PSSR 12

3.2.2 ANTNMELIC. ..ceiieiceee e 12

323 SHACKS ... ietite ettt e 13

3.2.4 Operator terminal..........cccovviveiieiiie e 14

3.2.5 MASS SEOTAQE ..ottt 14

3.2.6 ENVIronmental QUETIESeeerieiieie e 14

3.3 The FOrth diCtionarycccccceiiie it 15
3.3 1 NAIME SPACE. ... tee ettt ettt ettt 15

TR T o 1o L= o - SO 15

3.3.3 DAt SPACE......eciieiiriie st 15

3.4 The FOrth teXt iNterpreter.... ..o 17
AL PAISING et 18

3.4.2 Finding definition NAMESc.ccoiiii i 18

343 SEMANLICS...uiiviiiiteiieeete ettt e 19

3.4.4 Possible actions on an ambiguous conditionc.ccoceeveriienien 19

345 CoMPIlALION ..o e 20

4. Documentation reQUITEIMENTS...........ciierieiie ettt 21
4.1 System dOCUMENTALIONcueiveiiieirieieie et 21
4.1.1 Implementation-defined OptioNnS.........cccceiiieiiiinini i 21

4.1.2 AmbIiguous CONAITIONS........cciviiieieriie e 22

4.1.3 Other system documentationccoceeeverieriennsieseeee e 23

4.2 Program doCUMENtAtiONcccvevieeieieree e 23
4.2.1 Environmental dependencies..........cccoereirerieinennineieeseesieseeas 23

ANSI X3.215-1994

5.

10.
11.
12.
13.
14,
15.
16.
17.

w

4.2.2 Other program doCUMENLatioNcccvvverieieieneisenieiee e 23
Compliance and [aDEIING.........coeiiiiie e 24
5.1 ANS FOIh SYSEEMS.eeiiiiieieie ettt 24

5.1.1 System COMPHANCEc.coevviiiiieicse e 24

5.1.2 System [abelingc..cccoveiiiiiiiisi e 24
5.2 ANS FOrth Programsccceceienirinie e se et 24

5.2.1 Program COMPIIANCEc.coveieiiiiieiicieee e 24

5.2.2 Program 1abeling........ccooiiiiiiiiiie e 24
GHOSSANY ...ttt 25
TR A O] £ Yo] (o ST 25
6.2 COre eXtENSION WOIUScviiiirieiieeieeieie e sie et te et ere e e sre e e 49
The optional BIOCK WO SEt........c.ccvcieiiiiiesese s 59
The optional Double-Number WOrd SEtcoovvririiiriiniiiseese e 65
The optional EXCeption WOI SELcooiiiiiiiiiieieeie et 70
The optional Facility WOrd SEtcccoviiiiiiiieecee e 74
The optional File-ACCeSS WO SEL.........cccviieieieieiesese s 77
The optional Floating-Point WOrd SEt............ccceviieiinieiieierese e e 87
The optional LOCAIS WO SEL.........ccviiiiiiiiie e e 102
The optional Memory-Alocation WOrd SEt...........cccuverririiiinecreeecenns 107
The optional Programming-Tools WOrd Stccccvvvievivvinieeeereee e 110
The optional Search-Order Word Set..........ccccveviiiiecie i 117
The optional StriNG WOI SEL.........ooiiiiiiiie e 122
Rationale (iNfOrmative anNeX)c.cceveriiienerieeseee e 125
AN R 111 7o [1Tox (o] PSSR 125
A2 Terms and NOLALION........ccceiveiiiee e e 126
A3 USAQE FEQUITEMENTS ...eiiiiiiiieiiiteeeiisie et 127
A4 Documentation reQUIrEMENTSc..eouririeirerieise e 138
A5 Compliance and 1abeling ..o 138
ALB GIOSSAIY...eieiiiiiieicitete bbb 139
A.7 The optional BIOCK WOId SEtccooiriiiiiiiiiie e 157
A.8 The optional Double-Number Word Set...........ccocveriiniinieneseneee e 157
A.9 The optional EXCeption WOrd Set.........ccooiiiiriiiniiiineee e 158
A.10 The optional Facility WOrd Set...........cccoereiiireiiiineeeee e 161
A.11 The optional File-AcCeSS WOId SEt........ccoeriiireiiinieiseneee e 164
A.12 The optional Floating-Point Word Set............ccoevvininineiseieeesee e 166
A.13 The optional Locals WOrd SEt.........cccovreiiiieriiiiiic e 169
A.14 The optional Memory-Allocation Word Set...........ccoeoveneinenenneneeee 172
A.15 The optional Programming-ToOoIS WOrd Set..........ccccvererireneiineneeenee 172
A.16 The optional Search-Order Word Setcoevereireneineeseee e 175
A.17 The optional String WOrd SEl.........coviriiiiniireese e 177
Bibliography (informative @anneX)..........ccccecevvieeieieeieie e 179
Perspective (infOrmative @nNEX)cccceeeiieiieieeieeiesiesie e ste e e e e e e sre e e eneas 181
C.1 Features OF FOMthoociiiicice et 181
C.2 HiStory of FOrth......coooiiee e 182
C.3 Hardware implementations of FOrth...........ccocoov i, 182
C.4 Standardization ffOrtSccccorviiiiiiiiic e 182
C.5 Programming in FOrth ... 183
C.6 Multiprogrammed SYStEMScceierieieriesrese e e seeste e sre e enas 189
C.7 Design and management CONSIAErationscccccevveveresesesesesieseerneseenns 189
C.8 CONCIUSION....cuevieiiiieiciiite ettt ettt st sbe et sre e 189

ANSI X3.215-1994

D. Compatibility analysis of ANS Forth (informative annex)ccoccoevveverenenennn 190
D.1 FIG FOrth (Circa 1978)cceiuiiiiriiiiinieisienieesie e 190
D.2 FOMN 79 ittt 190
D.3 FOMh 83ttt 190
D.4 Recent deVelOPMENLScoviiiiiiiirieiciree s 191
D.5 ANS FOrth approach ... 191
D.6 Differences from FOrth 83cccooviiiiiiiiieieee e 192

D.6.1 StaCK WIdth ...c.ecviiiicii e 192
D.6.2 Number repreSentationccccveveiiereriniese e 192
D.6.3 ACArESS UNILS ..o.veviiviiieiiiiirieesie ettt et 193
D.6.4 Address increment for a cell is no longer tWoccccecvveivinienne 193
D.6.5 Address alignment ..o 194
D.6.6 Division/modulus rounding direCtion..........ccccocevvvvvevnieevieiesennenn, 195
D.6.7 IMMEAIACY ...eevvevveieiiece sttt 195
D.6.8 INPUL CharaCter SEl.........ccoveieirieicereee e 197
D.6.9 Shifting With UM/MOD.........c.cccoviiiiiiiiiie e 197
D.6.10 Vocabularies / WOrdlistsccccooeivrierieiineiieieseise e 198
D.6.11 Multiprogramming iMpPact..........cccceveerivrienesienineieereenese e 198
D.6.12 Words not provided in executable formccccoevvinieienennnnnn 199

E. ANS Forth portability guide (informative annex)ccccceeevevivrinnivsiesieese e 200
E.l INErOTUCTION. ...c.citiiiiiitcciccc et 200
E.2 Hardware peCUliaritieSccovvivviriviieiicieeee e e 200

E.21 Data/memory abstraCtion..........ccoceoveireiiiinieiiieneese e 200

E.2.2 DefiNitiONSccooiviiiiiiiieieee e e 200

E.2.3 Addressing MEMOIY........cccoiveieiierieiiesiesestesieseeeesee e e sre e sasereenes 201

E.2.4 Alignment problemsccocveveiireiininseseeesee e 201

E.3 NUMbEr repreSeNntation........cccceierereseseieeieieese e sestesre e se e seeee e seenees 202
E.3.1 Bigendian vs. little endianccccooeiiiiiiiiii e 202

E.3.2 ALU Organizationcccooeiiieieneiieiieeee e 202

E.4 Forth system implementation...........c.ccooieeeienine i 203
B4l DefiNItIONScciiiiiiieieise e 203

E4.2 SHACKS....ci ittt 203

E.5 ROMed application disciplines and conventions...........cc.ceeevvererereresnnnns 204
E.B SUMMAIY ...oiiiciccce ettt e e e neenae e eneesreenreens 204
F. Alphabetic list of words (informative anneX).........cccceevevereieneniese s seeeesee e 205

ANSI X3.215-1994

Vi

ANSI X3.215-1994

Foreword

(This foreword is not a part of American National Standard X3.215-1994)

Forth is a language for direct communication between human beings and machines.
Using natural-language diction and machine-oriented syntax, Forth provides an
economical, productive environment for interactive compilation and execution of
programs. Forth also provides low-level access to computer-controlled hardware, and
the ability to extend the language itself. This extensibility allows the language to be
quickly expanded and adapted to special needs and different hardware systems.

Forth was invented by Mr. Charles Moore to increase programmer productivity without
sacrificing machine efficiency. Forth is a layered environment containing the elements
of a computer language as well as those of an operating system and a machine monitor.
This extensible, layered environment provides for highly interactive program
development and testing.

In the interests of transportability of application software written in Forth,
standardization efforts began in the mid-1970s by an international group of users and
implementors who adopted the name “Forth Standards Team”. This effort resulted in
the Forth-77 Standard. As the language continued to evolve, an interim Forth-78
Standard was published by the Forth Standards Team. Following Forth Standards
Team meetings in 1979, the Forth-79 Standard was published in 1980. Major changes
were made by the Forth Standards Team in the Forth-83 Standard, which was
published in 1983.

The first meeting of the Technical Committee on Forth Programming Systems was
convened by the Organizing Committee of the X3J14 Forth Technical Committee on
August 3, 1987, and has met subsequently on November 11-12, 1987, February 10-12,
1988, May 25-28, 1988, August 10-13, 1988, October 26-29, 1988, January 25-28,
1989, May 3-6, 1989, July 26-29, 1989, October 25-28, 1989, January 24-27, 1990,
May 22-26, 1990, August 21-25, 1990, November 6-10,1990, January 29-February 2,
1991, May 3-4, 1991, June 16-19, 1991, July 30-August 3, 1991, March 17-21, 1992,
October 13-17, 1992, January 26-30, 1993, June 28-30, 1993, and June 21, 1994.

This project has operated under joint sponsorship of IEEE as IEEE Project P1141. The
TC gratefully acknowledges the support of IEEE in this effort and the participation of
the IEEE members who contributed to our work as sponsored members and observers.

Requests for interpretation, suggestions for improvement or addenda, or defect reports
are welcome. They should be sent to the X3 Secretariat, Computer and Business
Equipment Manufacturers Association, 1250 Eye Street, NW, Suite 200, Washington,
DC 20005.

Vii

ANSI X3.215-1994

X3 Membership

This standard was processed and approved for submittal to ANSI by the Accredited
Standards Committee on Information Processing Systems, X3. Committee approval of
this standard does not necessarily imply that all committee members voted for its
approval. At the time it approved this standard, the X3 Committee had the following
members:

James D. Converse, Chair
Donald C. Loughry, Vice-Chair
Joanne Flanagan, Secretary

ProducCer GrOUPeeeeiiiiieeiiiie et Name of Representative
AMP INCOMPOrated........cvvveiiiiieiiiiie et Edward Kelly
Charles Brill (Alt.)
ATET/NCR COrporationccoccueveiiieeeeiiieee e sseee e Thomas W. Kern
Thomas F. Frost (Alt.)
Apple CoMPULER, INC.evviiiiieiiiiie e Karen Higginbottom
CompPag COMPULETS......uuuvereriiereiereiereiererererererererereerrererarr. James Barnes
Digital Equipment Corporationcccccvvveeeinieeeeniineesnnne. Delbert Shoemaker
Kevin Lewis
Hitachi America Ltd.........ccoovvieiiiiieeec e John Neumann
Kei Yamashita (Alt.)
Hewlett Packard.........c.occooviiieiiiiieeeecc e Donald C. Loughry
Bull HN Information Systems INC.cccovviieeeiiiieeeiiieeeeeee. William George
IBM COrPOration.......ccoccuviiiriieeeiiiiee et Joel Urman
Mary Anne Lawler (Alt.)
UNISYS COIPOIAtIONcceiuviiieiiiiieiiiriee e st John Hill
Stephen P. Oksala (Alt.)
Sony Corporation of America...........cccceevueeee. Michael Deese

Storage Technology Corporation Joseph S. Zajaczkowski

Samuel D. Cheatham (Alt.)

SuN MiICroSYStEMS, INC...covvieeiiiiiieiiiiee e Scott Jameson
- Gary S. Robinson (Alt.)
XEroX COrPOrationccouiuurieeieeeieiiiieiee e e e eieeeee e Dwight McBain
Roy Pierce (Alt.)
BM COMPANY ..ttt Edie T. Morioka

Paul D. Jahnke (Alt.

Consumers Group

BOEING COMPANYvviiiiiieeiiiiiiiee e e e e e e e e e e Catherine Howells

Andrea Vanosdoll (Alt.)
Eastman Kodak Companycccccooveuvviieeeeesiiiinieeeee e eeinnns James Converse

Michael Nier (Alt.)
General Services Administration..........c.ccceecvvveieeeeesviciineenn. Douglas Arai

Larry L. Jackson (Alt.)
Guide International INC.........ccoovuiiiiiiieieiiee e Frank Kirshenbaum
) Harold Kuneke (Alt.)

Hughes Aircraft Companyc.ccccoevuivieiieeiiiiiiiier e Harold Zebrack

National Communications Systems Dennis Bodson
Northern TeleCom INC.cocvvviiiie e Mel Woinsky
) Subhash Patel (Alt.)
Recognition Tech Users Association..............ccccveveeeeeeiinnns Herbert P. Schantz

G. Edwin Hale (Alt.)
Share INC. ..o Gary Ainsworth

David Thewis (Alt.)
U. S. Department of Defense........ccccccceeviiiiiiieec e William Rinehuls

C. J. Pasquariello (Alt.)
U. S. Department of ENergy.......cccccveeeeeiiiiiieieee e ccciiiieeee e Alton Cox

Lawrence A. Wasson (Alt.)
Wintergreen Information ServiCes.........cccccceeeviiiiiienieeeeeciinns John Wheeler

General Interest Group

American Nuclear SOCIEtY.........cccvieviieeeiiiee e Geraldine C. Main
Sally Hartzell (Alt.)

Assn. of the Institute for Certification of Computer Professionals

.. Kenneth Zemrowski

Nat'l Institute of Standards and Technology............c.cc.ccuv..... Robert E. Rountree
Micharl Hogan (Alt.)
Neville & ASSOCIALESc.eiivieriiiiiierree e Carlton Neville

viii

ANSI X3.215-1994

X3J14 At the time it approved this draft of the proposed American National Standard, the
Membership Technical Committee X3J14 on the Forth Programming Language had the following
members:

Elizabeth Rather, Chair

Mitch Bradley, Vice-Chair

Don Colburn, Secretary

John Rible, Technical Editor

Len Zettel, Vocabulary Representative
Greg Bailey, Technical Subcommittee Chair

Organization Represented Name of Representative
ATHENA Programming, INC.cccovveviieiiiiiiiiiice e Greg Bailey

Howe Fong (Alt.)
Bradley FOrthWarecccvvviiieiiiiiiieee e Mitch Bradley

Don Colburn
Leonard F. Zettel, Jr.

Creative Solutions, Inc. ..
Ford Motor Company

FORTH, INC. et e Elizabeth Rather
Dennis Ruffer (Alt.)
Institute for Applied Forth Research ..o Lawrence Forsley
Horace Simmons (Alt.)
Johns Hopkins University, Applied Physics Lab. John Hayes
Mephistopheles Systems........c.cccoecvvvvieeeeiiiciiiieeeeee, Dave Harralson

James Rash
John K. Stevenson

NASA/Goddard Space Flight Center
Nomadic Softwareccccoveververneenn

UNISYN, INC.tiiiiiiiieee e Gary Betts
Stephen Egbert (Alt.)
Up and RUNNINGcoeeiiiiiee e Martin Tracy
Vesta Technology Jack Woehr
Individual Members Loring Craymer
John Rible

J. E. (Jet) Thomas

X3 Liasons Clyde R. Camp
Kathleen McMillan

The following organizations and individuals have also participated in this project as
Technical Committee members, alternates, or observers. The Technical Committee
recognizes and respects their contributions:

Organizations

British Columbia Inst. of Tech. MCI Telecommunications Corp.
Computer Cowboys Micromotion
Computer Sciences Corp. MicroProcessor Engineering Ltd.
Computer Strategies, Inc. National Institute of Standards & Technology
Digalog Corp. NCR Medical Systems Group
Embedded Sys. Programming Mag. Performance Packages, Inc.
Forth Interest Group (FIG) Purdue University
H.B. Pascal & Co., Inc. Robert Berkey Services
Harris Semiconductor Shaw Laboratories
IBM Corporation Social Security Administration
IEEE Software Engineering
Kelly Enterprises Texas Instruments
Laboratory Microsystems, Inc. The Dickens Company
Maxtor Corp.
Individuals
David J. Angel Ray Duncan Charles Moore Dean Sanderson
Wil Baden Douglas Fishman Mike Nemeth George Shaw
Robert Berkey Tom Hand Harry Pascal Gerald Shifrin
Ron Braithwaite Gregory lig Stephen Pelc Robert Smith
Jack Brown Charles Keane Dean Perrine Tyler Sperry

*Non-Response ™ Abstain

ANSI X3.215-1994

Chris Colburn Guy M. Kelly David C. Petty Tom Zimmer
Ted Dickens Andrew Kobziar Bill Ragsdale
John Dorband Martin Lascelles James Ryland

ANSI X3.215-1994

Xi

AMERICAN NATIONAL STANDARD ANSI X3.215-1994

American National Standard
for Information Systems —

Programming Language —
Forth

1. Introduction

1.1 Purpose

The purpose of this Standard is to promote the portability of Forth programs for use on a wide variety of
computing systems, to facilitate the communication of programs, programming techniques, and ideas
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.

1.2 Scope

This Standard specifies an interface between a Forth System and a Forth Program by defining the words
provided by a Standard System.

1.2.1 Inclusions
This Standard specifies:

— the forms that a program written in the Forth language may take;
— the rules for interpreting the meaning of a program and its data.

1.2.2 Exclusions
This Standard does not specify:

— the mechanism by which programs are transformed for use on computing systems;
— the operations required for setup and control of the use of programs on computing systems;
— the method of transcription of programs or their input or output data to or from a storage medium;

— the program and Forth system behavior when the rules of this Standard fail to establish an
interpretation;

— the size or complexity of a program and its data that will exceed the capacity of any specific computing
system or the capability of a particular Forth system;

— the physical properties of input/output records, files, and units;
— the physical properties and implementation of storage.

ANSI X3.215-1994

1.3 Document organization

13.1

1311

1.3.1.2

1.3.2

Word sets

This Standard groups Forth words and capabilities into word sets under a name indicating some shared
aspect, typically their common functional area. Each word set may have an extension, containing words
that offer additional functionality. These words are not required in an implementation of the word set.

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a
Standard System. The other word sets, defined in sections 7 through 17, are optional, making it possible to
provide Standard Systems with tailored levels of functionality.

Text sections

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces
terms and notation used throughout the Standard. There are no requirements in these sections.

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems
and Programs, while section 5 specifies their labeling.

Glossary sections

Section 6 of each word set specifies the required behavior of the definitions in the word set and the
extensions word set.
Annexes

The annexes do not contain any required material.

Annex A provides some of the rationale behind the committee’s decisions in creating this Standard, as well
as implementation examples. It has the same section numbering as the body of the Standard to make it
easy to relate each requirements section to its rationale section.

Annex B is a short bibliography on Forth.
Annex C provides an introduction to Forth.

Annex D discusses the compatibility of ANS Forth with earlier Forths, emphasizing the differences from
Forth 83.

Annex E presents some techniques for writing portable programs in ANS Forth.

Annex F includes the words from all word sets in a single list, and serves as an index of ANS Forth words.

1.4 Future directions

14.1

1.4.2

New technology

This Standard adopts certain words and practices that are increasingly found in common practice. New
words have also been adopted to ease creation of portable programs.

Obsolescent features

This Standard adopts certain words and practices that cause some previously used words to become
obsolescent. Although retained here because of their widespread use, their use in new implementations or
new programs is discouraged, because they may be withdrawn from future revisions of the Standard.

This Standard designates the following words as obsolescent:

6.2.0060 #TIB 15.6.2.1580 FORGET 6.2.2240 SPAN
6.2.0970 CONVERT 6.2.2040 QUERY 6.2.2290 TIB
6.2.1390 EXPECT

ANSI X3.215-1994

2. Terms, notation, and references

The phrase “See:” is used throughout this Standard to direct the reader to other sections of the Standard that
have a direct bearing on the current section.

In this Standard, “shall” states a requirement on a system or program; conversely, “shall not” is a
prohibition; “need not” means “is not required to”; “should” describes a recommendation of the Standard:;
and “may”, depending on context, means “is allowed to” or “might happen”.

Throughout the Standard, typefaces are used in the following manner:

— This proportional serif typeface is used for text, with italic used for symbols and the first appearance of
new terms;

— A bold proportional sans-serif typeface is used for headings;
— A bold monospaced serif typeface is used for Forth-language text.

2.1 Definitions of terms

Terms defined in this section are used generally throughout this Standard. Additional terms specific to
individual word sets are defined in those word sets. Other terms are defined at their first appearance,
indicated by italic type. Terms not defined in this Standard are to be construed according to the Dictionary
for Information Systems, ANSI X3.172-1990.

address unit: Depending on context, either 1) the units into which a Forth address space is divided for the
purposes of locating data objects such as characters and variables; 2) the physical memory storage elements
corresponding to those units; 3) the contents of such a memory storage element; or 4) the units in which the
length of a region of memory is expressed.

aligned address: The address of a memory location at which a character, cell, cell pair, or double-cell
integer can be accessed.

ambiguous condition: A circumstance for which this Standard does not prescribe a specific behavior for
Forth systems and programs.

Ambiguous conditions include such things as the absence of a needed delimiter while parsing, attempted
access to a nonexistent file, or attempted use of a nonexistent word. An ambiguous condition also exists
when a Standard word is passed values that are improper or out of range.

cell: The primary unit of information in the architecture of a Forth system.
cell pair: Two cells that are treated as a single unit.

character: Depending on context, either 1) a storage unit capable of holding a character; or 2) a member
of a character set.

character-aligned address: The address of a memory location at which a character can be accessed.

character string: Data space that is associated with a sequence of consecutive character-aligned
addresses. Character strings usually contain text. Unless otherwise indicated, the term “string” means
“character string”.

code space: The logical area of the dictionary in which word semantics are implemented.
compile: To transform source code into dictionary definitions.

compilation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in compilation state.

counted string: A data structure consisting of one character containing a length followed by zero or more
contiguous data characters. Normally, counted strings contain text.

ANSI X3.215-1994

cross compiler: A system that compiles a program for later execution in an environment that may be
physically and logically different from the compiling environment. In a cross compiler, the term “host”
applies to the compiling environment, and the term “target” applies to the run-time environment.

current definition: The definition whose compilation has been started but not yet ended.
data field: The data space associated with a word defined via CREATE.
data space: The logical area of the dictionary that can be accessed.

data-space pointer: The address of the next available data space location, i.e., the value returned by
HERE.

data stack: A stack that may be used for passing parameters between definitions. When there is no
possibility of confusion, the data stack is referred to as “the stack”. Contrast with return stack.

data type: Tn identifier for the set of values that a data object may have.

defining word: A Forth word that creates a new definition when executed.

definition: A Forth execution procedure compiled into the dictionary.

dictionary: An extensible structure that contains definitions and associated data space.
display: To send one or more characters to the user output device.

environmental dependencies: A program’s implicit assumptions about a Forth system’s implementation
options or underlying hardware. For example, a program that assumes a cell size greater than 16 bits is
said to have an environmental dependency.

execution semantics: The behavior of a Forth definition when it is executed.

execution token: A value that identifies the execution semantics of a definition.

find: To search the dictionary for a definition name matching a given string.

immediate word: A Forth word whose compilation semantics are to perform its execution semantics.

implementation defined: Denotes system behaviors or features that must be provided and documented by
a system but whose further details are not prescribed by this Standard.

implementation dependent: Denotes system behaviors or features that must be provided by a system but
whose further details are not prescribed by this Standard.

input buffer: A region of memory containing the sequence of characters from the input source that is
currently accessible to a program.

input source: The device, file, block, or other entity that supplies characters to refill the input buffer.

input source specification: A set of information describing a particular state of the input source, input
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the
nesting of parsing operations on the same or different input sources.

interpretation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in interpretation state.

keyboard event: A value received by the system denoting a user action at the user input device. The term
“keyboard” in this document does not exclude other types of user input devices.

line: A sequence of characters followed by an actual or implied line terminator.
name space: The logical area of the dictionary in which definition names are stored.

number: In this Standard, “number” used without other qualification means “integer”. Similarly, “double
number” means “double-cell integer”.

ANSI X3.215-1994

parse: To select and exclude a character string from the parse area using a specified set of delimiting
characters, called delimiters.

parse area: The portion of the input buffer that has not yet been parsed, and is thus available to the system
for subsequent processing by the text interpreter and other parsing operations.

pictured-numeric output: A number display format in which the number is converted using Forth words
that resemble a symbolic “picture” of the desired output.

program: A complete specification of execution to achieve a specific function (application task)
expressed in Forth source code form.

receive: To obtain characters from the user input device.

return stack: A stack that may be used for program execution nesting, do-loop execution, temporary
storage, and other purposes.

standard word: A named Forth procedure, formally specified in this Standard.

user input device: The input device currently selected as the source of received data, typically a keyboard.
user output device: The output device currently selected as the destination of display data.

variable: A named region of data space located and accessed by its memory address.

word: Depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-
space characters, which could be the name of a Forth definition.

word list: A list of associated Forth definition names that may be examined during a dictionary search.

word set: A set of Forth definitions grouped together in this Standard under a name indicating some
shared aspect, typically their common functional area.

2.2 Notation

221

222

2.2.3

Numeric notation

Unless otherwise stated, all references to numbers apply to signed single-cell integers. The inclusive range
of values is shown as {from...to}. The allowable range for the contents of an address is shown in double
braces, particularly for the contents of variables, e.g., BASE {{2...36}}.

Stack notation

Stack parameters input to and output from a definition are described using the notation:

(stack-id before -- after)

where stack-id specifies which stack is being described, before represents the stack-parameter data types
before execution of the definition and after represents them after execution. The symbols used in before
and after are shown in table 3.1.

The control-flow-stack stack-id is “C:”, the data-stack stack-id is “S:”, and the return-stack stack-id is “R:”.
When there is no confusion, the data-stack stack-id may be omitted.

When there are alternate after representations, they are described by “after, | after,”. The top of the stack
is to the right. Only those stack items required for or provided by execution of the definition are shown.
Parsed-text notation

If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation
from table 2.1, shown surrounded by double-quotes and placed between the before parameters and the “--”
separator in the first stack described, e.g.,

(S: before “parsed-text-abbreviation” -- after).

ANSI X3.215-1994

Table 2.1 — Parsed text abbreviations
Abbreviation Description

<char> the delimiting character marking the end of the string being
parsed

<chars> zero or more consecutive occurrences of the character char

<space> a delimiting space character

<spaces> zero or more consecutive occurrences of the character space

<quote> a delimiting double quote

<paren> a delimiting right parenthesis

<eol> an implied delimiter marking the end of a line

cce a parsed sequence of arbitrary characters, excluding the
delimiter character

name a token delimited by space, equivalent to ccc<space> or
cce<eol>

2.2.4 Glossary notation

The glossary entries for each word set are listed in the standard ASCII collating sequence. Each glossary
entry specifies an ANS Forth word and consists of two parts: an index line and the semantic description of
the definition.

2.2.4.1 Glossary index line

The index line is a single-line entry containing, from left to right:

— Section number, the last four digits of which assign a unique sequential number to all words included
in this Standard,;

— DEFINITION-NAME in upper-case, mono-spaced, bold-face letters;
— Natural-language pronunciation in quotes if it differs from English;
— Word-set designator from table 2.2. The designation for extensions word sets includes “EXT".

Table 2.2 — Word set designators

Word set Designator
Core word set CORE
Block word set BLOCK
Double-Number word set DOUBLE
Exception word set EXCEPTION
Facility word set FACILITY
File-Access word set FILE
Floating-Point word set FLOATING
Locals word set LOCALS
Memory-Allocation word set MEMORY
Programming-Tools word set TOOLS
Search-Order word set SEARCH
String-Handling word set STRING

2.2.4.2 Glossary semantic description

The first paragraph of the semantic description contains a stack notation for each stack affected by
execution of the word. The remaining paragraphs contain a text description of the semantics. See 3.4.3
Semantics.

ANSI X3.215-1994

2.3 References

The following national and international standards are referenced in this Standard:

ANSI X3.172-1990 Dictionary for Information Systems, (2.1 Definition of terms);

ANSI X3.4-1974 American Standard Code for Information Interchange (ASCII), (3.1.2.1 Graphic
characters);

ISO 646-1983 ISO 7-bit coded characterset for information interchange, International Reference
Version (IRV) 3.1.2.1 Graphic characters)?;

ANSI/IEEE 754-1985 Floating-point Standard, (12.2.1 Definition of terms).

1Available from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.

ANSI X3.215-1994

3. Usage requirements

A system shall provide all of the words defined in 6.1 Core Words. It may also provide any words defined
in the optional word sets and extensions word sets. No standard word provided by a system shall alter the
system state in a way that changes the effect of execution of any other standard word except as provided in
this Standard. A system may contain non-standard extensions, provided that they are consistent with the
requirements of this Standard.

The implementation of a system may use words and techniques outside the scope of this Standard.

A system need not provide all words in executable form. The implementation may provide definitions,
including definitions of words in the Core word set, in source form only. If so, the mechanism for adding
the definitions to the dictionary is implementation defined.

A program that requires a system to provide words or techniques not defined in this Standard has an
environmental dependency.

3.1 Datatypes

3.1.1

A data type identifies the set of permissible values for a data object. It is not a property of a particular
storage location or position on a stack. Moving a data object shall not affect its type.

No data-type checking is required of a system. An ambiguous condition exists if an incorrectly typed data
object is encountered.

Table 3.1 summarizes the data types used throughout this Standard. Multiple instances of the same type in
the description of a definition are suffixed with a sequence digit subscript to distinguish them.

Data-type relationships

Some of the data types are subtypes of other data types. A data type i is a subtype of type j if and only if
the members of i are a subset of the members of j. The following list represents the subtype relationships
using the phrase “i => j” to denote “i is a subtype of j”. The subtype relationship is transitive; if i => jand j
=>k theni=>k:

+n=>UuU=>X;
+n=>n=>X;
char => +n;
a-addr => c-addr => addr => u;
flag => x;
Xt =>x;
+d =>d=>xd;
+d =>ud => xd.
Any Forth definition that accepts an argument of type i shall also accept an argument that is a subtype of i.

3.1.2 Character types

3.121

Characters shall be at least one address unit wide, contain at least eight bits, and have a size less than or
equal to cell size.

The characters provided by a system shall include the graphic characters {32..126}, which represent
graphic forms as shown in table 3.2.

Graphic characters

A graphic character is one that is normally displayed (e.g., A, #, &, 6). These values and graphics, shown
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and 1SO 646-1983, International Reference
Version (IRV). The graphic forms of characters outside the hex range {20..7E} are implementation-
defined. Programs that use the graphic hex 24 (the currency sign) have an environmental dependency.

ANSI X3.215-1994

The graphic representation of characters is not restricted to particular type fonts or styles. The graphics

here are examples.

3.1.2.2 Control characters

All non-graphic characters included in the implementation-defined character set are defined in this
Standard as control characters. In particular, the characters {0..31}, which could be included in the

implementation-defined character set, are control characters.

Programs that require the ability to send or receive control characters have an environmental dependency.

Table 3.1 — Data types

Symbol Data type Size on stack
flag flag 1 cell
true true flag 1 cell
false false flag 1 cell
char character 1 cell
n signed number 1 cell
+n non-negative number 1 cell
u unsigned number 1 cell
nul number 1 cell
X unspecified cell 1 cell
xt execution token 1 cell
addr address 1 cell
a-addr aligned address 1 cell
c-addr character-aligned address 1 cell
d double-cell signed number 2 cells
+d double-cell non-negative number 2 cells
ud double-cell unsigned number 2 cells
djud 2 double-cell number 2 cells
xd unspecified cell pair 2 cells
colon-sys definition compilation implementation dependent
do-sys do-loop structures implementation dependent
case-sys CASE structures implementation dependent
of-sys OF structures implementation dependent
orig control-flow origins implementation dependent
dest control-flow destinations implementation dependent
loop-sys loop-control parameters implementation dependent
nest-sys definition calls implementation dependent
i*x, j*x, k*x 3 any data type 0 or more cells

1 May be either a signed number or an unsigned number depending on

context.

2 May be either a double-cell signed number or a double-cell unsigned
number depending on context.

3 May be an undetermined number of stack entries of unspecified type. For
examples of use, see 6.1.1370 EXECUTE, 6.1.2050 QUIT.

ANSI X3.215-1994

Table 3.2 — Standard graphic characters

Hex IRV Hex IRV Hex IRV Hex IRV Hex IRV Hex IRV
ASCII ASCII ASCII ASCII ASCII ASCII

20 30 0 0|40 @ @ |50 P P|60 -~ |70 p p
21 ! 1|31 1 1|41 A A|51 Q Q|61 a al|71 g g
22 " w32 2 242 B B|52 R R|62 b b|72 r =
23 # # (33 3 3|43 ¢ C|53 8§ S|63 ¢ c |73 s s
34 4 4|44 D DJ|54 T Tl|lesa d d|74 t t
25 % % |35 5 5|45 E E |55 U U|65 e e |75 u u
26 & & |36 6 6|46 F F |56 Vv v]|es £ f |76 v v
27 ' ' [37 7 71|47 &G G|57 W wW|67 g gl|77 w w
28 ((]38 8 8|48 H H |58 X X |68 h h|78 x x
29)) |39 9 9|49 1 1|59 Y Y |69 i i|79 vy vy
2A % * |3A : :|4A J J|52 Z Zl|ena 4 g |7An =z =z
2B+ + |3B ; ; |4B K K |S5B [[|eB k k|7B { {
2, ,|3¢ < < |4Cc L L |5Cc \N \N|ec 1 1]|7C | |
2D - - |3D = =|4D ™M M|(5D]] |6D m m|7D } }
2E . . |3E > >|4E N N|5E * “|6E n n|7E ~ ~
2F / /|3F ? 2?2 |4F O O|S5F _ _|6F o o

3.1.3 Single-cell types

3.13.1

3.1.3.2

3.1.3.3

3.1.34

The implementation-defined fixed size of a cell is specified in address units and the corresponding number
of bits. See E.2 Hardware peculiarities.

Cells shall be at least one address unit wide and contain at least sixteen bits. The size of a cell shall be an
integral multiple of the size of a character. Data-stack elements, return-stack elements, addresses,
execution tokens, flags, and integers are one cell wide.

Flags
Flags may have one of two logical states, true or false. Programs that use flags as arithmetic operands have
an environmental dependency.

A true flag returned by a standard word shall be a single-cell value with all bits set. A false flag returned
by a standard word shall be a single-cell value with all bits clear.

Integers
The implementation-defined range of signed integers shall include {-32767..+32767}.

The implementation-defined range of non-negative integers shall include {0..32767}.

The implementation-defined range of unsigned integers shall include {0..65535}.

Addresses

An address identifies a location in data space with a size of one address unit, which a program may fetch
from or store into except for the restrictions established in this Standard. The size of an address unit is
specified in bits. Each distinct address value identifies exactly one such storage element. See 3.3.3 Data
space.

The set of character-aligned addresses, addresses at which a character can be accessed, is an
implementation-defined subset of all addresses. Adding the size of a character to a character-aligned
address shall produce another character-aligned address.

The set of aligned addresses is an implementation-defined subset of character-aligned addresses. Adding
the size of a cell to an aligned address shall produce another aligned address.

Counted strings
A counted string in memory is identified by the address (c-addr) of its length character.

10

ANSI X3.215-1994

3.1.35

3.1.4

3.141

3.14.2

3.1.5

3.151

3.15.2

The length character of a counted string shall contain a binary representation of the number of data
characters, between zero and the implementation-defined maximum length for a counted string. The
maximum length of a counted string shall be at least 255.

Execution tokens
Different definitions may have the same execution token if the definitions are equivalent.

Cell-pair types

A cell pair in memory consists of a sequence of two contiguous cells. The cell at the lower address is the
first cell, and its address is used to identify the cell pair. Unless otherwise specified, a cell pair on a stack
consists of the first cell immediately above the second cell.

Double-cell integers
On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell
containing the least significant part.

The implementation-defined range of double-cell signed integers shall include
{-2147483647..+2147483647}.

The implementation-defined range of double-cell non-negative integers shall include {0..2147483647}.

The implementation-defined range of double-cell unsigned integers shall include {0..4294967295}.
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-cell
unsigned integer with the same value. See 3.2.1.1 Internal number representation.

Character strings
A string is specified by a cell pair (c-addr u) representing its starting address and length in characters.

System types
The system data types specify permitted word combinations during compilation and execution.

System-compilation types

These data types denote zero or more items on the control-flow stack (see 3.2.3.2). The possible presence
of such items on the data stack means that any items already there shall be unavailable to a program until
the control-flow-stack items are consumed.

The implementation-dependent data generated upon beginning to compile a definition and consumed at its
close is represented by the symbol colon-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a do-loop structure such as
DO ... LOOP and consumed at its close is represented by the symbol do-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a CASE ... ENDCASE
structure and consumed at its close is represented by the symbol case-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile an OF ... ENDOF structure
and consumed at its close is represented by the symbol of-sys throughout this Standard.

The implementation-dependent data generated and consumed by executing the other standard control-flow
words is represented by the symbols orig and dest throughout this Standard.

System-execution types

These data types denote zero or more items on the return stack. Their possible presence means that any
items already on the return stack shall be unavailable to a program until the system-execution items are
consumed.

The implementation-dependent data generated upon beginning to execute a definition and consumed upon
exiting it is represented by the symbol nest-sys throughout this Standard.

11

ANSI X3.215-1994

The implementation-dependent loop-control parameters used to control the execution of do-loops are
represented by the symbol loop-sys throughout this Standard. Loop-control parameters shall be available
inside the do-loop for words that use or change these parameters, words such as I, J, LEAVE and
UNLOOP.

3.2 The implementation environment

3.2.1 Numbers

3.2.1.1

3.2.1.2

3.2.1.3

Internal number representation

This Standard allows one’s complement, two’s complement, or sign-magnitude number representations and
arithmetic. Arithmetic zero is represented as the value of a single cell with all bits clear.

The representation of a number as a compiled literal or in memory is implementation dependent.

Digit conversion
Numbers shall be represented externally by using characters from the standard character set.
Conversion between the internal and external forms of a digit shall behave as follows:

The value in BASE is the radix for number conversion. A digit has a value ranging from zero to one less
than the contents of BASE. The digit with the value zero corresponds to the character “0”. This
representation of digits proceeds through the character set to the decimal value nine corresponding to the
character “9”. For digits beginning with the decimal value ten the graphic characters beginning with the
character “A” are used. This correspondence continues up to and including the digit with the decimal value
thirty-five which is represented by the character “Z”. The conversion of digits outside this range is
implementation defined.

Free-field number display

Free-field number display uses the characters described in digit conversion, without leading zeros, in a field
the exact size of the converted string plus a trailing space. 1f a number is zero, the least significant digit is
not considered a leading zero. If the number is negative, a leading minus sign is displayed.

Number display may use the pictured numeric output string buffer to hold partially converted strings (see
3.3.3.6 Other transient regions).

3.2.2 Arithmetic

3.2.2.1

Integer division

Division produces a quotient g and a remainder r by dividing operand a by operand b. Division operations
return g, r, or both. The identity b*q + r = a shall hold for all a and b.

When unsigned integers are divided and the remainder is not zero, q is the largest integer less than the true
quotient.

When signed integers are divided, the remainder is not zero, and a and b have the same sign, q is the largest
integer less than the true quotient. If only one operand is negative, whether q is rounded toward negative
infinity (floored division) or rounded towards zero (symmetric division) is implementation defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and the
quotient is rounded to its arithmetic floor. Symmetric division is integer division in which the remainder
carries the sign of the dividend or is zero and the quotient is the mathematical quotient “rounded towards
zero” or “truncated”. Examples of each are shown in tables 3.3 and 3.4.

12

ANSI X3.215-1994

In cases where the operands differ in sign and the rounding direction matters, a program shall either include
code generating the desired form of division, not relying on the implementation-defined default result, or
have an environmental dependency on the desired rounding direction.

Table 3.3 — Floored Division Example Table 3.4 — Symmetric Division Example
Dividend Divisor Remainder Quotient Dividend Divisor Remainder Quotient
10 7 3 1 10 7 3 1
-10 7 4 -2 -10 7 -3 -1
10 -7 -4 -2 10 -7 3 -1
-10 -7 -3 1 -10 -7 -3 1
3.2.2.2 Other integer operations

3.2.3

3.23.1

3.2.3.2

3.2.3.3

3.24

In all integer arithmetic operations, both overflow and underflow shall be ignored. The value returned
when either overflow or underflow occurs is implementation defined.

Stacks

Data stack

Obijects on the data stack shall be one cell wide.

Control-flow stack

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of control-
flow words and the restrictions imposed on data-stack usage during the compilation of control structures.

The elements of the control-flow stack are system-compilation data types.

The control-flow stack may, but need not, physically exist in an implementation. If it does exist, it may be,
but need not be, implemented using the data stack. The format of the control-flow stack is implementation
defined. Since the control-flow stack may be implemented using the data stack, items placed on the data
stack are unavailable to a program after items are placed on the control-flow stack and remain unavailable
until the control-flow stack items are removed.

Return stack

Items on the return stack shall consist of one or more cells. A system may use the return stack in an
implementation-dependent manner during the compilation of definitions, during the execution of do-loops,
and for storing run-time nesting information.

A program may use the return stack for temporary storage during the execution of a definition subject to
the following restrictions:

— A program shall not access values on the return stack (using R@, R>, 2R@ or 2R>) that it did not place
there using >R or 2>R;

— A program shall not access from within a do-loop values placed on the return stack before the loop was
entered;

— All values placed on the return stack within a do-loop shall be removed before I, J, LOOP, +LOOP,
UNLOOP, or LEAVE is executed;

— All values placed on the return stack within a definition shall be removed before the definition is
terminated or before EXIT is executed.

Operator terminal

See 1.2.2 Exclusions.

13

ANSI X3.215-1994

3.2.4.1 User input device
The method of selecting the user input device is implementation defined.

The method of indicating the end of an input line of text is implementation defined.

3.2.4.2 User output device

The method of selecting the user output device is implementation defined.

3.2.5 Mass storage
A system need not provide any standard words for accessing mass storage. If a system provides any
standard word for accessing mass storage, it shall also implement the Block word set.

3.2.6 Environmental queries

The name spaces for ENVIRONMENT ? and definitions are disjoint. Names of definitions that are the same
as ENVIRONMENT? strings shall not impair the operation of ENVIRONMENT?. Table 3.5 contains the
valid input strings and corresponding returned value for inquiring about the programming environment
with ENVIRONMENT?.

Table 3.5 — Environmental Query Strings

String Value data type Constant? Meaning

/COUNTED-STRING n yes maximum size of a counted string, in
characters

/HOLD n yes size of the pictured numeric output string
buffer, in characters

/PAD n yes size of the scratch area pointed to by PAD,

in characters
ADDRESS-UNIT-BITS n yes size of one address unit, in bits

CORE flag no true if complete core word set present
(i.e., not a subset as defined in 5.1.1)
CORE-EXT flag no true if core extensions word set present
FLOORED flag yes true if floored division is the default
MAX-CHAR u yes maximum value of any character in the
implementation-defined character set
MAX-D d yes largest usable signed double number
MAX-N n yes largest usable signed integer
MAX-U u yes largest usable unsigned integer
MAX-UD ud yes largest usable unsigned double number
RETURN-STACK-CELLS n yes maximum size of the return stack, in cells
STACK-CELLS n yes maximum size of the data stack, in cells

If an environmental query (using ENVIRONMENT ?) returns false (i.e., unknown) in response to a string,
subsequent queries using the same string may return true. If a query returns true (i.e., known) in response
to a string, subsequent queries with the same string shall also return true. If a query designated as constant
in the above table returns true and a value in response to a string, subsequent queries with the same string
shall return true and the same value.

3.3 The Forth dictionary

Forth words are organized into a structure called the dictionary. While the form of this structure is not
specified by the Standard, it can be described as consisting of three logical parts: a name space, a code
space, and a data space. The logical separation of these parts does not require their physical separation.

14

ANSI X3.215-1994

3.3.1

3.3.1.1

3.3.1.2

3.3.2

3.3.3

3.33.1

A program shall not fetch from or store into locations outside data space. An ambiguous condition exists if
a program addresses name space or code space.

Name space

The relationship between name space and data space is implementation dependent.

Word lists

The structure of a word list is implementation dependent. When duplicate names exist in a word list, the
latest-defined duplicate shall be the one found during a search for the name.

Definition names

Definition names shall contain {1..31} characters. A system may allow or prohibit the creation of
definition names containing non-standard characters.

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of a
system have an environmental dependency.

A program shall not create definition names containing non-graphic characters.

Code space

The relationship between code space and data space is implementation dependent.

Data space

Data space is the only logical area of the dictionary for which standard words are provided to allocate and
access regions of memory. These regions are: contiguous regions, variables, text-literal regions, input
buffers, and other transient regions, each of which is described in the following sections. A program may
read from or write into these regions unless otherwise specified.

Address alignment

Most addresses used in ANS Forth are aligned addresses (indicated by a-addr) or character-aligned
(indicated by c-addr). ALIGNED, CHAR+, and arithmetic operations can alter the alignment state of an
address on the stack. CHAR+ applied to an aligned address returns a character-aligned address that can
only be used to access characters. Applying CHAR+ to a character-aligned address produces the
succeeding character-aligned address. Adding or subtracting an arbitrary number to an address can
produce an unaligned address that shall not be used to fetch or store anything. The only way to find the
next aligned address is with ALIGNED. An ambiguous condition exists when @, !, , (comma), +!, 2@, or
21 is used with an address that is not aligned, or when ce, C1, or ¢, is used with an address that is not
character-aligned.

The definitions of 6.1.1000 CREATE and 6.1.2410 VARIABLE require that the definitions created by them
return aligned addresses.

After definitions are compiled or the word ALIGN is executed the data-space pointer is guaranteed to be
aligned.

15

ANSI X3.215-1994

3.3.3.2

3.3.3.3

3.3.34

3.3.35

Contiguous regions

A system guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-comma), and
ALIGN shall be contiguous with the last region allocated with one of the above words, unless the
restrictions in the following paragraphs apply. The data-space pointer HERE always identifies the
beginning of the next data-space region to be allocated. As successive allocations are made, the data-space
pointer increases. A program may perform address arithmetic within contiguously allocated regions. The
last region of data space allocated using the above operators may be released by allocating a corresponding
negatively-sized region using ALLOT, subject to the restrictions of the following paragraphs.

CREATE establishes the beginning of a contiguous region of data space, whose starting address is returned
by the CREATEd definition. This region is terminated by compiling the next definition.

Since an implementation is free to allocate data space for use by code, the above operators need not
produce contiguous regions of data space if definitions are added to or removed from the dictionary
between allocations. An ambiguous condition exists if deallocated memory contains definitions.

Variables

The region allocated for a variable may be non-contiguous with regions subsequently allocated with
, (comma) or ALLOT. For example, in:

VARIABLE X 1 CELLS ALLOT
the region X and the region ALLOTted could be non-contiguous.

Some system-provided variables, such as STATE, are restricted to read-only access.

Text-literal regions
The text-literal regions, specified by strings compiled with s» and ¢, may be read-only.

A program shall not store into the text-literal regions created by s™ and c* nor into any read-only system
variable or read-only transient regions. An ambiguous condition exists when a program attempts to store
into read-only regions.

Input buffers

The address, length, and content of the input buffer may be transient. A program shall not write into the
input buffer. In the absence of any optional word sets providing alternative input sources, the input buffer
is either the terminal-input buffer, used by QUIT to hold one line from the user input device, or a buffer
specified by EVALUATE. In all cases, SOURCE returns the beginning address and length in characters of
the current input buffer.

The minimum size of the terminal-input buffer shall be 80 characters.

The address and length returned by SOURCE, the string returned by PARSE, and directly computed input-
buffer addresses are valid only until the text interpreter does 1/0 to refill the input buffer or the input source
is changed.

A program may modify the size of the parse area by changing the contents of >IN within the limits
imposed by this Standard. For example, if the contents of >IN are saved before a parsing operation and
restored afterwards, the text that was parsed will be available again for subsequent parsing operations. The
extent of permissible repositioning using this method depends on the input source (see 7.3.3 Block buffer
regions and 11.3.4 Input source).

A program may directly examine the input buffer using its address and length as returned by SOURCE; the
beginning of the parse area within the input buffer is indexed by the number in >IN. The values are valid
for a limited time. An ambiguous condition exists if a program modifies the contents of the input buffer.

16

ANSI X3.215-1994

3.3.3.6 Other transient regions

The data space regions identified by PAD, WORD, and #> (the pictured numeric output string buffer) may
be transient. Their addresses and contents may become invalid after:

— adefinition is created via a defining word;
— definitions are compiled with : or : NONAME;
— data space is allocated using ALLOT, , (comma), C, (c-comma), or ALIGN.

The previous contents of the regions identified by WORD and #> may be invalid after each use of these
words. Further, the regions returned by WORD and #> may overlap in memory. Consequently, use of one
of these words can corrupt a region returned earlier by a different word. The other words that construct
pictured numeric output strings (<#, #, #S, and HOLD) may also modify the contents of these regions.
Words that display numbers may be implemented using pictured numeric output words. Consequently, .
(dot), .R, .S, ?,D.,D.R, U., and U.R could also corrupt the regions.

The size of the scratch area whose address is returned by PAD shall be at least 84 characters. The contents
of the region addressed by PAD are intended to be under the complete control of the user: no words
defined in this Standard place anything in the region, although changing data-space allocations as described
in 3.3.3.2 Contiguous regions may change the address returned by PAD. Non-standard words provided by
an implementation may use PAD, but such use shall be documented.

The size of the region identified by WORD shall be at least 33 characters.

The size of the pictured numeric output string buffer shall be at least (2*n) + 2 characters, where n is the
number of bits in a cell. Programs that consider it a fixed area with unchanging access parameters have an
environmental dependency.

3.4 The Forth text interpreter

Upon start-up, a system shall be able to interpret, as described by 6.1.2050 QUIT, Forth source code
received interactively from a user input device.

Such interactive systems usually furnish a “prompt” indicating that they have accepted a user request and
acted on it. The implementation-defined Forth prompt should contain the word “OK” in some combination
of upper or lower case.

Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall repeat the following steps until
either the parse area is empty or an ambiguous condition exists:

a) Skip leading spaces and parse a name (see 3.4.1);
b) Search the dictionary name space (see 3.4.2). If a definition name matching the string is found:
1) if interpreting, perform the interpretation semantics of the definition (see 3.4.3.2), and continue at
a);
2) if compiling, perform the compilation semantics of the definition (see 3.4.3.3), and continue at a).

c) If a definition name matching the string is not found, attempt to convert the string to a number
(see 3.4.1.3). If successful:

1) if interpreting, place the number on the data stack, and continue at a);

2) if compiling, compile code that when executed will place the number on the stack (see 6.1.1780
LITERAL), and continue at a);

d) If unsuccessful, an ambiguous condition exists (see 3.4.4).

17

ANSI X3.215-1994

3.4.1 Parsing

34.1.1

3.4.1.2

3.4.1.3

3.4.2

Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined
maximum length of a counted string.

If the parse area is empty, i.e., when the number in >IN is equal to the length of the input buffer, or
contains no characters other than delimiters, the selected string is empty. Otherwise, the selected string
begins with the next character in the parse area, which is the character indexed by the contents of >IN. An
ambiguous condition exists if the number in >IN is greater than the size of the input buffer.

If delimiter characters are present in the parse area after the beginning of the selected string, the string
continues up to and including the character just before the first such delimiter, and the number in >IN is
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter
from the parse area. Otherwise, the string continues up to and including the last character in the parse area,
and the number in >IN is changed to the length of the input buffer, thus emptying the parse area.

Parsing may change the contents of >IN, but shall not affect the contents of the input buffer. Specifically,
if the value in >IN is saved before starting the parse, resetting >IN to that value immediately after the
parse shall restore the parse area without loss of data.

Delimiters

If the delimiter is the space character, hex 20 (BL), control characters may be treated as delimiters. The set
of conditions, if any, under which a “space” delimiter matches control characters is implementation
defined.

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before parsing.

Syntax

Forth has a simple, operator-ordered syntax. The phrase A B C returns values as if A were executed first,
then B and finally c. Words that cause deviations from this linear flow of control are called control-flow
words. Combinations of control-flow words whose stack effects are compatible form control-flow
structures. Examples of typical use are given for each control-flow word in Annex A.

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones.

This Standard does not require a syntax or program-construct checker.

Text interpreter input number conversion

When converting input numbers, the text interpreter shall recognize both positive and negative numbers,
with a negative number represented by a single minus sign, the character “-”, preceding the digits. The
value in BASE is the radix for number conversion.

Finding definition names

A string matches a definition name if each character in the string matches the corresponding character in
the string used as the definition name when the definition was created. The case sensitivity (whether or not
the upper-case letters match the lower-case letters) is implementation defined. A system may be either case
sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive, ignoring
differences in case while searching.

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such as
accented international characters is implementation defined.

A system shall be capable of finding the definition names defined by this Standard when they are spelled
with upper-case letters.

18

ANSI X3.215-1994

3.4.3 Semantics

3.43.1

3.4.3.2

3.4.3.3

The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens or
other representations. They are largely specified by the stack notation in the glossary entries, which shows
what values shall be consumed and produced. The prose in each glossary entry further specifies the
definition’s behavior.

Each Forth definition may have several behaviors, described in the following sections. The terms
“initiation semantics” and “run-time semantics” refer to definition fragments, and have meaning only
within the individual glossary entries where they appear.

Execution semantics

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary
entry. When a definition has only one specified behavior, the label is omitted.

Execution may occur implicitly, when the definition into which it has been compiled is executed, or
explicitly, when its execution token is passed to EXECUTE. The execution semantics of a syntactically
correct definition under conditions other than those specified in this Standard are implementation
dependent.

Glossary entries for defining words include the execution semantics for the new definition in a “name
Execution:” section.
Interpretation semantics

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation
semantics of a Forth definition are its execution semantics.

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word set
and any definitions included from the optional word sets or word set extensions whose interpretation
semantics are defined by this Standard.

A system shall be capable of executing, in interpretation state, any new definitions created in accordance
with 3. Usage requirements.
Compilation semantics

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics of
a Forth definition shall be to append its execution semantics to the execution semantics of the current
definition.

3.4.4 Possible actions on an ambiguous condition

When an ambiguous condition exists, a system may take one or more of the following actions:

— ignore and continue;

— display a message;

— execute a particular word;

— setinterpretation state and begin text interpretation;
— take other implementation-defined actions;

— take implementation-dependent actions.

The response to a particular ambiguous condition need not be the same under all circumstances.

19

ANSI X3.215-1994

3.4.5 Compilation
A program shall not attempt to nest compilation of definitions.

During the compilation of the current definition, a program shall not execute any defining word,

: NONAME, or any definition that allocates dictionary data space. The compilation of the current definition
may be suspended using [(left-bracket) and resumed using 1 (right-bracket). While the compilation of the
current definition is suspended, a program shall not execute any defining word, : NONAME, or any
definition that allocates dictionary data space.

20

ANSI X3.215-1994

4. Documentation requirements

When it is impossible or infeasible for a system or program to define a particular behavior itself, it is

permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why this

is so.

4.1 System documentation

41.1

Implementation-defined options

The implementation-defined items in the following list represent characteristics and choices left to the
discretion of the implementor, provided that the requirements of this Standard are met. A system shall

document the values for, or behaviors of, each item.

— aligned address requirements (3.1.3.3 Addresses);

— behavior of 6.1.1320 EMIT for non-graphic characters;

— character editing of 6.1.0695 ACCEPT and 6.2.1390 EXPECT;

— character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY);

— character-aligned address requirements (3.1.3.3 Addresses);

— character-set-extensions matching characteristics (3.4.2 Finding definition names);
— conditions under which control characters match a space delimiter (3.4.1.1 Delimiters);
— format of the control-flow stack (3.2.3.2 Control-flow stack);

— conversion of digits larger than thirty-five (3.2.1.2 Digit conversion);

— display after input terminates in 6.1.0695 ACCEPT and 6.2.1390 EXPECT,

— exception abort sequence (as in 6.1.0680 ABORT");

— input line terminator (3.2.4.1 User input device);

— maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD);
— maximum size of a parsed string (3.4.1 Parsing);

— maximum size of a definition name, in characters (3.3.1.2 Definition names);

— maximum string length for 6.1.1345 ENVIRONMENT?, in characters;

— method of selecting 3.2.4.1 User input device;

— method of selecting 3.2.4.2 User output device;

— methods of dictionary compilation (3.3 The Forth dictionary);

— number of bits in one address unit (3.1.3.3 Addresses);

— number representation and arithmetic (3.2.1.1 Internal number representation);

— ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types);

— read-only data-space regions (3.3.3 Data space);

— size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions);

— size of one cell in address units (3.1.3 Single-cell types);

— size of one character in address units (3.1.2 Character types);

— size of the keyboard terminal input buffer (3.3.3.5 Input buffers);

— size of the pictured numeric output string buffer (3.3.3.6 Other transient regions);

— size of the scratch area whose address is returned by 6.2.2000 PAD (3.3.3.6 Other transient regions);

— system case-sensitivity characteristics (3.4.2 Finding definition names);
— system prompt (3.4 The Forth text interpreter, 6.1.2050 QUIT);

— type of division rounding (3.2.2.1 Integer division, 6.1.0100 */, 6.1.0110 * /MOD, 6.1.0230 /,
6.1.0240 /MOD, 6.1.1890 MOD);

— values of 6.1.2250 STATE when true;
— values returned after arithmetic overflow (3.2.2.2 Other integer operations);
— whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

21

ANSI X3.215-1994

4.1.2 Ambiguous conditions

A system shall document the system action taken upon each of the general or specific ambiguous

conditions identified in this Standard. See 3.4.4 Possible actions on an ambiguous condition.

The following general ambiguous conditions could occur because of a combination of factors:

— aname is neither a valid definition name nor a valid number during text interpretation (3.4 The Forth
text interpreter);

— adefinition name exceeded the maximum length allowed (3.3.1.2 Definition names);

— addressing a region not listed in 3.3.3 Data Space;

— argument type incompatible with specified input parameter, e.g., passing a flag to a word expecting an
n (3.1 Data types);

— attempting to obtain the execution token, (e.g., with 6.1.0070 ', 6.1.1550 FIND, etc.) of a definition
with undefined interpretation semantics;

— dividing by zero (6.1.0100 */, 6.1.0110 * /Mo0D, 6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD,
6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M* /);

— insufficient data-stack space or return-stack space (stack overflow);

— insufficient space for loop-control parameters;

— insufficient space in the dictionary;

— interpretating a word with