

American National Standard
for Information Systems —

Programming Languages —
Forth

Secretariat

Computer and Business Equipment Manufacturers Association

Approved March 24, 1994

American National Standards Institute, Inc.

ANSI X3.215-1994

Special Electronic Edition

Copyright (c) 1994 by American National Standards Institute. All rights reserved. Provided that this entire
notice of copyright and purpose is included on the first page of paper documentation or prominently in
online or machine-readable documentation, this document may be copied in its entirety without alteration
or as altered by (1) adding text that is clearly marked as an insertion; (2) shading or highlighting existing
text; and/or (3) deleting examples.

NOTE: This file is provided to facilitate preparation of documentation and textbooks for ANS Forth
systems. It is NOT intended as a substitute for obtaining a paper copy of this document. Please contact
Global Engineering Documents at (800) 854-7179 or FAX (303) 843-9880 to obtain a paper copy. Thank
you very much for your interest.

ii

 ANSI X3.215-1994

Contents

Foreword...vii
X3 Membership ...viii
X3J14 Membership..ix
1. Introduction ...1

1.1 Purpose ...1
1.2 Scope ..1

1.2.1 Inclusions..1
1.2.2 Exclusions ..1

1.3 Document organization...2
1.3.1 Word sets..2
1.3.2 Annexes ..2

1.4 Future directions ...2
1.4.1 New technology..2
1.4.2 Obsolescent features...2

2. Terms, notation, and references...3
2.1 Definitions of terms ..3
2.2 Notation ..5

2.2.1 Numeric notation ..5
2.2.2 Stack notation ...5
2.2.3 Parsed-text notation ..5
2.2.4 Glossary notation..6

2.3 References...7
3. Usage requirements ...8

3.1 Data types ...8
3.1.1 Data-type relationships ...8
3.1.2 Character types ...8
3.1.3 Single-cell types ...10
3.1.4 Cell-pair types ..11
3.1.5 System types ...11

3.2 The implementation environment ...12
3.2.1 Numbers ...12
3.2.2 Arithmetic...12
3.2.3 Stacks..13
3.2.4 Operator terminal..14
3.2.5 Mass storage ...14
3.2.6 Environmental queries..14

3.3 The Forth dictionary ...15
3.3.1 Name space...15
3.3.2 Code space..15
3.3.3 Data space...15

3.4 The Forth text interpreter ..17
3.4.1 Parsing ..18
3.4.2 Finding definition names ..18
3.4.3 Semantics..19
3.4.4 Possible actions on an ambiguous condition19
3.4.5 Compilation ..20

4. Documentation requirements...21
4.1 System documentation ..21

4.1.1 Implementation-defined options...21
4.1.2 Ambiguous conditions..22
4.1.3 Other system documentation ..23

4.2 Program documentation..23
4.2.1 Environmental dependencies..23

 iii

ANSI X3.215-1994

4.2.2 Other program documentation ... 23
5. Compliance and labeling... 24

5.1 ANS Forth systems... 24
5.1.1 System compliance .. 24
5.1.2 System labeling.. 24

5.2 ANS Forth programs .. 24
5.2.1 Program compliance .. 24
5.2.2 Program labeling.. 24

6. Glossary .. 25
6.1 Core words ... 25
6.2 Core extension words... 49

7. The optional Block word set ... 59
8. The optional Double-Number word set .. 65
9. The optional Exception word set .. 70
10. The optional Facility word set .. 74
11. The optional File-Access word set.. 77
12. The optional Floating-Point word set.. 87
13. The optional Locals word set .. 102
14. The optional Memory-Allocation word set... 107
15. The optional Programming-Tools word set .. 110
16. The optional Search-Order word set ... 117
17. The optional String word set... 122
A. Rationale (informative annex) .. 125

A.1 Introduction .. 125
A.2 Terms and notation... 126
A.3 Usage requirements .. 127
A.4 Documentation requirements ... 138
A.5 Compliance and labeling.. 138
A.6 Glossary.. 139
A.7 The optional Block word set .. 157
A.8 The optional Double-Number word set.. 157
A.9 The optional Exception word set.. 158
A.10 The optional Facility word set.. 161
A.11 The optional File-Access word set ... 164
A.12 The optional Floating-Point word set... 166
A.13 The optional Locals word set ... 169
A.14 The optional Memory-Allocation word set .. 172
A.15 The optional Programming-Tools word set.. 172
A.16 The optional Search-Order word set .. 175
A.17 The optional String word set .. 177

B. Bibliography (informative annex)... 179
C. Perspective (informative annex) ... 181

C.1 Features of Forth .. 181
C.2 History of Forth.. 182
C.3 Hardware implementations of Forth... 182
C.4 Standardization efforts ... 182
C.5 Programming in Forth .. 183
C.6 Multiprogrammed systems ... 189
C.7 Design and management considerations .. 189
C.8 Conclusion.. 189

iv

 ANSI X3.215-1994

D. Compatibility analysis of ANS Forth (informative annex)190
D.1 FIG Forth (circa 1978)..190
D.2 Forth 79...190
D.3 Forth 83...190
D.4 Recent developments ..191
D.5 ANS Forth approach ...191
D.6 Differences from Forth 83 ..192

D.6.1 Stack width ...192
D.6.2 Number representation ...192
D.6.3 Address units ..193
D.6.4 Address increment for a cell is no longer two193
D.6.5 Address alignment ..194
D.6.6 Division/modulus rounding direction...195
D.6.7 Immediacy ..195
D.6.8 Input character set...197
D.6.9 Shifting with UM/MOD..197
D.6.10 Vocabularies / wordlists ...198
D.6.11 Multiprogramming impact..198
D.6.12 Words not provided in executable form ...199

E. ANS Forth portability guide (informative annex) ...200
E.1 Introduction...200
E.2 Hardware peculiarities ..200

E.2.1 Data/memory abstraction..200
E.2.2 Definitions ..200
E.2.3 Addressing memory..201
E.2.4 Alignment problems ...201

E.3 Number representation..202
E.3.1 Big endian vs. little endian ...202
E.3.2 ALU organization...202

E.4 Forth system implementation..203
E.4.1 Definitions ..203
E.4.2 Stacks..203

E.5 ROMed application disciplines and conventions..204
E.6 Summary...204

F. Alphabetic list of words (informative annex)..205

 v

ANSI X3.215-1994

vi

 ANSI X3.215-1994

Foreword (This foreword is not a part of American National Standard X3.215-1994)

 Forth is a language for direct communication between human beings and machines.
Using natural-language diction and machine-oriented syntax, Forth provides an
economical, productive environment for interactive compilation and execution of
programs. Forth also provides low-level access to computer-controlled hardware, and
the ability to extend the language itself. This extensibility allows the language to be
quickly expanded and adapted to special needs and different hardware systems.

Forth was invented by Mr. Charles Moore to increase programmer productivity without
sacrificing machine efficiency. Forth is a layered environment containing the elements
of a computer language as well as those of an operating system and a machine monitor.
This extensible, layered environment provides for highly interactive program
development and testing.

In the interests of transportability of application software written in Forth,
standardization efforts began in the mid-1970s by an international group of users and
implementors who adopted the name “Forth Standards Team”. This effort resulted in
the Forth-77 Standard. As the language continued to evolve, an interim Forth-78
Standard was published by the Forth Standards Team. Following Forth Standards
Team meetings in 1979, the Forth-79 Standard was published in 1980. Major changes
were made by the Forth Standards Team in the Forth-83 Standard, which was
published in 1983.

The first meeting of the Technical Committee on Forth Programming Systems was
convened by the Organizing Committee of the X3J14 Forth Technical Committee on
August 3, 1987, and has met subsequently on November 11-12, 1987, February 10-12,
1988, May 25-28, 1988, August 10-13, 1988, October 26-29, 1988, January 25-28,
1989, May 3-6, 1989, July 26-29, 1989, October 25-28, 1989, January 24-27, 1990,
May 22-26, 1990, August 21-25, 1990, November 6-10,1990, January 29-February 2,
1991, May 3-4, 1991, June 16-19, 1991, July 30-August 3, 1991, March 17-21, 1992,
October 13-17, 1992, January 26-30, 1993, June 28-30, 1993, and June 21, 1994.

This project has operated under joint sponsorship of IEEE as IEEE Project P1141. The
TC gratefully acknowledges the support of IEEE in this effort and the participation of
the IEEE members who contributed to our work as sponsored members and observers.

Requests for interpretation, suggestions for improvement or addenda, or defect reports
are welcome. They should be sent to the X3 Secretariat, Computer and Business
Equipment Manufacturers Association, 1250 Eye Street, NW, Suite 200, Washington,
DC 20005.

 vii

ANSI X3.215-1994

X3 Membership This standard was processed and approved for submittal to ANSI by the Accredited
Standards Committee on Information Processing Systems, X3. Committee approval of
this standard does not necessarily imply that all committee members voted for its
approval. At the time it approved this standard, the X3 Committee had the following
members:

James D. Converse, Chair
Donald C. Loughry, Vice-Chair
Joanne Flanagan, Secretary

Producer Group .. Name of Representative
AMP Incorporated... Edward Kelly
 Charles Brill (Alt.)
AT&T/NCR Corporation .. Thomas W. Kern
 Thomas F. Frost (Alt.)
Apple Computer, Inc. .. Karen Higginbottom
Compaq Computers.. James Barnes
Digital Equipment Corporation .. Delbert Shoemaker
 Kevin Lewis
Hitachi America Ltd... John Neumann
 Kei Yamashita (Alt.)
Hewlett Packard.. Donald C. Loughry
Bull HN Information Systems Inc. ... William George
IBM Corporation.. Joel Urman
 Mary Anne Lawler (Alt.)
Unisys Corporation ... John Hill
 Stephen P. Oksala (Alt.)
Sony Corporation of America.. Michael Deese
Storage Technology Corporation .. Joseph S. Zajaczkowski
 Samuel D. Cheatham (Alt.)
Sun Microsystems, Inc.. Scott Jameson
 Gary S. Robinson (Alt.)
** Xerox Corporation .. Dwight McBain
 Roy Pierce (Alt.)
3M Company .. Edie T. Morioka
 Paul D. Jahnke (Alt.

Consumers Group
Boeing Company .. Catherine Howells
 Andrea Vanosdoll (Alt.)
Eastman Kodak Company .. James Converse
 Michael Nier (Alt.)
General Services Administration... Douglas Arai
 Larry L. Jackson (Alt.)
Guide International Inc.. Frank Kirshenbaum

viii

 Harold Kuneke (Alt.)
*Hughes Aircraft Company ... Harold Zebrack
National Communications Systems Dennis Bodson
Northern Telecom Inc. .. Mel Woinsky
 Subhash Patel (Alt.)
*Recognition Tech Users Association................................... Herbert P. Schantz
 G. Edwin Hale (Alt.)
Share Inc. ... Gary Ainsworth
 David Thewis (Alt.)
U. S. Department of Defense.. William Rinehuls
 C. J. Pasquariello (Alt.)
U. S. Department of Energy.. Alton Cox
 Lawrence A. Wasson (Alt.)
Wintergreen Information Services... John Wheeler

General Interest Group
American Nuclear Society... Geraldine C. Main
 Sally Hartzell (Alt.)
Assn. of the Institute for Certification of Computer Professionals
.. Kenneth Zemrowski
Nat'l Institute of Standards and Technology.......................... Robert E. Rountree
 Micharl Hogan (Alt.)
Neville & Associates ... Carlton Neville

 ANSI X3.215-1994

X3J14
Membership

At the time it approved this draft of the proposed American National Standard, the
Technical Committee X3J14 on the Forth Programming Language had the following
members:

Elizabeth Rather, Chair
Mitch Bradley, Vice-Chair
Don Colburn, Secretary
John Rible, Technical Editor
Len Zettel, Vocabulary Representative
Greg Bailey, Technical Subcommittee Chair

Organization Represented Name of Representative
ATHENA Programming, Inc. .. Greg Bailey
 Howe Fong (Alt.)
Bradley Forthware .. Mitch Bradley
Creative Solutions, Inc. .. Don Colburn
Ford Motor Company ... Leonard F. Zettel, Jr.
FORTH, Inc. ... Elizabeth Rather
 Dennis Ruffer (Alt.)
Institute for Applied Forth Research ... Lawrence Forsley
 Horace Simmons (Alt.)
Johns Hopkins University, Applied Physics Lab. John Hayes
Mephistopheles Systems.. Dave Harralson
NASA/Goddard Space Flight Center .. James Rash
Nomadic Software .. John K. Stevenson
Unisyn, Inc.. Gary Betts
 Stephen Egbert (Alt.)
Up and Running ... Martin Tracy
Vesta Technology... Jack Woehr

Individual Members Loring Craymer
 John Rible
 J. E. (Jet) Thomas

X3 Liasons Clyde R. Camp
 Kathleen McMillan

The following organizations and individuals have also participated in this project as
Technical Committee members, alternates, or observers. The Technical Committee
recognizes and respects their contributions:

Organizations
British Columbia Inst. of Tech. MCI Telecommunications Corp.
Computer Cowboys Micromotion
Computer Sciences Corp. MicroProcessor Engineering Ltd.
Computer Strategies, Inc. National Institute of Standards & Technology
Digalog Corp. NCR Medical Systems Group
Embedded Sys. Programming Mag. Performance Packages, Inc.
Forth Interest Group (FIG) Purdue University
H.B. Pascal & Co., Inc. Robert Berkey Services
Harris Semiconductor Shaw Laboratories
IBM Corporation Social Security Administration
IEEE Software Engineering
Kelly Enterprises Texas Instruments
Laboratory Microsystems, Inc. The Dickens Company
Maxtor Corp.

Individuals
David J. Angel Ray Duncan Charles Moore Dean Sanderson
Wil Baden Douglas Fishman Mike Nemeth George Shaw
Robert Berkey Tom Hand Harry Pascal Gerald Shifrin
Ron Braithwaite Gregory Ilg Stephen Pelc Robert Smith
Jack Brown Charles Keane Dean Perrine Tyler Sperry

*Non-Response **Abstain

 ix

ANSI X3.215-1994

Chris Colburn Guy M. Kelly David C. Petty Tom Zimmer
Ted Dickens Andrew Kobziar Bill Ragsdale
John Dorband Martin Lascelles James Ryland

x

 ANSI X3.215-1994

 xi

AMERICAN NATIONAL STANDARD ANSI X3.215-1994

American National Standard
for Information Systems —

Programming Language —
Forth

1. Introduction

1.1 Purpose
The purpose of this Standard is to promote the portability of Forth programs for use on a wide variety of
computing systems, to facilitate the communication of programs, programming techniques, and ideas
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.

1.2 Scope
This Standard specifies an interface between a Forth System and a Forth Program by defining the words
provided by a Standard System.

1.2.1 Inclusions
This Standard specifies:

– the forms that a program written in the Forth language may take;
– the rules for interpreting the meaning of a program and its data.

1.2.2 Exclusions
This Standard does not specify:

– the mechanism by which programs are transformed for use on computing systems;
– the operations required for setup and control of the use of programs on computing systems;
– the method of transcription of programs or their input or output data to or from a storage medium;
– the program and Forth system behavior when the rules of this Standard fail to establish an

interpretation;
– the size or complexity of a program and its data that will exceed the capacity of any specific computing

system or the capability of a particular Forth system;
– the physical properties of input/output records, files, and units;
– the physical properties and implementation of storage.

ANSI X3.215-1994

1.3 Document organization

1.3.1 Word sets
This Standard groups Forth words and capabilities into word sets under a name indicating some shared
aspect, typically their common functional area. Each word set may have an extension, containing words
that offer additional functionality. These words are not required in an implementation of the word set.

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a
Standard System. The other word sets, defined in sections 7 through 17, are optional, making it possible to
provide Standard Systems with tailored levels of functionality.

1.3.1.1 Text sections

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces
terms and notation used throughout the Standard. There are no requirements in these sections.

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems
and Programs, while section 5 specifies their labeling.

1.3.1.2 Glossary sections

Section 6 of each word set specifies the required behavior of the definitions in the word set and the
extensions word set.

1.3.2 Annexes
The annexes do not contain any required material.

Annex A provides some of the rationale behind the committee’s decisions in creating this Standard, as well
as implementation examples. It has the same section numbering as the body of the Standard to make it
easy to relate each requirements section to its rationale section.

Annex B is a short bibliography on Forth.

Annex C provides an introduction to Forth.

Annex D discusses the compatibility of ANS Forth with earlier Forths, emphasizing the differences from
Forth 83.

Annex E presents some techniques for writing portable programs in ANS Forth.

Annex F includes the words from all word sets in a single list, and serves as an index of ANS Forth words.

1.4 Future directions

1.4.1 New technology
This Standard adopts certain words and practices that are increasingly found in common practice. New
words have also been adopted to ease creation of portable programs.

1.4.2 Obsolescent features
This Standard adopts certain words and practices that cause some previously used words to become
obsolescent. Although retained here because of their widespread use, their use in new implementations or
new programs is discouraged, because they may be withdrawn from future revisions of the Standard.

This Standard designates the following words as obsolescent:

 6.2.0060 #TIB 15.6.2.1580 FORGET 6.2.2240 SPAN
 6.2.0970 CONVERT 6.2.2040 QUERY 6.2.2290 TIB
 6.2.1390 EXPECT

2

 ANSI X3.215-1994

2. Terms, notation, and references

The phrase “See:” is used throughout this Standard to direct the reader to other sections of the Standard that
have a direct bearing on the current section.

In this Standard, “shall” states a requirement on a system or program; conversely, “shall not” is a
prohibition; “need not” means “is not required to”; “should” describes a recommendation of the Standard;
and “may”, depending on context, means “is allowed to” or “might happen”.

Throughout the Standard, typefaces are used in the following manner:

– This proportional serif typeface is used for text, with italic used for symbols and the first appearance of
new terms;

– A bold proportional sans-serif typeface is used for headings;
– A bold monospaced serif typeface is used for Forth-language text.

2.1 Definitions of terms
Terms defined in this section are used generally throughout this Standard. Additional terms specific to
individual word sets are defined in those word sets. Other terms are defined at their first appearance,
indicated by italic type. Terms not defined in this Standard are to be construed according to the Dictionary
for Information Systems, ANSI X3.172-1990.

address unit: Depending on context, either 1) the units into which a Forth address space is divided for the
purposes of locating data objects such as characters and variables; 2) the physical memory storage elements
corresponding to those units; 3) the contents of such a memory storage element; or 4) the units in which the
length of a region of memory is expressed.

aligned address: The address of a memory location at which a character, cell, cell pair, or double-cell
integer can be accessed.

ambiguous condition: A circumstance for which this Standard does not prescribe a specific behavior for
Forth systems and programs.

Ambiguous conditions include such things as the absence of a needed delimiter while parsing, attempted
access to a nonexistent file, or attempted use of a nonexistent word. An ambiguous condition also exists
when a Standard word is passed values that are improper or out of range.

cell: The primary unit of information in the architecture of a Forth system.

cell pair: Two cells that are treated as a single unit.

character: Depending on context, either 1) a storage unit capable of holding a character; or 2) a member
of a character set.

character-aligned address: The address of a memory location at which a character can be accessed.

character string: Data space that is associated with a sequence of consecutive character-aligned
addresses. Character strings usually contain text. Unless otherwise indicated, the term “string” means
“character string”.

code space: The logical area of the dictionary in which word semantics are implemented.

compile: To transform source code into dictionary definitions.

compilation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in compilation state.

counted string: A data structure consisting of one character containing a length followed by zero or more
contiguous data characters. Normally, counted strings contain text.

 3

ANSI X3.215-1994

cross compiler: A system that compiles a program for later execution in an environment that may be
physically and logically different from the compiling environment. In a cross compiler, the term “host”
applies to the compiling environment, and the term “target” applies to the run-time environment.

current definition: The definition whose compilation has been started but not yet ended.

data field: The data space associated with a word defined via CREATE.

data space: The logical area of the dictionary that can be accessed.

data-space pointer: The address of the next available data space location, i.e., the value returned by
HERE.

data stack: A stack that may be used for passing parameters between definitions. When there is no
possibility of confusion, the data stack is referred to as “the stack”. Contrast with return stack.

data type: Tn identifier for the set of values that a data object may have.

defining word: A Forth word that creates a new definition when executed.

definition: A Forth execution procedure compiled into the dictionary.

dictionary: An extensible structure that contains definitions and associated data space.

display: To send one or more characters to the user output device.

environmental dependencies: A program’s implicit assumptions about a Forth system’s implementation
options or underlying hardware. For example, a program that assumes a cell size greater than 16 bits is
said to have an environmental dependency.

execution semantics: The behavior of a Forth definition when it is executed.

execution token: A value that identifies the execution semantics of a definition.

find: To search the dictionary for a definition name matching a given string.

immediate word: A Forth word whose compilation semantics are to perform its execution semantics.

implementation defined: Denotes system behaviors or features that must be provided and documented by
a system but whose further details are not prescribed by this Standard.

implementation dependent: Denotes system behaviors or features that must be provided by a system but
whose further details are not prescribed by this Standard.

input buffer: A region of memory containing the sequence of characters from the input source that is
currently accessible to a program.

input source: The device, file, block, or other entity that supplies characters to refill the input buffer.

input source specification: A set of information describing a particular state of the input source, input
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the
nesting of parsing operations on the same or different input sources.

interpretation semantics: The behavior of a Forth definition when its name is encountered by the text
interpreter in interpretation state.

keyboard event: A value received by the system denoting a user action at the user input device. The term
“keyboard” in this document does not exclude other types of user input devices.

line: A sequence of characters followed by an actual or implied line terminator.

name space: The logical area of the dictionary in which definition names are stored.

number: In this Standard, “number” used without other qualification means “integer”. Similarly, “double
number” means “double-cell integer”.

4

 ANSI X3.215-1994

parse: To select and exclude a character string from the parse area using a specified set of delimiting
characters, called delimiters.

parse area: The portion of the input buffer that has not yet been parsed, and is thus available to the system
for subsequent processing by the text interpreter and other parsing operations.

pictured-numeric output: A number display format in which the number is converted using Forth words
that resemble a symbolic “picture” of the desired output.

program: A complete specification of execution to achieve a specific function (application task)
expressed in Forth source code form.

receive: To obtain characters from the user input device.

return stack: A stack that may be used for program execution nesting, do-loop execution, temporary
storage, and other purposes.

standard word: A named Forth procedure, formally specified in this Standard.

user input device: The input device currently selected as the source of received data, typically a keyboard.

user output device: The output device currently selected as the destination of display data.

variable: A named region of data space located and accessed by its memory address.

word: Depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-
space characters, which could be the name of a Forth definition.

word list: A list of associated Forth definition names that may be examined during a dictionary search.

word set: A set of Forth definitions grouped together in this Standard under a name indicating some
shared aspect, typically their common functional area.

2.2 Notation

2.2.1 Numeric notation
Unless otherwise stated, all references to numbers apply to signed single-cell integers. The inclusive range
of values is shown as {from...to}. The allowable range for the contents of an address is shown in double
braces, particularly for the contents of variables, e.g., BASE {{2...36}}.

2.2.2 Stack notation
Stack parameters input to and output from a definition are described using the notation:

(stack-id before -- after)
where stack-id specifies which stack is being described, before represents the stack-parameter data types
before execution of the definition and after represents them after execution. The symbols used in before
and after are shown in table 3.1.

The control-flow-stack stack-id is “C:”, the data-stack stack-id is “S:”, and the return-stack stack-id is “R:”.
When there is no confusion, the data-stack stack-id may be omitted.

When there are alternate after representations, they are described by “after1 | after2”. The top of the stack
is to the right. Only those stack items required for or provided by execution of the definition are shown.

2.2.3 Parsed-text notation
If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation
from table 2.1, shown surrounded by double-quotes and placed between the before parameters and the “--”
separator in the first stack described, e.g.,

(S: before “parsed-text-abbreviation” -- after).

 5

ANSI X3.215-1994

Table 2.1 – Parsed text abbreviations
Abbreviation Description
<char> the delimiting character marking the end of the string being

parsed
<chars> zero or more consecutive occurrences of the character char
<space> a delimiting space character
<spaces> zero or more consecutive occurrences of the character space
<quote> a delimiting double quote
<paren> a delimiting right parenthesis
<eol> an implied delimiter marking the end of a line
ccc a parsed sequence of arbitrary characters, excluding the

delimiter character
name a token delimited by space, equivalent to ccc<space> or

ccc<eol>

2.2.4 Glossary notation
The glossary entries for each word set are listed in the standard ASCII collating sequence. Each glossary
entry specifies an ANS Forth word and consists of two parts: an index line and the semantic description of
the definition.

2.2.4.1 Glossary index line

The index line is a single-line entry containing, from left to right:

– Section number, the last four digits of which assign a unique sequential number to all words included
in this Standard;

– DEFINITION-NAME in upper-case, mono-spaced, bold-face letters;
– Natural-language pronunciation in quotes if it differs from English;
– Word-set designator from table 2.2. The designation for extensions word sets includes “EXT”.

Table 2.2 – Word set designators
Word set Designator
Core word set CORE
Block word set BLOCK
Double-Number word set DOUBLE
Exception word set EXCEPTION
Facility word set FACILITY
File-Access word set FILE
Floating-Point word set FLOATING
Locals word set LOCALS
Memory-Allocation word set MEMORY
Programming-Tools word set TOOLS
Search-Order word set SEARCH
String-Handling word set STRING

2.2.4.2 Glossary semantic description

The first paragraph of the semantic description contains a stack notation for each stack affected by
execution of the word. The remaining paragraphs contain a text description of the semantics. See 3.4.3
Semantics.

6

 ANSI X3.215-1994

2.3 References
The following national and international standards are referenced in this Standard:

– ANSI X3.172-1990 Dictionary for Information Systems, (2.1 Definition of terms);
– ANSI X3.4-1974 American Standard Code for Information Interchange (ASCII), (3.1.2.1 Graphic

characters);
– ISO 646-1983 ISO 7-bit coded characterset for information interchange, International Reference

Version (IRV) 3.1.2.1 Graphic characters)1;
– ANSI/IEEE 754-1985 Floating-point Standard, (12.2.1 Definition of terms).

1Available from the American National Standards Institute, 11 West 42nd Street, New York, NY 10036.

 7

ANSI X3.215-1994

3. Usage requirements

A system shall provide all of the words defined in 6.1 Core Words. It may also provide any words defined
in the optional word sets and extensions word sets. No standard word provided by a system shall alter the
system state in a way that changes the effect of execution of any other standard word except as provided in
this Standard. A system may contain non-standard extensions, provided that they are consistent with the
requirements of this Standard.

The implementation of a system may use words and techniques outside the scope of this Standard.

A system need not provide all words in executable form. The implementation may provide definitions,
including definitions of words in the Core word set, in source form only. If so, the mechanism for adding
the definitions to the dictionary is implementation defined.

A program that requires a system to provide words or techniques not defined in this Standard has an
environmental dependency.

3.1 Data types
A data type identifies the set of permissible values for a data object. It is not a property of a particular
storage location or position on a stack. Moving a data object shall not affect its type.

No data-type checking is required of a system. An ambiguous condition exists if an incorrectly typed data
object is encountered.

Table 3.1 summarizes the data types used throughout this Standard. Multiple instances of the same type in
the description of a definition are suffixed with a sequence digit subscript to distinguish them.

3.1.1 Data-type relationships
Some of the data types are subtypes of other data types. A data type i is a subtype of type j if and only if
the members of i are a subset of the members of j. The following list represents the subtype relationships
using the phrase “i => j” to denote “i is a subtype of j”. The subtype relationship is transitive; if i => j and j
=> k then i => k:

+n => u => x;
+n => n => x;
char => +n;
a-addr => c-addr => addr => u;
flag => x;
xt => x;
+d => d => xd;
+d => ud => xd.

Any Forth definition that accepts an argument of type i shall also accept an argument that is a subtype of i.

3.1.2 Character types
Characters shall be at least one address unit wide, contain at least eight bits, and have a size less than or
equal to cell size.

The characters provided by a system shall include the graphic characters {32..126}, which represent
graphic forms as shown in table 3.2.

3.1.2.1 Graphic characters

A graphic character is one that is normally displayed (e.g., A, #, &, 6). These values and graphics, shown
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and ISO 646-1983, International Reference
Version (IRV). The graphic forms of characters outside the hex range {20..7E} are implementation-
defined. Programs that use the graphic hex 24 (the currency sign) have an environmental dependency.

8

 ANSI X3.215-1994

The graphic representation of characters is not restricted to particular type fonts or styles. The graphics
here are examples.

3.1.2.2 Control characters

All non-graphic characters included in the implementation-defined character set are defined in this
Standard as control characters. In particular, the characters {0..31}, which could be included in the
implementation-defined character set, are control characters.

Programs that require the ability to send or receive control characters have an environmental dependency.

Table 3.1 – Data types
Symbol Data type Size on stack
flag flag 1 cell
true true flag 1 cell
false false flag 1 cell
char character 1 cell
n signed number 1 cell
+n non-negative number 1 cell
u unsigned number 1 cell
n|u 1 number 1 cell
x unspecified cell 1 cell
xt execution token 1 cell
addr address 1 cell
a-addr aligned address 1 cell
c-addr character-aligned address 1 cell
d double-cell signed number 2 cells
+d double-cell non-negative number 2 cells
ud double-cell unsigned number 2 cells
d|ud 2 double-cell number 2 cells
xd unspecified cell pair 2 cells
colon-sys definition compilation implementation dependent
do-sys do-loop structures implementation dependent
case-sys CASE structures implementation dependent
of-sys OF structures implementation dependent
orig control-flow origins implementation dependent
dest control-flow destinations implementation dependent
loop-sys loop-control parameters implementation dependent
nest-sys definition calls implementation dependent
i*x, j*x, k*x 3 any data type 0 or more cells
1 May be either a signed number or an unsigned number depending on

context.
2 May be either a double-cell signed number or a double-cell unsigned

number depending on context.
3 May be an undetermined number of stack entries of unspecified type. For

examples of use, see 6.1.1370 EXECUTE, 6.1.2050 QUIT.

 9

ANSI X3.215-1994

Table 3.2 – Standard graphic characters
Hex IRV
ASCII
 20
 21 ! !
 22 " "
 23 # #
 24 € $
 25 % %
 26 & &
 27 ' '
 28 ((
 29))
 2A * *
 2B + +
 2C , ,
 2D - -
 2E . .
 2F / /

Hex IRV
ASCII
 30 0 0
 31 1 1
 32 2 2
 33 3 3
 34 4 4
 35 5 5
 36 6 6
 37 7 7
 38 8 8
 39 9 9
 3A : :
 3B ; ;
 3C < <
 3D = =
 3E > >
 3F ? ?

Hex IRV
ASCII
 40 @ @
 41 A A
 42 B B
 43 C C
 44 D D
 45 E E
 46 F F
 47 G G
 48 H H
 49 I I
 4A J J
 4B K K
 4C L L
 4D M M
 4E N N
 4F O O

Hex IRV
ASCII
 50 P P
 51 Q Q
 52 R R
 53 S S
 54 T T
 55 U U
 56 V V
 57 W W
 58 X X
 59 Y Y
 5A Z Z
 5B [[
 5C \ \
 5D]]
 5E ^ ^
 5F _ _

Hex IRV
ASCII
 60 ` `
 61 a a
 62 b b
 63 c c
 64 d d
 65 e e
 66 f f
 67 g g
 68 h h

Hex IRV
ASCII
 70 p p
 71 q q
 72 r r
 73 s s
 74 t t
 75 u u
 76 v v
 77 w w

 69 i i
 78 x x

 6A j j
 79 y y

 6B k k
 7A z z

 6C l l
 7B { {

 6D m m
 7C | |

 6E n n
 7D } }

 6F o o
 7E ~ ~

3.1.3 Single-cell types
The implementation-defined fixed size of a cell is specified in address units and the corresponding number
of bits. See E.2 Hardware peculiarities.

Cells shall be at least one address unit wide and contain at least sixteen bits. The size of a cell shall be an
integral multiple of the size of a character. Data-stack elements, return-stack elements, addresses,
execution tokens, flags, and integers are one cell wide.

3.1.3.1 Flags
Flags may have one of two logical states, true or false. Programs that use flags as arithmetic operands have
an environmental dependency.

A true flag returned by a standard word shall be a single-cell value with all bits set. A false flag returned
by a standard word shall be a single-cell value with all bits clear.

3.1.3.2 Integers
The implementation-defined range of signed integers shall include {-32767..+32767}.

The implementation-defined range of non-negative integers shall include {0..32767}.

The implementation-defined range of unsigned integers shall include {0..65535}.

3.1.3.3 Addresses
An address identifies a location in data space with a size of one address unit, which a program may fetch
from or store into except for the restrictions established in this Standard. The size of an address unit is
specified in bits. Each distinct address value identifies exactly one such storage element. See 3.3.3 Data
space.

The set of character-aligned addresses, addresses at which a character can be accessed, is an
implementation-defined subset of all addresses. Adding the size of a character to a character-aligned
address shall produce another character-aligned address.

The set of aligned addresses is an implementation-defined subset of character-aligned addresses. Adding
the size of a cell to an aligned address shall produce another aligned address.

3.1.3.4 Counted strings
A counted string in memory is identified by the address (c-addr) of its length character.

10

 ANSI X3.215-1994

The length character of a counted string shall contain a binary representation of the number of data
characters, between zero and the implementation-defined maximum length for a counted string. The
maximum length of a counted string shall be at least 255.

3.1.3.5 Execution tokens
Different definitions may have the same execution token if the definitions are equivalent.

3.1.4 Cell-pair types
A cell pair in memory consists of a sequence of two contiguous cells. The cell at the lower address is the
first cell, and its address is used to identify the cell pair. Unless otherwise specified, a cell pair on a stack
consists of the first cell immediately above the second cell.

3.1.4.1 Double-cell integers
On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell
containing the least significant part.

The implementation-defined range of double-cell signed integers shall include
{-2147483647..+2147483647}.

The implementation-defined range of double-cell non-negative integers shall include {0..2147483647}.

The implementation-defined range of double-cell unsigned integers shall include {0..4294967295}.
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-cell
unsigned integer with the same value. See 3.2.1.1 Internal number representation.

3.1.4.2 Character strings
A string is specified by a cell pair (c-addr u) representing its starting address and length in characters.

3.1.5 System types
The system data types specify permitted word combinations during compilation and execution.

3.1.5.1 System-compilation types

These data types denote zero or more items on the control-flow stack (see 3.2.3.2). The possible presence
of such items on the data stack means that any items already there shall be unavailable to a program until
the control-flow-stack items are consumed.

The implementation-dependent data generated upon beginning to compile a definition and consumed at its
close is represented by the symbol colon-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a do-loop structure such as
DO ... LOOP and consumed at its close is represented by the symbol do-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile a CASE ... ENDCASE
structure and consumed at its close is represented by the symbol case-sys throughout this Standard.

The implementation-dependent data generated upon beginning to compile an OF ... ENDOF structure
and consumed at its close is represented by the symbol of-sys throughout this Standard.

The implementation-dependent data generated and consumed by executing the other standard control-flow
words is represented by the symbols orig and dest throughout this Standard.

3.1.5.2 System-execution types
These data types denote zero or more items on the return stack. Their possible presence means that any
items already on the return stack shall be unavailable to a program until the system-execution items are
consumed.

The implementation-dependent data generated upon beginning to execute a definition and consumed upon
exiting it is represented by the symbol nest-sys throughout this Standard.

 11

ANSI X3.215-1994

The implementation-dependent loop-control parameters used to control the execution of do-loops are
represented by the symbol loop-sys throughout this Standard. Loop-control parameters shall be available
inside the do-loop for words that use or change these parameters, words such as I, J, LEAVE and
UNLOOP.

3.2 The implementation environment

3.2.1 Numbers

3.2.1.1 Internal number representation

This Standard allows one’s complement, two’s complement, or sign-magnitude number representations and
arithmetic. Arithmetic zero is represented as the value of a single cell with all bits clear.

The representation of a number as a compiled literal or in memory is implementation dependent.

3.2.1.2 Digit conversion

Numbers shall be represented externally by using characters from the standard character set.

Conversion between the internal and external forms of a digit shall behave as follows:

The value in BASE is the radix for number conversion. A digit has a value ranging from zero to one less
than the contents of BASE. The digit with the value zero corresponds to the character “0”. This
representation of digits proceeds through the character set to the decimal value nine corresponding to the
character “9”. For digits beginning with the decimal value ten the graphic characters beginning with the
character “A” are used. This correspondence continues up to and including the digit with the decimal value
thirty-five which is represented by the character “Z”. The conversion of digits outside this range is
implementation defined.

3.2.1.3 Free-field number display

Free-field number display uses the characters described in digit conversion, without leading zeros, in a field
the exact size of the converted string plus a trailing space. If a number is zero, the least significant digit is
not considered a leading zero. If the number is negative, a leading minus sign is displayed.

Number display may use the pictured numeric output string buffer to hold partially converted strings (see
3.3.3.6 Other transient regions).

3.2.2 Arithmetic

3.2.2.1 Integer division

Division produces a quotient q and a remainder r by dividing operand a by operand b. Division operations
return q, r, or both. The identity b*q + r = a shall hold for all a and b.

When unsigned integers are divided and the remainder is not zero, q is the largest integer less than the true
quotient.

When signed integers are divided, the remainder is not zero, and a and b have the same sign, q is the largest
integer less than the true quotient. If only one operand is negative, whether q is rounded toward negative
infinity (floored division) or rounded towards zero (symmetric division) is implementation defined.

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and the
quotient is rounded to its arithmetic floor. Symmetric division is integer division in which the remainder
carries the sign of the dividend or is zero and the quotient is the mathematical quotient “rounded towards
zero” or “truncated”. Examples of each are shown in tables 3.3 and 3.4.

12

 ANSI X3.215-1994

In cases where the operands differ in sign and the rounding direction matters, a program shall either include
code generating the desired form of division, not relying on the implementation-defined default result, or
have an environmental dependency on the desired rounding direction.

Table 3.3 – Floored Division Example Table 3.4 – Symmetric Division Example

3.2.2.2 Other integer operations

In all integer arithmetic operations, both overflow and underflow shall be ignored. The value returned
when either overflow or underflow occurs is implementation defined.

3.2.3 Stacks

3.2.3.1 Data stack

Objects on the data stack shall be one cell wide.

3.2.3.2 Control-flow stack

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of control-
flow words and the restrictions imposed on data-stack usage during the compilation of control structures.

The elements of the control-flow stack are system-compilation data types.

The control-flow stack may, but need not, physically exist in an implementation. If it does exist, it may be,
but need not be, implemented using the data stack. The format of the control-flow stack is implementation
defined. Since the control-flow stack may be implemented using the data stack, items placed on the data
stack are unavailable to a program after items are placed on the control-flow stack and remain unavailable
until the control-flow stack items are removed.

3.2.3.3 Return stack

Items on the return stack shall consist of one or more cells. A system may use the return stack in an
implementation-dependent manner during the compilation of definitions, during the execution of do-loops,
and for storing run-time nesting information.

A program may use the return stack for temporary storage during the execution of a definition subject to
the following restrictions:

– A program shall not access values on the return stack (using R@, R>, 2R@ or 2R>) that it did not place
there using >R or 2>R;

– A program shall not access from within a do-loop values placed on the return stack before the loop was
entered;

– All values placed on the return stack within a do-loop shall be removed before I, J, LOOP, +LOOP,
UNLOOP, or LEAVE is executed;

– All values placed on the return stack within a definition shall be removed before the definition is
terminated or before EXIT is executed.

3.2.4 Operator terminal
See 1.2.2 Exclusions.

 Dividend Divisor Remainder Quotient Dividend Divisor Remainder Quotient
 10 7 3 1 10 7 3 1
 -10 7 4 -2 -10 7 -3 -1
 10 -7 -4 -2 10 -7 3 -1
 -10 -7 -3 1 -10 -7 -3 1

 13

ANSI X3.215-1994

3.2.4.1 User input device

The method of selecting the user input device is implementation defined.

The method of indicating the end of an input line of text is implementation defined.

3.2.4.2 User output device

The method of selecting the user output device is implementation defined.

3.2.5 Mass storage
A system need not provide any standard words for accessing mass storage. If a system provides any
standard word for accessing mass storage, it shall also implement the Block word set.

3.2.6 Environmental queries
The name spaces for ENVIRONMENT? and definitions are disjoint. Names of definitions that are the same
as ENVIRONMENT? strings shall not impair the operation of ENVIRONMENT?. Table 3.5 contains the
valid input strings and corresponding returned value for inquiring about the programming environment
with ENVIRONMENT?.

Table 3.5 – Environmental Query Strings

String Value data type Constant? Meaning
/COUNTED-STRING n yes maximum size of a counted string, in

characters
/HOLD n yes size of the pictured numeric output string

buffer, in characters
/PAD n yes size of the scratch area pointed to by PAD,

in characters
ADDRESS-UNIT-BITS n yes size of one address unit, in bits
CORE flag no true if complete core word set present

(i.e., not a subset as defined in 5.1.1)
CORE-EXT flag no true if core extensions word set present
FLOORED flag yes true if floored division is the default
MAX-CHAR u yes maximum value of any character in the

implementation-defined character set
MAX-D d yes largest usable signed double number
MAX-N n yes largest usable signed integer
MAX-U u yes largest usable unsigned integer
MAX-UD ud yes largest usable unsigned double number
RETURN-STACK-CELLS n yes maximum size of the return stack, in cells
STACK-CELLS n yes maximum size of the data stack, in cells

If an environmental query (using ENVIRONMENT?) returns false (i.e., unknown) in response to a string,
subsequent queries using the same string may return true. If a query returns true (i.e., known) in response
to a string, subsequent queries with the same string shall also return true. If a query designated as constant
in the above table returns true and a value in response to a string, subsequent queries with the same string
shall return true and the same value.

3.3 The Forth dictionary
Forth words are organized into a structure called the dictionary. While the form of this structure is not
specified by the Standard, it can be described as consisting of three logical parts: a name space, a code
space, and a data space. The logical separation of these parts does not require their physical separation.

14

 ANSI X3.215-1994

A program shall not fetch from or store into locations outside data space. An ambiguous condition exists if
a program addresses name space or code space.

3.3.1 Name space
The relationship between name space and data space is implementation dependent.

3.3.1.1 Word lists

The structure of a word list is implementation dependent. When duplicate names exist in a word list, the
latest-defined duplicate shall be the one found during a search for the name.

3.3.1.2 Definition names

Definition names shall contain {1..31} characters. A system may allow or prohibit the creation of
definition names containing non-standard characters.

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of a
system have an environmental dependency.

A program shall not create definition names containing non-graphic characters.

3.3.2 Code space
The relationship between code space and data space is implementation dependent.

3.3.3 Data space
Data space is the only logical area of the dictionary for which standard words are provided to allocate and
access regions of memory. These regions are: contiguous regions, variables, text-literal regions, input
buffers, and other transient regions, each of which is described in the following sections. A program may
read from or write into these regions unless otherwise specified.

3.3.3.1 Address alignment

Most addresses used in ANS Forth are aligned addresses (indicated by a-addr) or character-aligned
(indicated by c-addr). ALIGNED, CHAR+, and arithmetic operations can alter the alignment state of an
address on the stack. CHAR+ applied to an aligned address returns a character-aligned address that can
only be used to access characters. Applying CHAR+ to a character-aligned address produces the
succeeding character-aligned address. Adding or subtracting an arbitrary number to an address can
produce an unaligned address that shall not be used to fetch or store anything. The only way to find the
next aligned address is with ALIGNED. An ambiguous condition exists when @, !, , (comma), +!, 2@, or
2! is used with an address that is not aligned, or when C@, C!, or C, is used with an address that is not
character-aligned.

The definitions of 6.1.1000 CREATE and 6.1.2410 VARIABLE require that the definitions created by them
return aligned addresses.

After definitions are compiled or the word ALIGN is executed the data-space pointer is guaranteed to be
aligned.

 15

ANSI X3.215-1994

3.3.3.2 Contiguous regions

A system guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-comma), and
ALIGN shall be contiguous with the last region allocated with one of the above words, unless the
restrictions in the following paragraphs apply. The data-space pointer HERE always identifies the
beginning of the next data-space region to be allocated. As successive allocations are made, the data-space
pointer increases. A program may perform address arithmetic within contiguously allocated regions. The
last region of data space allocated using the above operators may be released by allocating a corresponding
negatively-sized region using ALLOT, subject to the restrictions of the following paragraphs.

CREATE establishes the beginning of a contiguous region of data space, whose starting address is returned
by the CREATEd definition. This region is terminated by compiling the next definition.

Since an implementation is free to allocate data space for use by code, the above operators need not
produce contiguous regions of data space if definitions are added to or removed from the dictionary
between allocations. An ambiguous condition exists if deallocated memory contains definitions.

3.3.3.3 Variables

The region allocated for a variable may be non-contiguous with regions subsequently allocated with
, (comma) or ALLOT. For example, in:

VARIABLE X 1 CELLS ALLOT

the region X and the region ALLOTted could be non-contiguous.

Some system-provided variables, such as STATE, are restricted to read-only access.

3.3.3.4 Text-literal regions

The text-literal regions, specified by strings compiled with S" and C", may be read-only.

A program shall not store into the text-literal regions created by S" and C" nor into any read-only system
variable or read-only transient regions. An ambiguous condition exists when a program attempts to store
into read-only regions.

3.3.3.5 Input buffers

The address, length, and content of the input buffer may be transient. A program shall not write into the
input buffer. In the absence of any optional word sets providing alternative input sources, the input buffer
is either the terminal-input buffer, used by QUIT to hold one line from the user input device, or a buffer
specified by EVALUATE. In all cases, SOURCE returns the beginning address and length in characters of
the current input buffer.

The minimum size of the terminal-input buffer shall be 80 characters.

The address and length returned by SOURCE, the string returned by PARSE, and directly computed input-
buffer addresses are valid only until the text interpreter does I/O to refill the input buffer or the input source
is changed.

A program may modify the size of the parse area by changing the contents of >IN within the limits
imposed by this Standard. For example, if the contents of >IN are saved before a parsing operation and
restored afterwards, the text that was parsed will be available again for subsequent parsing operations. The
extent of permissible repositioning using this method depends on the input source (see 7.3.3 Block buffer
regions and 11.3.4 Input source).

A program may directly examine the input buffer using its address and length as returned by SOURCE; the
beginning of the parse area within the input buffer is indexed by the number in >IN. The values are valid
for a limited time. An ambiguous condition exists if a program modifies the contents of the input buffer.

16

 ANSI X3.215-1994

3.3.3.6 Other transient regions

The data space regions identified by PAD, WORD, and #> (the pictured numeric output string buffer) may
be transient. Their addresses and contents may become invalid after:

– a definition is created via a defining word;
– definitions are compiled with : or :NONAME;
– data space is allocated using ALLOT, , (comma), C, (c-comma), or ALIGN.

The previous contents of the regions identified by WORD and #> may be invalid after each use of these
words. Further, the regions returned by WORD and #> may overlap in memory. Consequently, use of one
of these words can corrupt a region returned earlier by a different word. The other words that construct
pictured numeric output strings (<#, #, #S, and HOLD) may also modify the contents of these regions.
Words that display numbers may be implemented using pictured numeric output words. Consequently, .
(dot), .R, .S, ?, D., D.R, U., and U.R could also corrupt the regions.

The size of the scratch area whose address is returned by PAD shall be at least 84 characters. The contents
of the region addressed by PAD are intended to be under the complete control of the user: no words
defined in this Standard place anything in the region, although changing data-space allocations as described
in 3.3.3.2 Contiguous regions may change the address returned by PAD. Non-standard words provided by
an implementation may use PAD, but such use shall be documented.

The size of the region identified by WORD shall be at least 33 characters.

The size of the pictured numeric output string buffer shall be at least (2*n) + 2 characters, where n is the
number of bits in a cell. Programs that consider it a fixed area with unchanging access parameters have an
environmental dependency.

3.4 The Forth text interpreter
Upon start-up, a system shall be able to interpret, as described by 6.1.2050 QUIT, Forth source code
received interactively from a user input device.

Such interactive systems usually furnish a “prompt” indicating that they have accepted a user request and
acted on it. The implementation-defined Forth prompt should contain the word “OK” in some combination
of upper or lower case.

Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall repeat the following steps until
either the parse area is empty or an ambiguous condition exists:

a) Skip leading spaces and parse a name (see 3.4.1);
b) Search the dictionary name space (see 3.4.2). If a definition name matching the string is found:

1) if interpreting, perform the interpretation semantics of the definition (see 3.4.3.2), and continue at
a);

2) if compiling, perform the compilation semantics of the definition (see 3.4.3.3), and continue at a).
c) If a definition name matching the string is not found, attempt to convert the string to a number

(see 3.4.1.3). If successful:
1) if interpreting, place the number on the data stack, and continue at a);
2) if compiling, compile code that when executed will place the number on the stack (see 6.1.1780

LITERAL), and continue at a);
d) If unsuccessful, an ambiguous condition exists (see 3.4.4).

 17

ANSI X3.215-1994

3.4.1 Parsing
Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined
maximum length of a counted string.

If the parse area is empty, i.e., when the number in >IN is equal to the length of the input buffer, or
contains no characters other than delimiters, the selected string is empty. Otherwise, the selected string
begins with the next character in the parse area, which is the character indexed by the contents of >IN. An
ambiguous condition exists if the number in >IN is greater than the size of the input buffer.

If delimiter characters are present in the parse area after the beginning of the selected string, the string
continues up to and including the character just before the first such delimiter, and the number in >IN is
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter
from the parse area. Otherwise, the string continues up to and including the last character in the parse area,
and the number in >IN is changed to the length of the input buffer, thus emptying the parse area.

Parsing may change the contents of >IN, but shall not affect the contents of the input buffer. Specifically,
if the value in >IN is saved before starting the parse, resetting >IN to that value immediately after the
parse shall restore the parse area without loss of data.

3.4.1.1 Delimiters

If the delimiter is the space character, hex 20 (BL), control characters may be treated as delimiters. The set
of conditions, if any, under which a “space” delimiter matches control characters is implementation
defined.

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before parsing.

3.4.1.2 Syntax

Forth has a simple, operator-ordered syntax. The phrase A B C returns values as if A were executed first,
then B and finally C. Words that cause deviations from this linear flow of control are called control-flow
words. Combinations of control-flow words whose stack effects are compatible form control-flow
structures. Examples of typical use are given for each control-flow word in Annex A.

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones.

This Standard does not require a syntax or program-construct checker.

3.4.1.3 Text interpreter input number conversion

When converting input numbers, the text interpreter shall recognize both positive and negative numbers,
with a negative number represented by a single minus sign, the character “-”, preceding the digits. The
value in BASE is the radix for number conversion.

3.4.2 Finding definition names
A string matches a definition name if each character in the string matches the corresponding character in
the string used as the definition name when the definition was created. The case sensitivity (whether or not
the upper-case letters match the lower-case letters) is implementation defined. A system may be either case
sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive, ignoring
differences in case while searching.

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such as
accented international characters is implementation defined.

A system shall be capable of finding the definition names defined by this Standard when they are spelled
with upper-case letters.

18

 ANSI X3.215-1994

3.4.3 Semantics
The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens or
other representations. They are largely specified by the stack notation in the glossary entries, which shows
what values shall be consumed and produced. The prose in each glossary entry further specifies the
definition’s behavior.

Each Forth definition may have several behaviors, described in the following sections. The terms
“initiation semantics” and “run-time semantics” refer to definition fragments, and have meaning only
within the individual glossary entries where they appear.

3.4.3.1 Execution semantics

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary
entry. When a definition has only one specified behavior, the label is omitted.

Execution may occur implicitly, when the definition into which it has been compiled is executed, or
explicitly, when its execution token is passed to EXECUTE. The execution semantics of a syntactically
correct definition under conditions other than those specified in this Standard are implementation
dependent.

Glossary entries for defining words include the execution semantics for the new definition in a “name
Execution:” section.

3.4.3.2 Interpretation semantics

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation
semantics of a Forth definition are its execution semantics.

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word set
and any definitions included from the optional word sets or word set extensions whose interpretation
semantics are defined by this Standard.

A system shall be capable of executing, in interpretation state, any new definitions created in accordance
with 3. Usage requirements.

3.4.3.3 Compilation semantics

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics of
a Forth definition shall be to append its execution semantics to the execution semantics of the current
definition.

3.4.4 Possible actions on an ambiguous condition
When an ambiguous condition exists, a system may take one or more of the following actions:

– ignore and continue;
– display a message;
– execute a particular word;
– set interpretation state and begin text interpretation;
– take other implementation-defined actions;
– take implementation-dependent actions.

The response to a particular ambiguous condition need not be the same under all circumstances.

 19

ANSI X3.215-1994

3.4.5 Compilation
A program shall not attempt to nest compilation of definitions.

During the compilation of the current definition, a program shall not execute any defining word,
:NONAME, or any definition that allocates dictionary data space. The compilation of the current definition
may be suspended using [(left-bracket) and resumed using] (right-bracket). While the compilation of the
current definition is suspended, a program shall not execute any defining word, :NONAME, or any
definition that allocates dictionary data space.

20

 ANSI X3.215-1994

4. Documentation requirements
When it is impossible or infeasible for a system or program to define a particular behavior itself, it is
permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why this
is so.

4.1 System documentation

4.1.1 Implementation-defined options
The implementation-defined items in the following list represent characteristics and choices left to the
discretion of the implementor, provided that the requirements of this Standard are met. A system shall
document the values for, or behaviors of, each item.
– aligned address requirements (3.1.3.3 Addresses);
– behavior of 6.1.1320 EMIT for non-graphic characters;
– character editing of 6.1.0695 ACCEPT and 6.2.1390 EXPECT;
– character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY);
– character-aligned address requirements (3.1.3.3 Addresses);
– character-set-extensions matching characteristics (3.4.2 Finding definition names);
– conditions under which control characters match a space delimiter (3.4.1.1 Delimiters);
– format of the control-flow stack (3.2.3.2 Control-flow stack);
– conversion of digits larger than thirty-five (3.2.1.2 Digit conversion);
– display after input terminates in 6.1.0695 ACCEPT and 6.2.1390 EXPECT;
– exception abort sequence (as in 6.1.0680 ABORT");
– input line terminator (3.2.4.1 User input device);
– maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD);
– maximum size of a parsed string (3.4.1 Parsing);
– maximum size of a definition name, in characters (3.3.1.2 Definition names);
– maximum string length for 6.1.1345 ENVIRONMENT?, in characters;
– method of selecting 3.2.4.1 User input device;
– method of selecting 3.2.4.2 User output device;
– methods of dictionary compilation (3.3 The Forth dictionary);
– number of bits in one address unit (3.1.3.3 Addresses);
– number representation and arithmetic (3.2.1.1 Internal number representation);
– ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types);
– read-only data-space regions (3.3.3 Data space);
– size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions);
– size of one cell in address units (3.1.3 Single-cell types);
– size of one character in address units (3.1.2 Character types);
– size of the keyboard terminal input buffer (3.3.3.5 Input buffers);
– size of the pictured numeric output string buffer (3.3.3.6 Other transient regions);
– size of the scratch area whose address is returned by 6.2.2000 PAD (3.3.3.6 Other transient regions);
– system case-sensitivity characteristics (3.4.2 Finding definition names);
– system prompt (3.4 The Forth text interpreter, 6.1.2050 QUIT);
– type of division rounding (3.2.2.1 Integer division, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /,

6.1.0240 /MOD, 6.1.1890 MOD);
– values of 6.1.2250 STATE when true;
– values returned after arithmetic overflow (3.2.2.2 Other integer operations);
– whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :).

 21

ANSI X3.215-1994

4.1.2 Ambiguous conditions
A system shall document the system action taken upon each of the general or specific ambiguous
conditions identified in this Standard. See 3.4.4 Possible actions on an ambiguous condition.
The following general ambiguous conditions could occur because of a combination of factors:
– a name is neither a valid definition name nor a valid number during text interpretation (3.4 The Forth

text interpreter);
– a definition name exceeded the maximum length allowed (3.3.1.2 Definition names);
– addressing a region not listed in 3.3.3 Data Space;
– argument type incompatible with specified input parameter, e.g., passing a flag to a word expecting an

n (3.1 Data types);
– attempting to obtain the execution token, (e.g., with 6.1.0070 ', 6.1.1550 FIND, etc.) of a definition

with undefined interpretation semantics;
– dividing by zero (6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD,

6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M*/);
– insufficient data-stack space or return-stack space (stack overflow);
– insufficient space for loop-control parameters;
– insufficient space in the dictionary;
– interpretating a word with undefined interpretation semantics;
– modifying the contents of the input buffer or a string literal (3.3.3.4 Text-literal regions, 3.3.3.5

Input buffers);
– overflow of a pictured numeric output string;
– parsed string overflow;
– producing a result out of range, e.g., multiplication (using *) results in a value too big to be

represented by a single-cell integer (6.1.0090 *, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0570 >NUMBER,
6.1.1561 FM/MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 6.2.0970 CONVERT, 8.6.1.1820 M*/);

– reading from an empty data stack or return stack (stack underflow);
– unexpected end of input buffer, resulting in an attempt to use a zero-length string as a name;

The following specific ambiguous conditions are noted in the glossary entries of the relevant words:
– >IN greater than size of input buffer (3.4.1 Parsing);
– 6.1.2120 RECURSE appears after 6.1.1250 DOES>;
– argument input source different than current input source for 6.2.2148 RESTORE-INPUT;
– data space containing definitions is de-allocated (3.3.3.2 Contiguous regions);
– data space read/write with incorrect alignment (3.3.3.1 Address alignment);
– data-space pointer not properly aligned (6.1.0150 ,, 6.1.0860 C,);
– less than u+2 stack items (6.2.2030 PICK, 6.2.2150 ROLL);
– loop-control parameters not available (6.1.0140 +LOOP, 6.1.1680 I, 6.1.1730 J, 6.1.1760 LEAVE,

6.1.1800 LOOP, 6.1.2380 UNLOOP);
– most recent definition does not have a name (6.1.1710 IMMEDIATE);
– name not defined by 6.2.2405 VALUE used by 6.2.2295 TO;
– name not found (6.1.0070 ', 6.1.2033 POSTPONE, 6.1.2510 ['], 6.2.2530 [COMPILE]);
– parameters are not of the same type (6.1.1240 DO, 6.2.0620 ?DO, 6.2.2440 WITHIN);
– 6.1.2033 POSTPONE or 6.2.2530 [COMPILE] applied to 6.2.2295 TO;
– string longer than a counted string returned by 6.1.2450 WORD;
– u greater than or equal to the number of bits in a cell (6.1.1805 LSHIFT, 6.1.2162 RSHIFT);
– word not defined via 6.1.1000 CREATE (6.1.0550 >BODY, 6.1.1250 DOES>);
– words improperly used outside 6.1.0490 <# and 6.1.0040 #> (6.1.0030 #, 6.1.0050 #S,

6.1.1670 HOLD, 6.1.2210 SIGN).

22

 ANSI X3.215-1994

4.1.3 Other system documentation
A system shall provide the following information:

– list of non-standard words using 6.2.2000 PAD (3.3.3.6 Other transient regions);
– operator’s terminal facilities available;
– program data space available, in address units;
– return stack space available, in cells;
– stack space available, in cells;
– system dictionary space required, in address units.

4.2 Program documentation

4.2.1 Environmental dependencies
A program shall document the following environmental dependencies, where they apply, and should
document other known environmental dependencies:

– considering the pictured numeric output string buffer a fixed area with unchanging access parameters
(3.3.3.6 Other transient regions);

– depending on the presence or absence of non-graphic characters in a received string
(6.1.0695 ACCEPT, 6.2.1390 EXPECT);

– relying on a particular rounding direction (3.2.2.1 Integer division);
– requiring a particular number representation and arithmetic (3.2.1.1 Internal number

representation);
– requiring non-standard words or techniques (3. Usage requirements);
– requiring the ability to send or receive control characters (3.1.2.2 Control characters, 6.1.1750 KEY);
– using control characters to perform specific functions (6.1.1320 EMIT, 6.1.2310 TYPE);
– using flags as arithmetic operands (3.1.3.1 Flags);
– using lower case for standard definition names or depending on the case sensitivity of a system

(3.3.1.2 Definition names);
– using the graphic character with a value of hex 24 (3.1.2.1 Graphic characters).

4.2.2 Other program documentation
A program shall also document:

– minimum operator’s terminal facilities required;
– whether a Standard System exists after the program is loaded.

 23

ANSI X3.215-1994

5. Compliance and labeling

5.1 ANS Forth systems

5.1.1 System compliance
A system that complies with all the system requirements given in sections 3. Usage requirements and
4.1 System documentation and their sub-sections is a Standard System. An otherwise Standard System
that provides only a portion of the Core words is a Standard System Subset. An otherwise Standard System
(Subset) that fails to comply with one or more of the minimum values or ranges specified in 3. Usage
requirements and its sub-sections has environmental restrictions.

5.1.2 System labeling
A Standard System (Subset) shall be labeled an “ANS Forth System (Subset)”. That label, by itself, shall
not be applied to Standard Systems or Standard System Subsets that have environmental restrictions.

The phrase “with Environmental Restrictions” shall be appended to the label of a Standard System (Subset)
that has environmental restrictions.

The phrase “Providing name(s) from the Core Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Core Extensions word set.

The phrase “Providing the Core Extensions word set” shall be appended to the label of any Standard
System that provides all of the Core Extensions word set.

5.2 ANS Forth programs

5.2.1 Program compliance
A program that complies with all the program requirements given in sections 3. Usage requirements and
4.2 Program documentation and their sub-sections is a Standard Program.

5.2.2 Program labeling
A Standard Program shall be labeled an “ANS Forth Program”. That label, by itself, shall not be applied to
Standard Programs that require the system to provide standard words outside the Core word set or that have
environmental dependencies.

The phrase “with Environmental Dependencies” shall be appended to the label of Standard Programs that
have environmental dependencies.

The phrase “Requiring name(s) from the Core Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Core Extensions word set.

The phrase “Requiring the Core Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Core Extensions word set.

24 Collating Sequence:

 ANSI X3.215-1994

6. Glossary

6.1 Core words

6.1.0010 ! “store” CORE

(x a-addr --)

Store x at a-addr.

 See: 3.3.3.1 Address alignment.

6.1.0030 # “number-sign” CORE

(ud1 -- ud2)

Divide ud1 by the number in BASE giving the quotient ud2 and the remainder n. (n is the least-
significant digit of ud1.) Convert n to external form and add the resulting character to the
beginning of the pictured numeric output string. An ambiguous condition exists if # executes
outside of a <# #> delimited number conversion.

 See: 6.1.0040 #>, 6.1.0050 #S, 6.1.0490 <#.

6.1.0040 #> “number-sign-greater” CORE

(xd -- c-addr u)

Drop xd. Make the pictured numeric output string available as a character string. c-addr and u
specify the resulting character string. A program may replace characters within the string.

 See: 6.1.0030 #, 6.1.0050 #S, 6.1.0490 <#.

6.1.0050 #S “number-sign-s” CORE

(ud1 -- ud2)

Convert one digit of ud1 according to the rule for #. Continue conversion until the quotient is
zero. ud2 is zero. An ambiguous condition exists if #S executes outside of a <# #> delimited
number conversion.

 See: 6.1.0030 #, 6.1.0040 #>, 6.1.0490 <#.

6.1.0070 ' “tick” CORE

(“<spaces>name” -- xt)

Skip leading space delimiters. Parse name delimited by a space. Find name and return xt, the
execution token for name. An ambiguous condition exists if name is not found.

When interpreting, ' xyz EXECUTE is equivalent to xyz.

 See: 3.4 The Forth text interpreter, 3.4.1 Parsing, A.6.1.2033 POSTPONE, A.6.1.2510 ['],
D.6.7 Immediacy.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 25

ANSI X3.215-1994

6.1.0080 (“paren” CORE

 Compilation: Perform the execution semantics given below.

 Execution: (“ccc<paren>” --)

Parse ccc delimited by) (right parenthesis). (is an immediate word.

The number of characters in ccc may be zero to the number of characters in the parse area.

 See: 3.4.1 Parsing, 11.6.1.0080 (.

6.1.0090 * “star” CORE

(n1|u1 n2|u2 -- n3|u3)

Multiply n1|u1 by n2|u2 giving the product n3|u3.

6.1.0100 */ “star-slash” CORE

(n1 n2 n3 -- n4)

Multiply n1 by n2 producing the intermediate double-cell result d. Divide d by n3 giving the
single-cell quotient n4. An ambiguous condition exists if n3 is zero or if the quotient n4 lies
outside the range of a signed number. If d and n3 differ in sign, the implementation-defined
result returned will be the same as that returned by either the phrase >R M* R> FM/MOD
SWAP DROP or the phrase >R M* R> SM/REM SWAP DROP.

 See: 3.2.2.1 Integer division.

6.1.0110 */MOD “star-slash-mod” CORE

(n1 n2 n3 -- n4 n5)

Multiply n1 by n2 producing the intermediate double-cell result d. Divide d by n3 producing
the single-cell remainder n4 and the single-cell quotient n5. An ambiguous condition exists if
n3 is zero, or if the quotient n5 lies outside the range of a single-cell signed integer. If d and n3
differ in sign, the implementation-defined result returned will be the same as that returned by
either the phrase >R M* R> FM/MOD or the phrase >R M* R> SM/REM.

 See: 3.2.2.1 Integer division.

6.1.0120 + “plus” CORE

 (n1|u1 n2|u2 -- n3|u3)

Add n2|u2 to n1|u1, giving the sum n3|u3.

 See: 3.3.3.1 Address alignment.

26 Collating Sequence:

 ANSI X3.215-1994

6.1.0130 +! “plus-store” CORE

(n|u a-addr --)

Add n|u to the single-cell number at a-addr.

 See: 3.3.3.1 Address alignment.

6.1.0140 +LOOP “plus-loop” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: do-sys --)

Append the run-time semantics given below to the current definition. Resolve the destination
of all unresolved occurrences of LEAVE between the location given by do-sys and the next
location for a transfer of control, to execute the words following +LOOP.

 Run-time: (n --) (R: loop-sys1 -- | loop-sys2)

An ambiguous condition exists if the loop control parameters are unavailable. Add n to the
loop index. If the loop index did not cross the boundary between the loop limit minus one and
the loop limit, continue execution at the beginning of the loop. Otherwise, discard the current
loop control parameters and continue execution immediately following the loop.

 See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE.

6.1.0150 , “comma” CORE

(x --)

Reserve one cell of data space and store x in the cell. If the data-space pointer is aligned when
, begins execution, it will remain aligned when , finishes execution. An ambiguous condition
exists if the data-space pointer is not aligned prior to execution of ,.

 See: 3.3.3 Data space, 3.3.3.1 Address alignment.

6.1.0160 - “minus” CORE

 (n1|u1 n2|u2 -- n3|u3)

Subtract n2|u2 from n1|u1, giving the difference n3|u3.

 See: 3.3.3.1 Address alignment.

6.1.0180 . “dot” CORE

(n --)

Display n in free field format.

 See: 3.2.1.2 Digit conversion, 3.2.1.3 Free-field number display.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 27

ANSI X3.215-1994

6.1.0190 ." “dot-quote” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by " (double-quote). Append the run-time semantics given below to the
current definition.

 Run-time: (--)

Display ccc.

 See: 3.4.1 Parsing, 6.2.0200 .(.

6.1.0230 / “slash” CORE

(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell quotient n3. An ambiguous condition exists if n2 is zero.
If n1 and n2 differ in sign, the implementation-defined result returned will be the same as that
returned by either the phrase >R S>D R> FM/MOD SWAP DROP or the phrase >R S>D R>
SM/REM SWAP DROP.

 See: 3.2.2.1 Integer division.

6.1.0240 /MOD “slash-mod” CORE

(n1 n2 -- n3 n4)

Divide n1 by n2, giving the single-cell remainder n3 and the single-cell quotient n4. An
ambiguous condition exists if n2 is zero. If n1 and n2 differ in sign, the implementation-defined
result returned will be the same as that returned by either the phrase >R S>D R> FM/MOD or
the phrase >R S>D R> SM/REM.

 See: 3.2.2.1 Integer division.

6.1.0250 0< “zero-less” CORE

(n -- flag)

flag is true if and only if n is less than zero.

6.1.0270 0= “zero-equals” CORE

(x -- flag)

flag is true if and only if x is equal to zero.

6.1.0290 1+ “one-plus” CORE

 (n1|u1 -- n2|u2)

Add one (1) to n1|u1 giving the sum n2|u2.

28 Collating Sequence:

 ANSI X3.215-1994

6.1.0300 1- “one-minus” CORE

 (n1|u1 -- n2|u2)

Subtract one (1) from n1|u1 giving the difference n2|u2.

6.1.0310 2! “two-store” CORE

(x1 x2 a-addr --)

Store the cell pair x1 x2 at a-addr, with x2 at a-addr and x1 at the next consecutive cell. It is
equivalent to the sequence SWAP OVER ! CELL+ !.

 See: 3.3.3.1 Address alignment.

6.1.0320 2* “two-star” CORE

(x1 -- x2)

x2 is the result of shifting x1 one bit toward the most-significant bit, filling the vacated least-
significant bit with zero.

6.1.0330 2/ “two-slash” CORE

(x1 -- x2)

x2 is the result of shifting x1 one bit toward the least-significant bit, leaving the most-significant
bit unchanged.

6.1.0350 2@ “two-fetch” CORE

(a-addr -- x1 x2)

Fetch the cell pair x1 x2 stored at a-addr. x2 is stored at a-addr and x1 at the next consecutive
cell. It is equivalent to the sequence DUP CELL+ @ SWAP @.

 See: 3.3.3.1 Address alignment, 6.1.0310 2!.

6.1.0370 2DROP “two-drop” CORE

(x1 x2 --)

Drop cell pair x1 x2 from the stack.

6.1.0380 2DUP “two-dupe” CORE

(x1 x2 -- x1 x2 x1 x2)

Duplicate cell pair x1 x2.

6.1.0400 2OVER “two-over” CORE

(x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2)

Copy cell pair x1 x2 to the top of the stack.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 29

ANSI X3.215-1994

6.1.0430 2SWAP “two-swap” CORE

(x1 x2 x3 x4 -- x3 x4 x1 x2)

Exchange the top two cell pairs.

6.1.0450 : “colon” CORE

(C: “<spaces>name” -- colon-sys)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name,
called a “colon definition”. Enter compilation state and start the current definition, producing
colon-sys. Append the initiation semantics given below to the current definition.

The execution semantics of name will be determined by the words compiled into the body of
the definition. The current definition shall not be findable in the dictionary until it is ended (or
until the execution of DOES> in some systems).

 Initiation: (i*x -- i*x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The stack
effects i*x represent arguments to name.

 name Execution: (i*x -- j*x)

Execute the definition name. The stack effects i*x and j*x represent arguments to and results
from name, respectively.

 See: 3.4 The Forth text interpreter, 3.4.1 Parsing, 3.4.5 Compilation, 6.1.1250 DOES>, 6.1.2500
[, 6.1.2540], 15.6.2.0470 ;CODE.

6.1.0460 ; “semicolon” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: colon-sys --)

Append the run-time semantics below to the current definition. End the current definition,
allow it to be found in the dictionary and enter interpretation state, consuming colon-sys. If the
data-space pointer is not aligned, reserve enough data space to align it.

 Run-time: (--) (R: nest-sys --)

Return to the calling definition specified by nest-sys.

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation.

6.1.0480 < “less-than” CORE

(n1 n2 -- flag)

flag is true if and only if n1 is less than n2.

 See: 6.1.2340 U<.

30 Collating Sequence:

 ANSI X3.215-1994

6.1.0490 <# “less-number-sign” CORE

(--)

Initialize the pictured numeric output conversion process.

 See: 6.1.0030 #, 6.1.0040 #>, 6.1.0050 #S.

6.1.0530 = “equals” CORE

(x1 x2 -- flag)

flag is true if and only if x1 is bit-for-bit the same as x2.

6.1.0540 > “greater-than” CORE

(n1 n2 -- flag)

flag is true if and only if n1 is greater than n2.

 See: 6.2.2350 U>.

6.1.0550 >BODY “to-body” CORE

(xt -- a-addr)

a-addr is the data-field address corresponding to xt. An ambiguous condition exists if xt is not
for a word defined via CREATE.

 See: 3.3.3 Data space.

6.1.0560 >IN “to-in” CORE

(-- a-addr)

a-addr is the address of a cell containing the offset in characters from the start of the input
buffer to the start of the parse area.

6.1.0570 >NUMBER “to-number” CORE

(ud1 c-addr1 u1 -- ud2 c-addr2 u2)

ud2 is the unsigned result of converting the characters within the string specified by c-addr1 u1
into digits, using the number in BASE, and adding each into ud1 after multiplying ud1 by the
number in BASE. Conversion continues left-to-right until a character that is not convertible,
including any “+” or “-”, is encountered or the string is entirely converted. c-addr2 is the
location of the first unconverted character or the first character past the end of the string if the
string was entirely converted. u2 is the number of unconverted characters in the string. An
ambiguous condition exists if ud2 overflows during the conversion.

 See: 3.2.1.2 Digit conversion.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 31

ANSI X3.215-1994

6.1.0580 >R “to-r” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (x --) (R: -- x)

Move x to the return stack.

 See: 3.2.3.3 Return stack, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@.

6.1.0630 ?DUP “question-dupe” CORE

(x -- 0 | x x)

Duplicate x if it is non-zero.

6.1.0650 @ “fetch” CORE

(a-addr -- x)

x is the value stored at a-addr.

 See: 3.3.3.1 Address alignment.

6.1.0670 ABORT CORE

(i*x --) (R: j*x --)

Empty the data stack and perform the function of QUIT, which includes emptying the return
stack, without displaying a message.

 See: 9.6.2.0670 ABORT.

6.1.0680 ABORT" “abort-quote” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below to the
current definition.

 Run-time: (i*x x1 -- | i*x) (R: j*x -- | j*x)

Remove x1 from the stack. If any bit of x1 is not zero, display ccc and perform an
implementation-defined abort sequence that includes the function of ABORT.

 See: 3.4.1 Parsing, 9.6.2.0680 ABORT".

6.1.0690 ABS “abs” CORE

(n -- u)

u is the absolute value of n.

32 Collating Sequence:

 ANSI X3.215-1994

6.1.0695 ACCEPT CORE

(c-addr +n1 -- +n2)

Receive a string of at most +n1 characters. An ambiguous condition exists if +n1 is zero or
greater than 32,767. Display graphic characters as they are received. A program that depends
on the presence or absence of non-graphic characters in the string has an environmental
dependency. The editing functions, if any, that the system performs in order to construct the
string are implementation-defined.

Input terminates when an implementation-defined line terminator is received. When input
terminates, nothing is appended to the string, and the display is maintained in an
implementation-defined way.

+n2 is the length of the string stored at c-addr.

6.1.0705 ALIGN CORE

(--)

If the data-space pointer is not aligned, reserve enough space to align it.

 See: 3.3.3 Data space, 3.3.3.1 Address alignment.

6.1.0706 ALIGNED CORE

(addr -- a-addr)

a-addr is the first aligned address greater than or equal to addr.

 See: 3.3.3.1 Address alignment.

6.1.0710 ALLOT CORE

(n --)

If n is greater than zero, reserve n address units of data space. If n is less than zero, release |n|
address units of data space. If n is zero, leave the data-space pointer unchanged.

If the data-space pointer is aligned and n is a multiple of the size of a cell when ALLOT begins
execution, it will remain aligned when ALLOT finishes execution.

If the data-space pointer is character aligned and n is a multiple of the size of a character when
ALLOT begins execution, it will remain character aligned when ALLOT finishes execution.

 See: 3.3.3 Data space.

6.1.0720 AND CORE

(x1 x2 -- x3)

x3 is the bit-by-bit logical “and” of x1 with x2.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 33

ANSI X3.215-1994

6.1.0750 BASE CORE

(-- a-addr)

a-addr is the address of a cell containing the current number-conversion radix {{2...36}}.

6.1.0760 BEGIN CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- dest)

Put the next location for a transfer of control, dest, onto the control flow stack. Append the
run-time semantics given below to the current definition.

 Run-time: (--)

Continue execution.

 See: 3.2.3.2 Control-flow stack, 6.1.2140 REPEAT, 6.1.2390 UNTIL, 6.1.2430 WHILE.

6.1.0770 BL “b-l” CORE

(-- char)

char is the character value for a space.

6.1.0850 C! “c-store” CORE

(char c-addr --)

Store char at c-addr. When character size is smaller than cell size, only the number of low-
order bits corresponding to character size are transferred.

 See: 3.3.3.1 Address alignment

6.1.0860 C, “c-comma” CORE

(char --)

Reserve space for one character in the data space and store char in the space. If the data-space
pointer is character aligned when C, begins execution, it will remain character aligned when
C, finishes execution. An ambiguous condition exists if the data-space pointer is not
character-aligned prior to execution of C,.

 See: 3.3.3 Data space, 3.3.3.1 Address alignment.

6.1.0870 C@ “c-fetch” CORE

(c-addr -- char)

Fetch the character stored at c-addr. When the cell size is greater than character size, the
unused high-order bits are all zeroes.

 See: 3.3.3.1 Address alignment.

34 Collating Sequence:

 ANSI X3.215-1994

6.1.0880 CELL+ “cell-plus” CORE

(a-addr1 -- a-addr2)

Add the size in address units of a cell to a-addr1, giving a-addr2.

 See: 3.3.3.1 Address alignment.

6.1.0890 CELLS CORE

(n1 -- n2)

n2 is the size in address units of n1 cells.

6.1.0895 CHAR “char” CORE

(“<spaces>name” -- char)

Skip leading space delimiters. Parse name delimited by a space. Put the value of its first
character onto the stack.

 See: 3.4.1 Parsing, 6.1.2520 [CHAR].

6.1.0897 CHAR+ “char-plus” CORE

(c-addr1 -- c-addr2)

Add the size in address units of a character to c-addr1, giving c-addr2.

 See: 3.3.3.1 Address alignment.

6.1.0898 CHARS “chars” CORE

(n1 -- n2)

n2 is the size in address units of n1 characters.

6.1.0950 CONSTANT CORE

(x “<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below.

name is referred to as a “constant”.

 name Execution: (-- x)

Place x on the stack.

 See: 3.4.1 Parsing.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 35

ANSI X3.215-1994

6.1.0980 COUNT CORE
(c-addr1 -- c-addr2 u)

Return the character string specification for the counted string stored at c-addr1. c-addr2 is the
address of the first character after c-addr1. u is the contents of the character at c-addr1, which
is the length in characters of the string at c-addr2.

6.1.0990 CR “c-r” CORE

(--)

Cause subsequent output to appear at the beginning of the next line.

6.1.1000 CREATE CORE

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. If the data-space pointer is not aligned, reserve
enough data space to align it. The new data-space pointer defines name’s data field. CREATE
does not allocate data space in name’s data field.

 name Execution: (-- a-addr)

a-addr is the address of name’s data field. The execution semantics of name may be extended
by using DOES>.

 See: 3.3.3 Data space, 6.1.1250 DOES>.

6.1.1170 DECIMAL CORE

(--)

Set the numeric conversion radix to ten (decimal).

6.1.1200 DEPTH CORE

(-- +n)

+n is the number of single-cell values contained in the data stack before +n was placed on the
stack.

6.1.1240 DO CORE
 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- do-sys)

Place do-sys onto the control-flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consumer of do-sys such
as LOOP.

 Run-time: (n1|u1 n2|u2 --) (R: -- loop-sys)

Set up loop control parameters with index n2|u2 and limit n1|u1. An ambiguous condition exists
if n1|u1 and n2|u2 are not both the same type. Anything already on the return stack becomes
unavailable until the loop-control parameters are discarded.

 See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1800 LOOP.

36 Collating Sequence:

 ANSI X3.215-1994

6.1.1250 DOES> “does” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: colon-sys1 -- colon-sys2)

Append the run-time semantics below to the current definition. Whether or not the current
definition is rendered findable in the dictionary by the compilation of DOES> is
implementation defined. Consume colon-sys1 and produce colon-sys2. Append the initiation
semantics given below to the current definition.

 Run-time: (--) (R: nest-sys1 --)

Replace the execution semantics of the most recent definition, referred to as name, with the
name execution semantics given below. Return control to the calling definition specified by
nest-sys1. An ambiguous condition exists if name was not defined with CREATE or a user-
defined word that calls CREATE.

 Initiation: (i*x -- i*x a-addr) (R: -- nest-sys2)

Save implementation-dependent information nest-sys2 about the calling definition. Place
name’s data field address on the stack. The stack effects i*x represent arguments to name.

 name Execution: (i*x -- j*x)

Execute the portion of the definition that begins with the initiation semantics appended by the
DOES> which modified name. The stack effects i*x and j*x represent arguments to and results
from name, respectively.

 See: 6.1.1000 CREATE.

6.1.1260 DROP CORE

(x --)

Remove x from the stack.

6.1.1290 DUP “dupe” CORE

(x -- x x)

Duplicate x.

6.1.1310 ELSE CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: orig1 -- orig2)

Put the location of a new unresolved forward reference orig2 onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics will be
incomplete until orig2 is resolved (e.g., by THEN). Resolve the forward reference orig1 using
the location following the appended run-time semantics.

 Run-time: (--)

Continue execution at the location given by the resolution of orig2.

 See: 6.1.1700 IF, 6.1.2270 THEN.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 37

ANSI X3.215-1994

6.1.1320 EMIT CORE

(x --)

If x is a graphic character in the implementation-defined character set, display x. The effect of
EMIT for all other values of x is implementation-defined.

When passed a character whose character-defining bits have a value between hex 20 and 7E
inclusive, the corresponding standard character, specified by 3.1.2.1 Graphic characters, is
displayed. Because different output devices can respond differently to control characters,
programs that use control characters to perform specific functions have an environmental
dependency. Each EMIT deals with only one character.

 See: 6.1.2310 TYPE.

6.1.1345 ENVIRONMENT? “environment-query” CORE

(c-addr u -- false | i*x true)

c-addr is the address of a character string and u is the string’s character count. u may have a
value in the range from zero to an implementation-defined maximum which shall not be less
than 31. The character string should contain a keyword from 3.2.6 Environmental queries or
the optional word sets to be checked for correspondence with an attribute of the present
environment. If the system treats the attribute as unknown, the returned flag is false;
otherwise, the flag is true and the i*x returned is of the type specified in the table for the
attribute queried.

6.1.1360 EVALUATE CORE

(i*x c-addr u -- j*x)

Save the current input source specification. Store minus-one (-1) in SOURCE-ID if it is
present. Make the string described by c-addr and u both the input source and input buffer, set
>IN to zero, and interpret. When the parse area is empty, restore the prior input source
specification. Other stack effects are due to the words EVALUATEd.

6.1.1370 EXECUTE CORE

(i*x xt -- j*x)

Remove xt from the stack and perform the semantics identified by it. Other stack effects are
due to the word EXECUTEd.

 See: 6.1.0070 ', 6.1.2510 ['].

6.1.1380 EXIT CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (--) (R: nest-sys --)

Return control to the calling definition specified by nest-sys. Before executing EXIT within a
do-loop, a program shall discard the loop-control parameters by executing UNLOOP.

 See: 3.2.3.3 Return stack, 6.1.2380 UNLOOP.

38 Collating Sequence:

 ANSI X3.215-1994

6.1.1540 FILL CORE

(c-addr u char --)

If u is greater than zero, store char in each of u consecutive characters of memory beginning at
c-addr.

6.1.1550 FIND CORE

(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the definition named in the counted string at c-addr. If the definition is not found, return
c-addr and zero. If the definition is found, return its execution token xt. If the definition is
immediate, also return one (1), otherwise also return minus-one (-1). For a given string, the
values returned by FIND while compiling may differ from those returned while not compiling.

 See: 3.4.2 Finding definition names, A.6.1.0070 ', A.6.1.2510 ['], A.6.1.2033 POSTPONE,
D.6.7 Immediacy.

6.1.1561 FM/MOD “f-m-slash-mod” CORE

(d1 n1 -- n2 n3)

Divide d1 by n1, giving the floored quotient n3 and the remainder n2. Input and output stack
arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient lies outside
the range of a single-cell signed integer.

 See: 3.2.2.1 Integer division, 6.1.2214 SM/REM, 6.1.2370 UM/MOD.

6.1.1650 HERE CORE

(-- addr)

addr is the data-space pointer.

 See: 3.3.3.2 Contiguous regions.

6.1.1670 HOLD CORE

(char --)

Add char to the beginning of the pictured numeric output string. An ambiguous condition
exists if HOLD executes outside of a <# #> delimited number conversion.

6.1.1680 I CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- n|u) (R: loop-sys -- loop-sys)

n|u is a copy of the current (innermost) loop index. An ambiguous condition exists if the loop
control parameters are unavailable.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 39

ANSI X3.215-1994

6.1.1700 IF CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved, e.g., by THEN or ELSE.

 Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by the resolution of orig.

 See: 3.2.3.2 Control flow stack, 6.1.1310 ELSE, 6.1.2270 THEN.

6.1.1710 IMMEDIATE CORE

(--)

Make the most recent definition an immediate word. An ambiguous condition exists if the
most recent definition does not have a name.

 See: D.6.7 Immediacy.

6.1.1720 INVERT CORE

(x1 -- x2)

Invert all bits of x1, giving its logical inverse x2.

 See: 6.1.1910 NEGATE, 6.1.0270 0=.

6.1.1730 J CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- n|u) (R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2)

n|u is a copy of the next-outer loop index. An ambiguous condition exists if the loop control
parameters of the next-outer loop, loop-sys1, are unavailable.

6.1.1750 KEY CORE

(-- char)

Receive one character char, a member of the implementation-defined character set. Keyboard
events that do not correspond to such characters are discarded until a valid character is
received, and those events are subsequently unavailable.

All standard characters can be received. Characters received by KEY are not displayed.

Any standard character returned by KEY has the numeric value specified in 3.1.2.1 Graphic
characters. Programs that require the ability to receive control characters have an
environmental dependency.

 See: 10.6.2.1307 EKEY, 10.6.1.1755 KEY?.

40 Collating Sequence:

 ANSI X3.215-1994

6.1.1760 LEAVE CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (--) (R: loop-sys --)

Discard the current loop control parameters. An ambiguous condition exists if they are
unavailable. Continue execution immediately following the innermost syntactically enclosing
DO ... LOOP or DO ... +LOOP.

 See: 3.2.3.3 Return stack, 6.1.0140 +LOOP, 6.1.1800 LOOP.

6.1.1780 LITERAL CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (x --)

Append the run-time semantics given below to the current definition.

 Run-time: (-- x)

Place x on the stack.

6.1.1800 LOOP CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: do-sys --)

Append the run-time semantics given below to the current definition. Resolve the destination
of all unresolved occurrences of LEAVE between the location given by do-sys and the next
location for a transfer of control, to execute the words following the LOOP.

 Run-time: (--) (R: loop-sys1 -- | loop-sys2)

An ambiguous condition exists if the loop control parameters are unavailable. Add one to the
loop index. If the loop index is then equal to the loop limit, discard the loop parameters and
continue execution immediately following the loop. Otherwise continue execution at the
beginning of the loop.

 See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE.

6.1.1805 LSHIFT “l-shift” CORE

(x1 u -- x2)

Perform a logical left shift of u bit-places on x1, giving x2. Put zeroes into the least significant
bits vacated by the shift. An ambiguous condition exists if u is greater than or equal to the
number of bits in a cell.

6.1.1810 M* “m-star” CORE

(n1 n2 -- d)

d is the signed product of n1 times n2.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 41

ANSI X3.215-1994

6.1.1870 MAX CORE

(n1 n2 -- n3)

n3 is the greater of n1 and n2.

6.1.1880 MIN CORE

(n1 n2 -- n3)

n3 is the lesser of n1 and n2.

6.1.1890 MOD CORE

(n1 n2 -- n3)

Divide n1 by n2, giving the single-cell remainder n3. An ambiguous condition exists if n2 is
zero. If n1 and n2 differ in sign, the implementation-defined result returned will be the same as
that returned by either the phrase >R S>D R> FM/MOD DROP or the phrase >R S>D R>
SM/REM DROP.

 See: 3.2.2.1 Integer division.

6.1.1900 MOVE CORE

(addr1 addr2 u --)

If u is greater than zero, copy the contents of u consecutive address units at addr1 to the u
consecutive address units at addr2. After MOVE completes, the u consecutive address units at
addr2 contain exactly what the u consecutive address units at addr1 contained before the move.

 See: 17.6.1.0910 CMOVE, 17.6.1.0920 CMOVE>.

6.1.1910 NEGATE CORE

(n1 -- n2)

Negate n1, giving its arithmetic inverse n2.

 See: 6.1.1720 INVERT, 6.1.0270 0=.

6.1.1980 OR CORE

(x1 x2 -- x3)

x3 is the bit-by-bit inclusive-or of x1 with x2.

6.1.1990 OVER CORE

(x1 x2 -- x1 x2 x1)

Place a copy of x1 on top of the stack.

42 Collating Sequence:

 ANSI X3.215-1994

6.1.2033 POSTPONE CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the
compilation semantics of name to the current definition. An ambiguous condition exists if
name is not found.

 See: 3.4.1 Parsing.

6.1.2050 QUIT CORE

(--) (R: i*x --)

Empty the return stack, store zero in SOURCE-ID if it is present, make the user input device
the input source, and enter interpretation state. Do not display a message. Repeat the
following:

– Accept a line from the input source into the input buffer, set >IN to zero, and interpret.
– Display the implementation-defined system prompt if in interpretation state, all
processing has been completed, and no ambiguous condition exists.

 See: 3.4 The Forth text interpreter.

6.1.2060 R> “r-from” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- x) (R: x --)

Move x from the return stack to the data stack.

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@.

6.1.2070 R@ “r-fetch” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- x) (R: x -- x)

Copy x from the return stack to the data stack.

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@.

6.1.2120 RECURSE CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (--)

Append the execution semantics of the current definition to the current definition. An
ambiguous condition exists if RECURSE appears in a definition after DOES>.

 See: 6.1.1250 DOES>, 6.1.2120 RECURSE.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 43

ANSI X3.215-1994

6.1.2140 REPEAT CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: orig dest --)

Append the run-time semantics given below to the current definition, resolving the backward
reference dest. Resolve the forward reference orig using the location following the appended
run-time semantics.

 Run-time: (--)

Continue execution at the location given by dest.

 See: 6.1.0760 BEGIN, 6.1.2430 WHILE.

6.1.2160 ROT “rote” CORE

(x1 x2 x3 -- x2 x3 x1)

Rotate the top three stack entries.

6.1.2162 RSHIFT “r-shift” CORE

(x1 u -- x2)

Perform a logical right shift of u bit-places on x1, giving x2. Put zeroes into the most
significant bits vacated by the shift. An ambiguous condition exists if u is greater than or equal
to the number of bits in a cell.

6.1.2165 S" “s-quote” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by " (double-quote). Append the run-time semantics given below to the
current definition.

 Run-time: (-- c-addr u)

Return c-addr and u describing a string consisting of the characters ccc. A program shall not
alter the returned string.

 See: 3.4.1 Parsing, 6.2.0855 C", 11.6.1.2165 S".

6.1.2170 S>D “s-to-d” CORE

(n -- d)

Convert the number n to the double-cell number d with the same numerical value.

44 Collating Sequence:

 ANSI X3.215-1994

6.1.2210 SIGN CORE

(n --)

If n is negative, add a minus sign to the beginning of the pictured numeric output string. An
ambiguous condition exists if SIGN executes outside of a <# #> delimited number
conversion.

6.1.2214 SM/REM “s-m-slash-rem” CORE

(d1 n1 -- n2 n3)

Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2. Input and output stack
arguments are signed. An ambiguous condition exists if n1 is zero or if the quotient lies outside
the range of a single-cell signed integer.

 See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2370 UM/MOD.

6.1.2216 SOURCE CORE

(-- c-addr u)

c-addr is the address of, and u is the number of characters in, the input buffer.

6.1.2220 SPACE CORE

(--)

Display one space.

6.1.2230 SPACES CORE

(n --)

If n is greater than zero, display n spaces.

6.1.2250 STATE CORE

(-- a-addr)

a-addr is the address of a cell containing the compilation-state flag. STATE is true when in
compilation state, false otherwise. The true value in STATE is non-zero, but is otherwise
implementation-defined. Only the following standard words alter the value in STATE: :
(colon), ; (semicolon), ABORT, QUIT, :NONAME, [(left-bracket), and] (right-bracket).

 Note: A program shall not directly alter the contents of STATE.

 See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ;, 6.1.0670 ABORT, 6.1.2050 QUIT,
6.1.2500 [, 6.1.2540], 6.2.0455 :NONAME, 15.6.2.2250 STATE.

6.1.2260 SWAP CORE

(x1 x2 -- x2 x1)

Exchange the top two stack items.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 45

ANSI X3.215-1994

6.1.2270 THEN CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: orig --)

Append the run-time semantics given below to the current definition. Resolve the forward
reference orig using the location of the appended run-time semantics.

 Run-time: (--)

Continue execution.

 See: 6.1.1310 ELSE, 6.1.1700 IF.

6.1.2310 TYPE CORE

(c-addr u --)

If u is greater than zero, display the character string specified by c-addr and u.

When passed a character in a character string whose character-defining bits have a value
between hex 20 and 7E inclusive, the corresponding standard character, specified by 3.1.2.1
graphic characters, is displayed. Because different output devices can respond differently to
control characters, programs that use control characters to perform specific functions have an
environmental dependency.

 See: 6.1.1320 EMIT.

6.1.2320 U. “u-dot” CORE

(u --)

Display u in free field format.

6.1.2340 U< “u-less-than” CORE

(u1 u2 -- flag)

flag is true if and only if u1 is less than u2.

 See: 6.1.0480 <.

6.1.2360 UM* “u-m-star” CORE

(u1 u2 -- ud)

Multiply u1 by u2, giving the unsigned double-cell product ud. All values and arithmetic are
unsigned.

6.1.2370 UM/MOD “u-m-slash-mod” CORE

(ud u1 -- u2 u3)

Divide ud by u1, giving the quotient u3 and the remainder u2. All values and arithmetic are
unsigned. An ambiguous condition exists if u1 is zero or if the quotient lies outside the range
of a single-cell unsigned integer.

 See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2214 SM/REM.

46 Collating Sequence:

 ANSI X3.215-1994

6.1.2380 UNLOOP CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (--) (R: loop-sys --)

Discard the loop-control parameters for the current nesting level. An UNLOOP is required for
each nesting level before the definition may be EXITed. An ambiguous condition exists if the
loop-control parameters are unavailable.

 See: 3.2.3.3 Return stack.

6.1.2390 UNTIL CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: dest --)

Append the run-time semantics given below to the current definition, resolving the backward
reference dest.

 Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by dest.

 See: 6.1.0760 BEGIN.

6.1.2410 VARIABLE CORE

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. Reserve one cell of data space at an aligned
address.

name is referred to as a “variable”.

 name Execution: (-- a-addr)

a-addr is the address of the reserved cell. A program is responsible for initializing the contents
of the reserved cell.

 See: 3.4.1 Parsing.

6.1.2430 WHILE CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: dest -- orig dest)

Put the location of a new unresolved forward reference orig onto the control flow stack, under
the existing dest. Append the run-time semantics given below to the current definition. The
semantics are incomplete until orig and dest are resolved (e.g., by REPEAT).

 Run-time: (x --)

If all bits of x are zero, continue execution at the location specified by the resolution of orig.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 47

ANSI X3.215-1994

6.1.2450 WORD CORE

(char “<chars>ccc<char>” -- c-addr)

Skip leading delimiters. Parse characters ccc delimited by char. An ambiguous condition
exists if the length of the parsed string is greater than the implementation-defined length of a
counted string.

c-addr is the address of a transient region containing the parsed word as a counted string. If the
parse area was empty or contained no characters other than the delimiter, the resulting string
has a zero length. A space, not included in the length, follows the string. A program may
replace characters within the string.

 Note: The requirement to follow the string with a space is obsolescent and is included as a concession
to existing programs that use CONVERT. A program shall not depend on the existence of the
space.

 See: 3.3.3.6 Other transient regions, 3.4.1 Parsing.

6.1.2490 XOR “x-or” CORE

(x1 x2 -- x3)

x3 is the bit-by-bit exclusive-or of x1 with x2.

6.1.2500 [“left-bracket” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: Perform the execution semantics given below.

 Execution: (--)

Enter interpretation state. [is an immediate word.

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2540].

6.1.2510 ['] “bracket-tick” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. Append the run-
time semantics given below to the current definition.

An ambiguous condition exists if name is not found.

 Run-time: (-- xt)

Place name’s execution token xt on the stack. The execution token returned by the compiled
phrase “['] X ” is the same value returned by “' X ” outside of compilation state.

 See: 3.4.1 Parsing, A.6.1.0070 ', A.6.1.2033 POSTPONE, D.6.7 Immediacy.

48 Collating Sequence:

 ANSI X3.215-1994

6.1.2520 [CHAR] “bracket-char” CORE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Append the run-time
semantics given below to the current definition.

 Run-time: (-- char)

Place char, the value of the first character of name, on the stack.

 See: 3.4.1 Parsing, 6.1.0895 CHAR.

6.1.2540] “right-bracket” CORE

(--)

Enter compilation state.

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2500 [.

6.2 Core extension words

6.2.0060 #TIB “number-t-i-b” CORE EXT

(-- a-addr)

a-addr is the address of a cell containing the number of characters in the terminal input buffer.

 Note: This word is obsolescent and is included as a concession to existing implementations.

6.2.0200 .(“dot-paren” CORE EXT

 Compilation: Perform the execution semantics given below.

 Execution: (“ccc<paren>” --)

Parse and display ccc delimited by) (right parenthesis). .(is an immediate word.

 See: 3.4.1 Parsing, 6.1.0190 .".

6.2.0210 .R “dot-r” CORE EXT

(n1 n2 --)

Display n1 right aligned in a field n2 characters wide. If the number of characters required to
display n1 is greater than n2, all digits are displayed with no leading spaces in a field as wide as
necessary.

6.2.0260 0<> “zero-not-equals” CORE EXT

(x -- flag)

flag is true if and only if x is not equal to zero.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 49

ANSI X3.215-1994

6.2.0280 0> “zero-greater” CORE EXT
(n -- flag)

flag is true if and only if n is greater than zero.

6.2.0340 2>R “two-to-r” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (x1 x2 --) (R: -- x1 x2)

Transfer cell pair x1 x2 to the return stack. Semantically equivalent to SWAP >R >R.

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0410 2R>, 6.2.0415 2R@.

6.2.0410 2R> “two-r-from” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- x1 x2) (R: x1 x2 --)

Transfer cell pair x1 x2 from the return stack. Semantically equivalent to R> R> SWAP.

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0415 2R@.

6.2.0415 2R@ “two-r-fetch” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (-- x1 x2) (R: x1 x2 -- x1 x2)

Copy cell pair x1 x2 from the return stack. Semantically equivalent to
R> R> 2DUP >R >R SWAP.

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>.

6.2.0455 :NONAME “colon-no-name” CORE EXT

(C: -- colon-sys) (S: -- xt)

Create an execution token xt, enter compilation state and start the current definition, producing
colon-sys. Append the initiation semantics given below to the current definition.

The execution semantics of xt will be determined by the words compiled into the body of the
definition. This definition can be executed later by using xt EXECUTE.

If the control-flow stack is implemented using the data stack, colon-sys shall be the topmost
item on the data stack. See 3.2.3.2 Control-flow stack.

 Initiation: (i*x -- i*x) (R: -- nest-sys)

Save implementation-dependent information nest-sys about the calling definition. The stack
effects i*x represent arguments to xt.

 xt Execution: (i*x -- j*x)

Execute the definition specified by xt. The stack effects i*x and j*x represent arguments to and
results from xt, respectively.

50 Collating Sequence:

 ANSI X3.215-1994

6.2.0500 <> “not-equals” CORE EXT

(x1 x2 -- flag)

flag is true if and only if x1 is not bit-for-bit the same as x2.

6.2.0620 ?DO “question-do” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- do-sys)

Put do-sys onto the control-flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consumer of do-sys such
as LOOP.

 Run-time: (n1|u1 n2|u2 --) (R: -- | loop-sys)

If n1|u1 is equal to n2|u2, continue execution at the location given by the consumer of do-sys.
Otherwise set up loop control parameters with index n2|u2 and limit n1|u1 and continue
executing immediately following ?DO. Anything already on the return stack becomes
unavailable until the loop control parameters are discarded. An ambiguous condition exists if
n1|u1 and n2|u2 are not both of the same type.

 See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE,
6.1.1800 LOOP, 6.1.2380 UNLOOP.

6.2.0700 AGAIN CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: dest --)

Append the run-time semantics given below to the current definition, resolving the backward
reference dest.

 Run-time: (--)

Continue execution at the location specified by dest. If no other control flow words are used,
any program code after AGAIN will not be executed.

 See: 6.1.0760 BEGIN.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 51

ANSI X3.215-1994

6.2.0855 C" “c-quote” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by " (double-quote) and append the run-time semantics given below to the
current definition.

 Run-time: (-- c-addr)

Return c-addr, a counted string consisting of the characters ccc. A program shall not alter the
returned string.

 See: 3.4.1 Parsing, 6.1.2165 S", 11.6.1.2165 S".

6.2.0873 CASE CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- case-sys)

Mark the start of the CASE ... OF ... ENDOF ... ENDCASE structure. Append the
run-time semantics given below to the current definition.

 Run-time: (--)

Continue execution.

 See: 6.2.1342 ENDCASE, 6.2.1343 ENDOF, 6.2.1950 OF.

6.2.0945 COMPILE, “compile-comma” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (xt --)

Append the execution semantics of the definition represented by xt to the execution semantics
of the current definition.

6.2.0970 CONVERT CORE EXT

(ud1 c-addr1 -- ud2 c-addr2)

ud2 is the result of converting the characters within the text beginning at the first character after
c-addr1 into digits, using the number in BASE, and adding each digit to ud1 after multiplying
ud1 by the number in BASE. Conversion continues until a character that is not convertible is
encountered. c-addr2 is the location of the first unconverted character. An ambiguous
condition exists if ud2 overflows.

 Note: This word is obsolescent and is included as a concession to existing implementations. Its
function is superseded by 6.1.0570 >NUMBER.

 See: 3.2.1.2 Digit conversion.

52 Collating Sequence:

 ANSI X3.215-1994

6.2.1342 ENDCASE “end-case” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: case-sys --)

Mark the end of the CASE ... OF ... ENDOF ... ENDCASE structure. Use case-sys
to resolve the entire structure. Append the run-time semantics given below to the current
definition.

 Run-time: (x --)

Discard the case selector x and continue execution.

 See: 6.2.0873 CASE, 6.2.1343 ENDOF, 6.2.1950 OF.

6.2.1343 ENDOF “end-of” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: case-sys1 of-sys -- case-sys2)

Mark the end of the OF ... ENDOF part of the CASE structure. The next location for a
transfer of control resolves the reference given by of-sys. Append the run-time semantics given
below to the current definition. Replace case-sys1 with case-sys2 on the control-flow stack, to
be resolved by ENDCASE.

 Run-time: (--)

Continue execution at the location specified by the consumer of case-sys2.

 See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1950 OF.

6.2.1350 ERASE CORE EXT

(addr u --)

If u is greater than zero, clear all bits in each of u consecutive address units of memory
beginning at addr .

6.2.1390 EXPECT CORE EXT

(c-addr +n --)

Receive a string of at most +n characters. Display graphic characters as they are received. A
program that depends on the presence or absence of non-graphic characters in the string has an
environmental dependency. The editing functions, if any, that the system performs in order to
construct the string of characters are implementation-defined.

Input terminates when an implementation-defined line terminator is received or when the string
is +n characters long. When input terminates, nothing is appended to the string and the display
is maintained in an implementation-defined way.

Store the string at c-addr and its length in SPAN.

 Note: This word is obsolescent and is included as a concession to existing implementations. Its
function is superseded by 6.1.0695 ACCEPT.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 53

ANSI X3.215-1994

6.2.1485 FALSE CORE EXT

(-- false)

Return a false flag.

 See: 3.1.3.1 Flags

6.2.1660 HEX CORE EXT

(--)

Set contents of BASE to sixteen.

6.2.1850 MARKER CORE EXT

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below.

 name Execution: (--)

Restore all dictionary allocation and search order pointers to the state they had just prior to the
definition of name. Remove the definition of name and all subsequent definitions. Restoration
of any structures still existing that could refer to deleted definitions or deallocated data space is
not necessarily provided. No other contextual information such as numeric base is affected.

 See: 3.4.1 Parsing, 15.6.2.1580 FORGET.

6.2.1930 NIP CORE EXT

(x1 x2 -- x2)

Drop the first item below the top of stack.

6.2.1950 OF CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- of-sys)

Put of-sys onto the control flow stack. Append the run-time semantics given below to the
current definition. The semantics are incomplete until resolved by a consumer of of-sys such as
ENDOF.

 Run-time: (x1 x2 -- | x1)

If the two values on the stack are not equal, discard the top value and continue execution at the
location specified by the consumer of of-sys, e.g., following the next ENDOF. Otherwise,
discard both values and continue execution in line.

 See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1343 ENDOF.

54 Collating Sequence:

 ANSI X3.215-1994

6.2.2000 PAD CORE EXT
(-- c-addr)

c-addr is the address of a transient region that can be used to hold data for intermediate
processing.

 See: 3.3.3.6 Other transient regions.

6.2.2008 PARSE CORE EXT

(char “ccc<char>” -- c-addr u)

Parse ccc delimited by the delimiter char.

c-addr is the address (within the input buffer) and u is the length of the parsed string. If the
parse area was empty, the resulting string has a zero length.

 See: 3.4.1 Parsing.

6.2.2030 PICK CORE EXT

(xu ... x1 x0 u -- xu ... x1 x0 xu)

Remove u. Copy the xu to the top of the stack. An ambiguous condition exists if there are less
than u+2 items on the stack before PICK is executed.

6.2.2040 QUERY CORE EXT

(--)

Make the user input device the input source. Receive input into the terminal input buffer,
replacing any previous contents. Make the result, whose address is returned by TIB, the input
buffer. Set >IN to zero.

 Note: This word is obsolescent and is included as a concession to existing implementations.

6.2.2125 REFILL CORE EXT

(-- flag)

Attempt to fill the input buffer from the input source, returning a true flag if successful.

When the input source is the user input device, attempt to receive input into the terminal input
buffer. If successful, make the result the input buffer, set >IN to zero, and return true. Receipt
of a line containing no characters is considered successful. If there is no input available from
the current input source, return false.

When the input source is a string from EVALUATE, return false and perform no other action.

 See: 7.6.2.2125 REFILL, 11.6.2.2125 REFILL.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 55

ANSI X3.215-1994

6.2.2148 RESTORE-INPUT CORE EXT

(xn ... x1 n -- flag)

Attempt to restore the input source specification to the state described by x1 through xn. flag is
true if the input source specification cannot be so restored.

An ambiguous condition exists if the input source represented by the arguments is not the same
as the current input source.

 See: A.6.2.2182 SAVE-INPUT.

6.2.2150 ROLL CORE EXT

(xu xu-1 ... x0 u -- xu-1 ... x0 xu)

Remove u. Rotate u+1 items on the top of the stack. An ambiguous condition exists if there
are less than u+2 items on the stack before ROLL is executed.

6.2.2182 SAVE-INPUT CORE EXT

(-- xn ... x1 n)

x1 through xn describe the current state of the input source specification for later use by
RESTORE-INPUT.

6.2.2218 SOURCE-ID “source-i-d” CORE EXT

(-- 0 | -1)

Identifies the input source as follows:

SOURCE-ID Input source
 -1 String (via EVALUATE)
 0 User input device

 See: 11.6.1.2218 SOURCE-ID.

6.2.2240 SPAN CORE EXT

(-- a-addr)

a-addr is the address of a cell containing the count of characters stored by the last execution of
EXPECT.

 Note: This word is obsolescent and is included as a concession to existing implementations.

6.2.2290 TIB “t-i-b” CORE EXT

(-- c-addr)

c-addr is the address of the terminal input buffer.

 Note: This word is obsolescent and is included as a concession to existing implementations.

56 Collating Sequence:

 ANSI X3.215-1994

6.2.2295 TO CORE EXT

 Interpretation: (x “<spaces>name” --)

Skip leading spaces and parse name delimited by a space. Store x in name. An ambiguous
condition exists if name was not defined by VALUE.

 Compilation: (“<spaces>name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not defined
by VALUE.

 Run-time: (x --)

Store x in name.

 Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO.

 See: 6.2.2405 VALUE, 13.6.1.2295 TO.

6.2.2298 TRUE CORE EXT

(-- true)

Return a true flag, a single-cell value with all bits set.

 See: 3.1.3.1 Flags.

6.2.2300 TUCK CORE EXT

(x1 x2 -- x2 x1 x2)

Copy the first (top) stack item below the second stack item.

6.2.2330 U.R “u-dot-r” CORE EXT

(u n --)

Display u right aligned in a field n characters wide. If the number of characters required to
display u is greater than n, all digits are displayed with no leading spaces in a field as wide as
necessary.

6.2.2350 U> “u-greater-than” CORE EXT

(u1 u2 -- flag)

flag is true if and only if u1 is greater than u2.

 See: 6.1.0540 >.

6.2.2395 UNUSED CORE EXT

(-- u)

u is the amount of space remaining in the region addressed by HERE , in address units.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 57

ANSI X3.215-1994

6.2.2405 VALUE CORE EXT

(x “<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below, with an initial value equal to x.

name is referred to as a “value”.

 name Execution: (-- x)

Place x on the stack. The value of x is that given when name was created, until the phrase x
TO name is executed, causing a new value of x to be associated with name.

 See: 3.4.1 Parsing.

6.2.2440 WITHIN CORE EXT

(n1|u1 n2|u2 n3|u3 -- flag)

Perform a comparison of a test value n1|u1 with a lower limit n2|u2 and an upper limit n3|u3,
returning true if either (n2|u2 < n3|u3 and (n2|u2 <= n1|u1 and n1|u1 < n3|u3)) or (n2|u2 > n3|u3
and (n2|u2 <= n1|u1 or n1|u1 < n3|u3)) is true, returning false otherwise. An ambiguous
condition exists if n1|u1, n2|u2, and n3|u3 are not all the same type.

6.2.2530 [COMPILE] “bracket-compile” CORE EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name. If name has other
than default compilation semantics, append them to the current definition; otherwise append the
execution semantics of name. An ambiguous condition exists if name is not found.

 See: 3.4.1 Parsing.

6.2.2535 \ “backslash” CORE EXT

 Compilation: Perform the execution semantics given below.

 Execution: (“ccc<eol>”--)

Parse and discard the remainder of the parse area. \ is an immediate word.

 See: 7.6.2.2535 \.

58 Collating Sequence:

 ANSI X3.215-1994

7. The optional Block word set

7.1 Introduction

7.2 Additional terms
block: 1024 characters of data on mass storage, designated by a block number.

block buffer: A block-sized region of data space where a block is made temporarily available for use.
The current block buffer is the block buffer most recently accessed by BLOCK, BUFFER, LOAD, LIST, or
THRU.

7.3 Additional usage requirements

7.3.1 Environmental queries
Append table 7.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 7.1 – Environmental Query Strings

String Value data type Constant? Meaning
BLOCK flag no block word set present
BLOCK-EXT flag no block extensions word set present

7.3.2 Data space
A program may access memory within a valid block buffer.

See: 3.3.3 Data Space.

7.3.3 Block buffer regions
The address of a block buffer returned by BLOCK or BUFFER is transient. A call to BLOCK or BUFFER
may render a previously-obtained block-buffer address invalid, as may a call to any word that:

– parses:
– displays characters on the user output device, such as TYPE or EMIT;
– controls the user output device, such as CR or AT-XY;
– receives or tests for the presence of characters from the user input device such as ACCEPT or KEY;
– waits for a condition or event, such as MS or EKEY;
– manages the block buffers, such as FLUSH, SAVE-BUFFERS, or EMPTY-BUFFERS;
– performs any operation on a file or file-name directory that implies I/O, such as REFILL or any word

that returns an ior;
– implicitly performs I/O, such as text interpreter nesting and un-nesting when files are being used

(including un-nesting implied by THROW).

If the input source is a block, these restrictions also apply to the address returned by SOURCE.

Block buffers are uniquely assigned to blocks.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 59

ANSI X3.215-1994

7.3.4 Parsing
The Block word set implements an alternative input source for the text interpreter. When the input source
is a block, BLK shall contain the non-zero block number and the input buffer is the 1024-character buffer
containing that block.

A block is conventionally displayed as 16 lines of 64 characters.

A program may switch the input source to a block by using LOAD or THRU. Input sources may be nested
using LOAD and EVALUATE in any order.

A program may reposition the parse area within a block by manipulating >IN. More extensive
repositioning can be accomplished using SAVE-INPUT and RESTORE-INPUT.

See: 3.4.1 Parsing.

7.3.5 Possible action on an ambiguous condition
See: 3.4.4 Possible action on an ambiguous condition.

– A system with the Block word set may set interpretation state and interpret a block.

7.4 Additional documentation requirements

7.4.1 System documentation

7.4.1.1 Implementation-defined options

– the format used for display by 7.6.2.1770 LIST (if implemented);
– the length of a line affected by 7.6.2.2535 \ (if implemented).

7.4.1.2 Ambiguous conditions

– Correct block read was not possible;
– I/O exception in block transfer;
– Invalid block number (7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1790 LOAD);
– A program directly alters the contents of 7.6.1.0790 BLK;
– No current block buffer for 7.6.1.2400 UPDATE.

7.4.1.3 Other system documentation

– any restrictions a multiprogramming system places on the use of buffer addresses;
– the number of blocks available for source text and data.

7.4.2 Program documentation
– the number of blocks required by the program.

7.5 Compliance and labeling

7.5.1 ANS Forth systems
The phrase “Providing the Block word set” shall be appended to the label of any Standard System that
provides all of the Block word set.

The phrase “Providing name(s) from the Block Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Block Extensions word set.

The phrase “Providing the Block Extensions word set” shall be appended to the label of any Standard
System that provides all of the Block and Block Extensions word sets.

60 Collating Sequence:

 ANSI X3.215-1994

7.5.2 ANS Forth programs
The phrase “Requiring the Block word set” shall be appended to the label of Standard Programs that
require the system to provide the Block word set.

The phrase “Requiring name(s) from the Block Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Block Extensions word set.

The phrase “Requiring the Block Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the Block and Block Extensions word sets.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 61

ANSI X3.215-1994

7.6 Glossary

7.6.1 Block words
7.6.1.0790 BLK “b-l-k” BLOCK

(-- a-addr)

a-addr is the address of a cell containing zero or the number of the mass-storage block being
interpreted. If BLK contains zero, the input source is not a block and can be identified by
SOURCE-ID, if SOURCE-ID is available. An ambiguous condition exists if a program
directly alters the contents of BLK.

 See: 7.3.3 Block buffer regions.

7.6.1.0800 BLOCK BLOCK

(u -- a-addr)

a-addr is the address of the first character of the block buffer assigned to mass-storage block u.
An ambiguous condition exists if u is not an available block number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned block buffer, transfer block u
from mass storage to an unassigned block buffer. a-addr is the address of that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign a block
buffer. If the block in that buffer has been UPDATEd, transfer the block to mass storage and
transfer block u from mass storage into that buffer. a-addr is the address of that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current block
buffer and is assigned to u.

7.6.1.0820 BUFFER BLOCK

(u -- a-addr)

a-addr is the address of the first character of the block buffer assigned to block u. The contents
of the block are unspecified. An ambiguous condition exists if u is not an available block
number.

If block u is already in a block buffer, a-addr is the address of that block buffer.

If block u is not already in memory and there is an unassigned buffer, a-addr is the address of
that block buffer.

If block u is not already in memory and there are no unassigned block buffers, unassign a block
buffer. If the block in that buffer has been UPDATEd, transfer the block to mass storage. a-
addr is the address of that block buffer.

At the conclusion of the operation, the block buffer pointed to by a-addr is the current block
buffer and is assigned to u.

 See: 7.6.1.0800 BLOCK.

62 Collating Sequence:

 ANSI X3.215-1994

7.6.1.1360 EVALUATE BLOCK

Extend the semantics of 6.1.1360 EVALUATE to include:

Store zero in BLK.

7.6.1.1559 FLUSH BLOCK

(--)

Perform the function of SAVE-BUFFERS, then unassign all block buffers.

7.6.1.1790 LOAD BLOCK

(i*x u -- j*x)

Save the current input-source specification. Store u in BLK (thus making block u the input
source and setting the input buffer to encompass its contents), set >IN to zero, and interpret.
When the parse area is exhausted, restore the prior input source specification. Other stack
effects are due to the words LOADed.

An ambiguous condition exists if u is zero or is not a valid block number.

 See: 3.4 The Forth text interpreter.

7.6.1.2180 SAVE-BUFFERS BLOCK

(--)

Transfer the contents of each UPDATEd block buffer to mass storage. Mark all buffers as
unmodified.

7.6.1.2400 UPDATE BLOCK

(--)

Mark the current block buffer as modified. An ambiguous condition exists if there is no
current block buffer.

UPDATE does not immediately cause I/O.

 See: 7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1559 FLUSH, 7.6.1.2180 SAVE-BUFFERS.

7.6.2 Block extension words

7.6.2.1330 EMPTY-BUFFERS BLOCK EXT

(--)

Unassign all block buffers. Do not transfer the contents of any UPDATEd block buffer to mass
storage.

 See: 7.6.1.0800 BLOCK.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 63

ANSI X3.215-1994

7.6.2.1770 LIST BLOCK EXT

(u --)

Display block u in an implementation-defined format. Store u in SCR.

 See: 7.6.1.0800 BLOCK.

7.6.2.2125 REFILL BLOCK EXT

(-- flag)

Extend the execution semantics of 6.2.2125 REFILL with the following:

When the input source is a block, make the next block the input source and current input buffer
by adding one to the value of BLK and setting >IN to zero. Return true if the new value of
BLK is a valid block number, otherwise false.

 See: 6.2.2125 REFILL, 11.6.2.2125 REFILL.

7.6.2.2190 SCR “s-c-r” BLOCK EXT

(-- a-addr)

a-addr is the address of a cell containing the block number of the block most recently LISTed.

7.6.2.2280 THRU BLOCK EXT

(i*x u1 u2 -- j*x)

LOAD the mass storage blocks numbered u1 through u2 in sequence. Other stack effects are
due to the words LOADed.

7.6.2.2535 \ “backslash” BLOCK EXT

Extend the semantics of 6.2.2535 \ to be:

 Compilation: Perform the execution semantics given below.

 Execution: (“ccc<eol>”--)

If BLK contains zero, parse and discard the remainder of the parse area; otherwise parse and
discard the portion of the parse area corresponding to the remainder of the current line. \ is an
immediate word.

64 Collating Sequence:

 ANSI X3.215-1994

8. The optional Double-Number word set

8.1 Introduction
Sixteen-bit Forth systems often use double-length numbers. However, many Forths on small embedded
systems do not, and many users of Forth on systems with a cell size of 32 bits or more find that the use of
double-length numbers is much diminished. Therefore, the words that manipulate double-length entities
have been placed in this optional word set.

8.2 Additional terms and notation
None.

8.3 Additional usage requirements

8.3.1 Environmental queries
Append table 8.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 8.1 – Environmental Query Strings

String Value data type Constant? Meaning
DOUBLE flag no double-number word set present
DOUBLE-EXT flag no double-number extensions word set present

8.3.2 Text interpreter input number conversion
When the text interpreter processes a number that is immediately followed by a decimal point and is not
found as a definition name, the text interpreter shall convert it to a double-cell number.

For example, entering DECIMAL 1234 leaves the single-cell number 1234 on the stack,
and entering DECIMAL 1234. leaves the double-cell number 1234 0 on the stack.

See: 3.4.1.3 Text interpreter input number conversion.

8.4 Additional documentation requirements

8.4.1 System documentation

8.4.1.1 Implementation-defined options

– no additional requirements.

8.4.1.2 Ambiguous conditions

– d outside range of n in 8.6.1.1140 D>S.

8.4.1.3 Other system documentation

– no additional requirements.

8.4.2 Program documentation
– no additional requirements.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 65

ANSI X3.215-1994

8.5 Compliance and labeling

8.5.1 ANS Forth systems
The phrase “Providing the Double-Number word set” shall be appended to the label of any Standard
System that provides all of the Double-Number word set.

The phrase “Providing name(s) from the Double-Number Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Double-Number Extensions word set.

The phrase “Providing the Double-Number Extensions word set” shall be appended to the label of any
Standard System that provides all of the Double-Number and Double-Number Extensions word sets.

8.5.2 ANS Forth programs
The phrase “Requiring the Double-Number word set” shall be appended to the label of Standard Programs
that require the system to provide the Double-Number word set.

The phrase “Requiring name(s) from the Double-Number Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Double-Number Extensions
word set.

The phrase “Requiring the Double-Number Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Double-Number and Double-Number
Extensions word sets.

8.6 Glossary

8.6.1 Double-Number words
8.6.1.0360 2CONSTANT “two-constant” DOUBLE

(x1 x2 “<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below.

name is referred to as a “two-constant”.

 name Execution: (-- x1 x2)

Place cell pair x1 x2 on the stack.

 See: 3.4.1 Parsing.

8.6.1.0390 2LITERAL “two-literal” DOUBLE

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (x1 x2 --)

Append the run-time semantics below to the current definition.

 Run-time: (-- x1 x2)

Place cell pair x1 x2 on the stack.

66 Collating Sequence:

 ANSI X3.215-1994

8.6.1.0440 2VARIABLE “two-variable” DOUBLE

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. Reserve two consecutive cells of data space.

name is referred to as a “two-variable”.

 name Execution: (-- a-addr)

a-addr is the address of the first (lowest address) cell of two consecutive cells in data space
reserved by 2VARIABLE when it defined name. A program is responsible for initializing the
contents.

 See: 3.4.1 Parsing, 6.1.2410 VARIABLE.

8.6.1.1040 D+ “d-plus” DOUBLE

(d1|ud1 d2|ud2 -- d3|ud3)

Add d2|ud2 to d1|ud1, giving the sum d3|ud3.

8.6.1.1050 D- “d-minus” DOUBLE

(d1|ud1 d2|ud2 -- d3|ud3)

Subtract d2|ud2 from d1|ud1, giving the difference d3|ud3.

8.6.1.1060 D. “d-dot” DOUBLE

(d --)

Display d in free field format.

8.6.1.1070 D.R “d-dot-r” DOUBLE

(d n --)

Display d right aligned in a field n characters wide. If the number of characters required to
display d is greater than n, all digits are displayed with no leading spaces in a field as wide as
necessary.

8.6.1.1075 D0< “d-zero-less” DOUBLE

(d -- flag)

flag is true if and only if d is less than zero.

8.6.1.1080 D0= “d-zero-equals” DOUBLE

(xd -- flag)

flag is true if and only if xd is equal to zero.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 67

ANSI X3.215-1994

8.6.1.1090 D2* “d-two-star” DOUBLE

(xd1 -- xd2)

xd2 is the result of shifting xd1 one bit toward the most-significant bit, filling the vacated least-
significant bit with zero.

8.6.1.1100 D2/ “d-two-slash” DOUBLE

(xd1 -- xd2)

xd2 is the result of shifting xd1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged.

8.6.1.1110 D< “d-less-than” DOUBLE

(d1 d2 -- flag)

flag is true if and only if d1 is less than d2.

8.6.1.1120 D= “d-equals” DOUBLE

(xd1 xd2 -- flag)

flag is true if and only if xd1 is bit-for-bit the same as xd2.

8.6.1.1140 D>S “d-to-s” DOUBLE

(d -- n)

n is the equivalent of d. An ambiguous condition exists if d lies outside the range of a signed
single-cell number.

8.6.1.1160 DABS “d-abs” DOUBLE

(d -- ud)

ud is the absolute value of d.

8.6.1.1210 DMAX “d-max” DOUBLE

(d1 d2 -- d3)

d3 is the greater of d1 and d2.

68 Collating Sequence:

 ANSI X3.215-1994

8.6.1.1220 DMIN “d-min” DOUBLE

(d1 d2 -- d3)

d3 is the lesser of d1 and d2.

8.6.1.1230 DNEGATE “d-negate” DOUBLE

(d1 -- d2)

d2 is the negation of d1.

8.6.1.1820 M*/ “m-star-slash” DOUBLE

(d1 n1 +n2 -- d2)

Multiply d1 by n1 producing the triple-cell intermediate result t. Divide t by +n2 giving the
double-cell quotient d2. An ambiguous condition exists if +n2 is zero or negative, or the
quotient lies outside of the range of a double-precision signed integer.

8.6.1.1830 M+ “m-plus” DOUBLE

(d1|ud1 n -- d2|ud2)

Add n to d1|ud1, giving the sum d2|ud2.

8.6.2 Double-Number extension words
8.6.2.0420 2ROT “two-rote” DOUBLE EXT

(x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2)

Rotate the top three cell pairs on the stack bringing cell pair x1 x2 to the top of the stack.

8.6.2.1270 DU< “d-u-less” DOUBLE EXT

(ud1 ud2 -- flag)

flag is true if and only if ud1 is less than ud2.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 69

ANSI X3.215-1994

9. The optional Exception word set

9.1 Introduction

9.2 Additional terms and notation
None.

9.3 Additional usage requirements

9.3.1 THROW values
The THROW values {-255...-1} shall be used only as assigned by this Standard. The values {-4095...-256}
shall be used only as assigned by a system.

If the File-Access or Memory-Allocation word sets are implemented, it is recommended that the non-zero
values of ior lie within the range of system THROW values, as defined above. In an operating-system
environment, this can sometimes be accomplished by “biasing” the range of operating-system exception-
codes to fall within the THROW range.

Programs shall not define values for use with THROW in the range {-4095...-1}.

9.3.2 Exception frame
An exception frame is the implementation-dependent set of information recording the current execution
state necessary for the proper functioning of CATCH and THROW. It often includes the depths of the data
stack and return stack.

9.3.3 Exception stack
A stack used for the nesting of exception frames by CATCH and THROW. It may be, but need not be,
implemented using the return stack.

9.3.4 Environmental queries
Append table 9.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 9.1 – Environmental query strings

String Value data type Constant? Meaning
EXCEPTION flag no Exception word set present
EXCEPTION-EXT flag no Exception extensions word set present

9.3.5 Possible actions on an ambiguous condition
A system choosing to execute THROW when detecting one of the ambiguous conditions listed in table 9.3.6
shall use the throw code listed there.

See: 3.4.4 Possible actions on an ambiguous condition.

70 Collating Sequence:

 ANSI X3.215-1994

Table 9.2 – THROW code assignments
Code Reserved for Code Reserved for
 -1 ABORT
 -2 ABORT"
 -3 stack overflow
 -4 stack underflow
 -5 return stack overflow
 -6 return stack underflow
 -7 do-loops nested too deeply during execution
 -8 dictionary overflow
 -9 invalid memory address
 -10 division by zero
 -11 result out of range
 -12 argument type mismatch
 -13 undefined word
 -14 interpreting a compile-only word
 -15 invalid FORGET
 -16 attempt to use zero-length string as a name
 -17 pictured numeric output string overflow
 -18 parsed string overflow
 -19 definition name too long
 -20 write to a read-only location
 -21 unsupported operation

(e.g., AT-XY on a too-dumb terminal)
 -22 control structure mismatch
 -23 address alignment exception
 -24 invalid numeric argument
 -25 return stack imbalance
 -26 loop parameters unavailable
 -27 invalid recursion
 -28 user interrupt
 -29 compiler nesting

 -30 obsolescent feature
 -31 >BODY used on non-CREATEd definition
 -32 invalid name argument (e.g., TO xxx)
 -33 block read exception
 -34 block write exception
 -35 invalid block number
 -36 invalid file position
 -37 file I/O exception
 -38 non-existent file
 -39 unexpected end of file
 -40 invalid BASE for floating point conversion
 -41 loss of precision
 -42 floating-point divide by zero
 -43 floating-point result out of range
 -44 floating-point stack overflow
 -45 floating-point stack underflow
 -46 floating-point invalid argument
 -47 compilation word list deleted
 -48 invalid POSTPONE
 -49 search-order overflow
 -50 search-order underflow
 -51 compilation word list changed
 -52 control-flow stack overflow
 -53 exception stack overflow
 -54 floating-point underflow
 -55 floating-point unidentified fault
 -56 QUIT
 -57 exception in sending or receiving a

character
 -58 [IF], [ELSE], or [THEN] exception

9.3.6 Exception handling
There are several methods of coupling CATCH and THROW to other procedural nestings. The usual nestings
are the execution of definitions, use of the return stack, use of loops, instantiation of locals and nesting of
input sources (i.e., with LOAD, EVALUATE, or INCLUDE-FILE).

When a THROW returns control to a CATCH, the system shall un-nest not only definitions, but also, if
present, locals and input source specifications, to return the system to its proper state for continued
execution past the CATCH.

9.4 Additional documentation requirements

9.4.1 System documentation

9.4.1.1 Implementation-defined options

– Values used in the system by 9.6.1.0875 CATCH and 9.6.1.2275 THROW (9.3.1 THROW values, 9.3.5
Possible actions on an ambiguous condition).

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 71

ANSI X3.215-1994

9.4.1.2 Ambiguous conditions

– no additional requirements.

9.4.1.3 Other system documentation

– no additional requirements.

9.4.2 Program documentation
– no additional requirements.

9.5 Compliance and labeling

9.5.1 ANS Forth systems
The phrase “Providing the Exception word set” shall be appended to the label of any Standard System that
provides all of the Exception word set.

The phrase “Providing name(s) from the Exception Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Exception Extensions word set.

The phrase “Providing the Exception Extensions word set” shall be appended to the label of any Standard
System that provides all of the Exception and Exception Extensions word sets.

9.5.2 ANS Forth programs
The phrase “Requiring the Exception word set” shall be appended to the label of Standard Programs that
require the system to provide the Exception word set.

The phrase “Requiring name(s) from the Exception Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Exception Extensions word set.

The phrase “Requiring the Exception Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Exception and Exception Extensions word sets.

9.6 Glossary

9.6.1 Exception words
9.6.1.0875 CATCH EXCEPTION

(i*x xt -- j*x 0 | i*x n)

Push an exception frame on the exception stack and then execute the execution token xt (as
with EXECUTE) in such a way that control can be transferred to a point just after CATCH if
THROW is executed during the execution of xt.

If the execution of xt completes normally (i.e., the exception frame pushed by this CATCH is
not popped by an execution of THROW) pop the exception frame and return zero on top of the
data stack, above whatever stack items would have been returned by xt EXECUTE. Otherwise,
the remainder of the execution semantics are given by THROW.

72 Collating Sequence:

 ANSI X3.215-1994

9.6.1.2275 THROW EXCEPTION

(k*x n -- k*x | i*x n)

If any bits of n are non-zero, pop the topmost exception frame from the exception stack, along
with everything on the return stack above that frame. Then restore the input source
specification in use before the corresponding CATCH and adjust the depths of all stacks defined
by this Standard so that they are the same as the depths saved in the exception frame (i is the
same number as the i in the input arguments to the corresponding CATCH), put n on top of the
data stack, and transfer control to a point just after the CATCH that pushed that exception
frame.

If the top of the stack is non zero and there is no exception frame on the exception stack, the
behavior is as follows:

If n is minus-one (-1), perform the function of 6.1.0670 ABORT (the version of ABORT in
the Core word set), displaying no message.
If n is minus-two, perform the function of 6.1.0680 ABORT" (the version of ABORT" in
the Core word set), displaying the characters ccc associated with the ABORT" that
generated the THROW.
Otherwise, the system may display an implementation-dependent message giving
information about the condition associated with the THROW code n. Subsequently, the
system shall perform the function of 6.1.0670 ABORT (the version of ABORT in the Core
word set).

9.6.2 Exception extension words
9.6.2.0670 ABORT EXCEPTION EXT

Extend the semantics of 6.1.0670 ABORT to be:

(i*x --) (R: j*x --)

Perform the function of -1 THROW .

 See: 6.1.0670 ABORT.

9.6.2.0680 ABORT" “abort-quote” EXCEPTION EXT

Extend the semantics of 6.1.0680 ABORT" to be:

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by a " (double-quote). Append the run-time semantics given below to the
current definition.

 Run-time: (i*x x1 -- | i*x) (R: j*x -- | j*x)

Remove x1 from the stack. If any bit of x1 is not zero, perform the function of -2 THROW,
displaying ccc if there is no exception frame on the exception stack.

 See: 3.4.1 Parsing, 6.1.0680 ABORT".

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 73

ANSI X3.215-1994

10. The optional Facility word set

10.1 Introduction

10.2 Additional terms and notation
None.

10.3 Additional usage requirements

10.3.1 Character types
Programs that use more than seven bits of a character by 10.6.2.1305 EKEY have an environmental
dependency.

See: 3.1.2 Character types.

10.3.2 Environmental queries
Append table 10.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 10.1 – Environmental query strings

String Value data type Constant? Meaning
FACILITY flag no facility word set present
FACILITY-EXT flag no facility extensions word set present

10.4 Additional documentation requirements

10.4.1 System documentation

10.4.1.1 Implementation-defined options

– encoding of keyboard events (10.6.2.1305 EKEY);
– duration of a system clock tick;
– repeatability to be expected from execution of 10.6.2.1905 MS.

10.4.1.2 Ambiguous conditions

– 10.6.1.0742 AT-XY operation can't be performed on user output device.

10.4.1.3 Other system documentation

– no additional requirements.

10.4.2 Program documentation

10.4.2.1 Environmental dependencies

– using more than seven bits of a character in 10.6.2.1305 EKEY.

10.4.2.2 Other program documentation

– no additional requirements.

74 Collating Sequence:

 ANSI X3.215-1994

10.5 Compliance and labeling

10.5.1 ANS Forth systems
The phrase “Providing the Facility word set” shall be appended to the label of any Standard System that
provides all of the Facility word set.

The phrase “Providing name(s) from the Facility Extensions word set” shall be appended to the label of
any Standard System that provides portions of the Facility Extensions word set.

The phrase “Providing the Facility Extensions word set” shall be appended to the label of any Standard
System that provides all of the Facility and Facility Extensions word sets.

10.5.2 ANS Forth programs
The phrase “Requiring the Facility word set” shall be appended to the label of Standard Programs that
require the system to provide the Facility word set.

The phrase “Requiring name(s) from the Facility Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Facility Extensions word set.

The phrase “Requiring the Facility Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Facility and Facility Extensions word sets.

10.6 Glossary

10.6.1 Facility words
10.6.1.0742 AT-XY “at-x-y” FACILITY

(u1 u2 --)

Perform implementation-dependent steps so that the next character displayed will appear in
column u1, row u2 of the user output device, the upper left corner of which is column zero, row
zero. An ambiguous condition exists if the operation cannot be performed on the user output
device with the specified parameters.

10.6.1.1755 KEY? “key-question” FACILITY

(-- flag)

If a character is available, return true. Otherwise, return false. If non-character keyboard
events are available before the first valid character, they are discarded and are subsequently
unavailable. The character shall be returned by the next execution of KEY.

After KEY? returns with a value of true, subsequent executions of KEY? prior to the execution
of KEY or EKEY also return true, without discarding keyboard events.

10.6.1.2005 PAGE FACILITY

(--)

Move to another page for output. Actual function depends on the output device. On a
terminal, PAGE clears the screen and resets the cursor position to the upper left corner. On a
printer, PAGE performs a form feed.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 75

ANSI X3.215-1994

10.6.2 Facility extension words
10.6.2.1305 EKEY “e-key” FACILITY EXT

(-- u)

Receive one keyboard event u. The encoding of keyboard events is implementation defined.

 See: 10.6.1.1755 KEY?, 6.1.1750 KEY.

10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT

(u -- u false | char true)

If the keyboard event u corresponds to a character in the implementation-defined character set,
return that character and true. Otherwise return u and false.

10.6.2.1307 EKEY? “e-key-question” FACILITY EXT

(-- flag)

If a keyboard event is available, return true. Otherwise return false. The event shall be
returned by the next execution of EKEY.

After EKEY? returns with a value of true, subsequent executions of EKEY? prior to the
execution of KEY, KEY? or EKEY also return true, referring to the same event.

10.6.2.1325 EMIT? “emit-question” FACILITY EXT

(-- flag)

flag is true if the user output device is ready to accept data and the execution of EMIT in place
of EMIT? would not have suffered an indefinite delay. If the device status is indeterminate,
flag is true.

10.6.2.1905 MS FACILITY EXT

(u --)

Wait at least u milliseconds.

 Note: The actual length and variability of the time period depends upon the implementation-defined
resolution of the system clock and upon other system and computer characteristics beyond the
scope of this Standard.

10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT

(-- +n1 +n2 +n3 +n4 +n5 +n6)

Return the current time and date. +n1 is the second {0...59}, +n2 is the minute {0...59}, +n3 is
the hour {0...23}, +n4 is the day {1...31} +n5 is the month {1...12}, and +n6 is the year (e.g.,
1991).

76 Collating Sequence:

 ANSI X3.215-1994

11. The optional File-Access word set

11.1 Introduction
These words provide access to mass storage in the form of “files” under the following assumptions:

– files are provided by a host operating system;
– file names are represented as character strings;
– the format of file names is determined by the host operating system;
– an open file is identified by a single-cell file identifier (fileid);
– file-state information (e.g., position, size) is managed by the host operating system;
– file contents are accessed as a sequence of characters;
– file read operations return an actual transfer count, which can differ from the requested transfer count.

11.2 Additional terms
file-access method: A permissible means of accessing a file, such as “read/write” or “read only”.

file position: The character offset from the start of the file.

input file: The file, containing a sequence of lines, that is the input source.

11.3 Additional usage requirements

11.3.1 Data types
Append table 11.1 to table 3.1.

Table 11.1 – Data types
Symbol Data type Size on stack
ior I/O results 1 cell
fam file access method 1 cell
fileid file identifiers 1 cell

11.3.1.1 File identifiers

File identifiers are implementation-dependent single-cell values that are passed to file operators to
designate specific files. Opening a file assigns a file identifier, which remains valid until closed.

11.3.1.2 I/O results

I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that the
I/O operation completed successfully; other values and their meanings are implementation-defined.
Reaching the end of a file shall be reported as zero.

An I/O exception in the execution of a File-Access word that can return an I/O result shall not cause a
THROW; exception indications are returned in the ior.

11.3.1.3 File access methods

File access methods are implementation-defined single-cell values.

11.3.1.4 File names

A character string containing the name of the file. The file name may include an implementation-
dependent path name. The format of file names is implementation defined.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 77

ANSI X3.215-1994

11.3.2 Blocks in files
If the File-Access word set is implemented, the Block word set shall be implemented.

Blocks may, but need not, reside in files. When they do:

– Block numbers may be mapped to one or more files by implementation-defined means. An ambiguous
condition exists if a requested block number is not currently mapped;

– An UPDATEd block that came from a file shall be transferred back to the same file.

11.3.3 Environmental queries
Append table 11.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 11.2 – Environmental query strings

String Value data type Constant? Meaning
FILE flag no file word set present
FILE-EXT flag no file extensions word set present

11.3.4 Input source
The File-Access word set creates another input source for the text interpreter. When the input source is a
text file, BLK shall contain zero, SOURCE-ID shall contain the fileid of that text file, and the input buffer
shall contain one line of the text file.

Input with INCLUDED, INCLUDE-FILE, LOAD and EVALUATE shall be nestable in any order to at least
eight levels.

A program that uses more than eight levels of input-file nesting has an environmental dependency.

See: 3.3.3.5 Input buffers, 9. Optional Exception word set.

11.3.5 Other transient regions
The list of words using memory in transient regions is extended to include 11.6.1.2165 S".

See: 3.3.3.6 Other transient regions.

11.3.6 Parsing
When parsing from a text file using a space delimiter, control characters shall be treated the same as the
space character.

Lines of at least 128 characters shall be supported. A program that requires lines of more than 128
characters has an environmental dependency.

A program may reposition the parse area within the input buffer by manipulating the contents of >IN.
More extensive repositioning can be accomplished using SAVE-INPUT and RESTORE-INPUT.

See: 3.4.1 Parsing.

78 Collating Sequence:

 ANSI X3.215-1994

11.4 Additional documentation requirements

11.4.1 System documentation

11.4.1.1 Implementation-defined options

– file access methods used by 11.6.1.0765 BIN, 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-
FILE, 11.6.1.2054 R/O, 11.6.1.2056 R/W, and 11.6.1.2425 W/O;

– file exceptions;
– file line terminator (11.6.1.2090 READ-LINE);
– file name format (11.3.1.4 File names);
– information returned by 11.6.2.1524 FILE-STATUS;
– input file state after an exception (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);
– ior values and meaning (11.3.1.2 I/O results);
– maximum depth of file input nesting (11.3.4 Input source);
– maximum size of input line (11.3.6 Parsing);
– methods for mapping block ranges to files (11.3.2 Blocks in files);
– number of string buffers provided (11.6.1.2165 S");
– size of string buffer used by 11.6.1.2165 S".

11.4.1.2 Ambiguous conditions

– attempting to position a file outside its boundaries (11.6.1.2142 REPOSITION-FILE);
– attempting to read from file positions not yet written (11.6.1.2080 READ-FILE,

11.6.1.2090 READ-LINE);
– fileid is invalid (11.6.1.1717 INCLUDE-FILE);
– I/O exception reading or closing fileid (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED);
– named file cannot be opened (11.6.1.1718 INCLUDED);
– requesting an unmapped block number (11.3.2 Blocks in files);
– using 11.6.1.2218 SOURCE-ID when 7.6.1.0790 BLK is not zero.

11.4.1.3 Other system documentation

– no additional requirements.

11.4.2 Program documentation

11.4.2.1 Environmental dependencies

– requiring lines longer than 128 characters (11.3.6 Parsing);
– using more than eight levels of input-file nesting (11.3.4 Input source).

11.4.2.2 Other program documentation

– no additional requirements.

11.5 Compliance and labeling

11.5.1 ANS Forth systems
The phrase “Providing the File Access word set” shall be appended to the label of any Standard System
that provides all of the File Access word set.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 79

ANSI X3.215-1994

The phrase “Providing name(s) from the File Access Extensions word set” shall be appended to the label of
any Standard System that provides portions of the File Access Extensions word set.

The phrase “Providing the File Access Extensions word set” shall be appended to the label of any Standard
System that provides all of the File Access and File Access Extensions word sets.

11.5.2 ANS Forth programs
The phrase “Requiring the File Access word set” shall be appended to the label of Standard Programs that
require the system to provide the File Access word set.

The phrase “Requiring name(s) from the File Access Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the File Access Extensions word set.

The phrase “Requiring the File Access Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the File Access and File Access Extensions word sets.

11.6 Glossary

11.6.1 File Access words
11.6.1.0080 (“paren” FILE

(“ccc<paren>” --)

Extend the semantics of 6.1.0080 (to include:

When parsing from a text file, if the end of the parse area is reached before a right parenthesis
is found, refill the input buffer from the next line of the file, set >IN to zero, and resume
parsing, repeating this process until either a right parenthesis is found or the end of the file is
reached.

11.6.1.0765 BIN FILE

(fam1 -- fam2)

Modify the implementation-defined file access method fam1 to additionally select a “binary”,
i.e., not line oriented, file access method, giving access method fam2.

 See: 11.6.1.2054 R/O, 11.6.1.2056 R/W, 11.6.1.2425 W/O.

11.6.1.0900 CLOSE-FILE FILE

(fileid -- ior)

Close the file identified by fileid. ior is the implementation-defined I/O result code.

80 Collating Sequence:

 ANSI X3.215-1994

11.6.1.1010 CREATE-FILE FILE

(c-addr u fam -- fileid ior)

Create the file named in the character string specified by c-addr and u, and open it with file
access method fam. The meaning of values of fam is implementation defined. If a file with the
same name already exists, recreate it as an empty file.

If the file was successfully created and opened, ior is zero, fileid is its identifier, and the file has
been positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

11.6.1.1190 DELETE-FILE FILE

(c-addr u -- ior)

Delete the file named in the character string specified by c-addr u. ior is the implementation-
defined I/O result code.

11.6.1.1520 FILE-POSITION FILE

(fileid -- ud ior)

ud is the current file position for the file identified by fileid. ior is the implementation-defined
I/O result code. ud is undefined if ior is non-zero.

11.6.1.1522 FILE-SIZE FILE

(fileid -- ud ior)

ud is the size, in characters, of the file identified by fileid. ior is the implementation-defined
I/O result code. This operation does not affect the value returned by FILE-POSITION. ud is
undefined if ior is non-zero.

11.6.1.1717 INCLUDE-FILE FILE

(i*x fileid -- j*x)

Remove fileid from the stack. Save the current input source specification, including the current
value of SOURCE-ID. Store fileid in SOURCE-ID. Make the file specified by fileid the input
source. Store zero in BLK. Other stack effects are due to the words INCLUDEd.

Repeat until end of file: read a line from the file, fill the input buffer from the contents of that
line, set >IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 81

ANSI X3.215-1994

When the end of the file is reached, close the file and restore the input source specification to
its saved value.

An ambiguous condition exists if fileid is invalid, if there is an I/O exception reading fileid, or
if an I/O exception occurs while closing fileid. When an ambiguous condition exists, the status
(open or closed) of any files that were being interpreted is implementation-defined.

 See: 11.3.4 Input source.

11.6.1.1718 INCLUDED FILE

(i*x c-addr u -- j*x)

Remove c-addr u from the stack. Save the current input source specification, including the
current value of SOURCE-ID. Open the file specified by c-addr u, store the resulting fileid in
SOURCE-ID, and make it the input source. Store zero in BLK. Other stack effects are due to
the words included.

Repeat until end of file: read a line from the file, fill the input buffer from the contents of that
line, set >IN to zero, and interpret.

Text interpretation begins at the file position where the next file read would occur.

When the end of the file is reached, close the file and restore the input source specification to
its saved value.

An ambiguous condition exists if the named file can not be opened, if an I/O exception occurs
reading the file, or if an I/O exception occurs while closing the file. When an ambiguous
condition exists, the status (open or closed) of any files that were being interpreted is
implementation-defined.

 See: 11.6.1.1717 INCLUDE-FILE.

11.6.1.1970 OPEN-FILE FILE

(c-addr u fam -- fileid ior)

Open the file named in the character string specified by c-addr u, with file access method
indicated by fam. The meaning of values of fam is implementation defined.

If the file is successfully opened, ior is zero, fileid is its identifier, and the file has been
positioned to the start of the file.

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined.

11.6.1.2054 R/O “r-o” FILE

(-- fam)

fam is the implementation-defined value for selecting the “read only” file access method.

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

82 Collating Sequence:

 ANSI X3.215-1994

11.6.1.2056 R/W “r-w” FILE

(-- fam)

fam is the implementation-defined value for selecting the “read/write” file access method.

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

11.6.1.2080 READ-FILE FILE

(c-addr u1 fileid -- u2 ior)

Read u1 consecutive characters to c-addr from the current position of the file identified by
fileid.

If u1 characters are read without an exception, ior is zero and u2 is equal to u1.

If the end of the file is reached before u1 characters are read, ior is zero and u2 is the number of
characters actually read.

If the operation is initiated when the value returned by FILE-POSITION is equal to the value
returned by FILE-SIZE for the file identified by fileid, ior is zero and u2 is zero.

If an exception occurs, ior is the implementation-defined I/O result code, and u2 is the number
of characters transferred to c-addr without an exception.

An ambiguous condition exists if the operation is initiated when the value returned by FILE-
POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operation, FILE-POSITION returns the next file position after the
last character read.

11.6.1.2090 READ-LINE FILE

(c-addr u1 fileid -- u2 flag ior)

Read the next line from the file specified by fileid into memory at the address c-addr. At most
u1 characters are read. Up to two implementation-defined line-terminating characters may be
read into memory at the end of the line, but are not included in the count u2. The line buffer
provided by c-addr should be at least u1+2 characters long.

If the operation succeeded, flag is true and ior is zero. If a line terminator was received before
u1 characters were read, then u2 is the number of characters, not including the line terminator,
actually read (0 <= u2 <= u1). When u1 = u2 the line terminator has yet to be reached.

If the operation is initiated when the value returned by FILE-POSITION is equal to the value
returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero, and u2 is zero.
If ior is non-zero, an exception occurred during the operation and ior is the implementation-
defined I/O result code.

An ambiguous condition exists if the operation is initiated when the value returned by FILE-
POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid,
or if the requested operation attempts to read portions of the file not written.

At the conclusion of the operation, FILE-POSITION returns the next file position after the
last character read.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 83

ANSI X3.215-1994

11.6.1.2142 REPOSITION-FILE FILE

(ud fileid -- ior)

Reposition the file identified by fileid to ud. ior is the implementation-defined I/O result code.
An ambiguous condition exists if the file is positioned outside the file boundaries.

At the conclusion of the operation, FILE-POSITION returns the value ud.

11.6.1.2147 RESIZE-FILE FILE

(ud fileid -- ior)

Set the size of the file identified by fileid to ud. ior is the implementation-defined I/O result
code.

If the resultant file is larger than the file before the operation, the portion of the file added as a
result of the operation might not have been written.

At the conclusion of the operation, FILE-SIZE returns the value ud and FILE-POSITION
returns an unspecified value.

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.1.2165 S" “s-quote” FILE

Extend the semantics of 6.1.2165 S" to be:

 Interpretation: (“ccc<quote>” -- c-addr u)

Parse ccc delimited by " (double quote). Store the resulting string c-addr u at a temporary
location. The maximum length of the temporary buffer is implementation-dependent but shall
be no less than 80 characters. Subsequent uses of S" may overwrite the temporary buffer. At
least one such buffer shall be provided.

 Compilation: (“ccc<quote>” --)

Parse ccc delimited by " (double quote). Append the run-time semantics given below to the
current definition.

 Run-time: (-- c-addr u)

Return c-addr and u that describe a string consisting of the characters ccc.

 See: 3.4.1 Parsing, 6.2.0855 C", 6.1.2165 S", 11.3.5 Other transient regions.

11.6.1.2218 SOURCE-ID “source-i-d” FILE
(-- 0 | -1 | fileid)

Extend 6.2.2218 SOURCE-ID to include text-file input as follows:

SOURCE-ID Input source
 fileid Text file “fileid”
 -1 String (via EVALUATE)
 0 User input device

An ambiguous condition exists if SOURCE-ID is used when BLK contains a non-zero value.

84 Collating Sequence:

 ANSI X3.215-1994

11.6.1.2425 W/O “w-o” FILE

(-- fam)

fam is the implementation-defined value for selecting the “write only” file access method.

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE.

11.6.1.2480 WRITE-FILE FILE

(c-addr u fileid -- ior)

Write u characters from c-addr to the file identified by fileid starting at its current position. ior
is the implementation-defined I/O result code.

At the conclusion of the operation, FILE-POSITION returns the next file position after the
last character written to the file, and FILE-SIZE returns a value greater than or equal to the
value returned by FILE-POSITION.

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.1.2485 WRITE-LINE FILE

(c-addr u fileid -- ior)

Write u characters from c-addr followed by the implementation-dependent line terminator to
the file identified by fileid starting at its current position. ior is the implementation-defined I/O
result code.

At the conclusion of the operation, FILE-POSITION returns the next file position after the
last character written to the file, and FILE-SIZE returns a value greater than or equal to the
value returned by FILE-POSITION.

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE.

11.6.2 File-Access extension words
11.6.2.1524 FILE-STATUS FILE EXT

(c-addr u -- x ior)

Return the status of the file identified by the character string c-addr u. If the file exists, ior is
zero; otherwise ior is the implementation-defined I/O result code. x contains implementation-
defined information about the file.

11.6.2.1560 FLUSH-FILE FILE EXT

(fileid -- ior)

Attempt to force any buffered information written to the file referred to by fileid to be written
to mass storage, and the size information for the file to be recorded in the storage directory if
changed. If the operation is successful, ior is zero. Otherwise, it is an implementation-defined
I/O result code.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 85

ANSI X3.215-1994

11.6.2.2125 REFILL FILE EXT

(-- flag)

Extend the execution semantics of 6.2.2125 REFILL with the following:

When the input source is a text file, attempt to read the next line from the text-input file. If
successful, make the result the current input buffer, set >IN to zero, and return true. Otherwise
return false.

 See: 6.2.2125 REFILL, 7.6.2.2125 REFILL.

11.6.2.2130 RENAME-FILE FILE EXT

(c-addr1 u1 c-addr2 u2 -- ior)

Rename the file named by the character string c-addr1 u1 to the name in the character string c-
addr2 u2. ior is the implementation-defined I/O result code.

86 Collating Sequence:

 ANSI X3.215-1994

12. The optional Floating-Point word set

12.1 Introduction

12.2 Additional terms and notation

12.2.1 Definition of terms
float-aligned address: The address of a memory location at which a floating-point number can be
accessed.

double-float-aligned address: The address of a memory location at which a 64-bit IEEE double-precision
floating-point number can be accessed.

single-float-aligned address: The address of a memory location at which a 32-bit IEEE single-precision
floating-point number can be accessed.

IEEE floating-point number: A single- or double-precision floating-point number as defined in
ANSI/IEEE 754-1985.

12.2.2 Notation

12.2.2.1 Numeric notation

The following notation is used to define the syntax of the external representation of floating-point numbers:

– Each component of a floating-point number is defined with a rule consisting of the name of the
component (italicized in angle-brackets, e.g., <sign>), the characters := and a concatenation of tokens
and metacharacters;

– Tokens may be literal characters (in bold face, e.g., E) or rule names in angle brackets (e.g., <digit>);
– The metacharacter * is used to specify zero or more occurrences of the preceding token

(e.g., <digit>*);
– Tokens enclosed with [and] are optional (e.g., [<sign>]);
– Vertical bars separate choices from a list of tokens enclosed with braces (e.g., { + | - }).

12.2.2.2 Stack notation

Floating-point stack notation when the floating-point stack is separate from the data stack is:

(F: before -- after)

12.3 Additional usage requirements

12.3.1 Data types
Append table 12.1 to table 3.1.

Table 12.1 – Data Types
Symbol Data type Size on stack
r floating-point number implementation-defined
f-addr float-aligned address 1 cell
sf-addr single-float-aligned address 1 cell
df-addr double-float-aligned address 1 cell

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 87

ANSI X3.215-1994

12.3.1.1 Addresses

The set of float-aligned addresses is an implementation-defined subset of the set of aligned addresses.
Adding the size of a floating-point number to a float-aligned address shall produce a float-aligned address.

The set of double-float-aligned addresses is an implementation-defined subset of the set of aligned
addresses. Adding the size of a 64-bit IEEE double-precision floating-point number to a double-float-
aligned address shall produce a double-float-aligned address.

The set of single-float-aligned addresses is an implementation-defined subset of the set of aligned
addresses. Adding the size of a 32-bit IEEE single-precision floating-point number to a single-float-
aligned address shall produce a single-float-aligned address.

12.3.1.2 Floating-point numbers

The internal representation of a floating-point number, including the format and precision of the significand
and the format and range of the exponent, is implementation defined.

Any rounding or truncation of floating-point numbers is implementation defined.

12.3.2 Floating-point operations
“Round to nearest” means round the result of a floating-point operation to the representable value nearest
the result. If the two nearest representable values are equally near the result, the one having zero as its least
significant bit shall be delivered.

“Round toward negative infinity” means round the result of a floating-point operation to the representable
value nearest to and no greater than the result.

12.3.3 Floating-point stack
A last in, first out list that shall be used by all floating-point operators.

The width of the floating-point stack is implementation-defined. By default the floating-point stack shall be
separate from the data and return stacks. A program may determine whether floating-point numbers are
kept on the data stack by passing the string “FLOATING-STACK” to ENVIRONMENT?.

The size of a floating-point stack shall be at least 6 items.

A program that depends on the floating-point stack being larger than six items has an environmental
dependency.

12.3.4 Environmental queries
Append table 12.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 12.2 – Environmental query strings

String Value Data type Constant? Meaning
FLOATING flag no floating-point word set present
FLOATING-EXT flag no floating-point extensions word set present
FLOATING-STACK n yes If n = zero, floating-point numbers are kept

on the data stack; otherwise n is the
maximum depth of the separate floating-
point stack.

MAX-FLOAT r yes largest usable floating-point number

88 Collating Sequence:

 ANSI X3.215-1994

12.3.5 Address alignment
Since the address returned by a CREATEd word is not necessarily aligned for any particular class of
floating-point data, a program shall align the address (to be float aligned, single-float aligned, or double-
float aligned) before accessing floating-point data at the address.

See: 3.3.3.1 Address Alignment, 12.3.1.1 Addresses.

12.3.6 Variables
A program may address memory in data space regions made available by FVARIABLE. These regions
may be non-contiguous with regions subsequently allocated with , (comma) or ALLOT.

See: 3.3.3.3 Variables.

12.3.7 Text interpreter input number conversion
If the Floating-Point word set is present in the dictionary and the current base is DECIMAL, the input
number-conversion algorithm shall be extended to recognize floating-point numbers in this form:

Convertible string := <significand><exponent>

<significand> := [<sign>]<digits>[.<digits0>]
<exponent> := E[<sign>]<digits0>
<sign> := { + | - }
<digits> := <digit><digits0>
<digits0> := <digit>*
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 }

These are examples of valid representations of floating-point numbers in program source:

1E 1.E 1.E0 +1.23E-1 -1.23E+1

See: 3.4.1.3 Text interpreter input number conversion, 12.6.1.0558 >FLOAT.

12.4 Additional documentation requirements

12.4.1 System documentation

12.4.1.1 Implementation-defined options

– format and range of floating-point numbers (12.3.1 Data types, 12.6.1.2143 REPRESENT);
– results of 12.6.1.2143 REPRESENT when float is out of range;
– rounding or truncation of floating-point numbers (12.3.1.2 Floating-point numbers);
– size of floating-point stack (12.3.3 Floating-point stack);
– width of floating-point stack (12.3.3 Floating-point stack).

12.4.1.2 Ambiguous conditions

– DF@ or DF! is used with an address that is not double-float aligned;
– F@ or F! is used with an address that is not float aligned;
– floating point result out of range (e.g., in 12.6.1.1430 F/);
– SF@ or SF! is used with an address that is not single-float aligned;
– BASE is not decimal (12.6.1.2143 REPRESENT, 12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.);
– both arguments equal zero (12.6.2.1489 FATAN2);
– cosine of argument is zero for 12.6.2.1625 FTAN;
– d can't be precisely represented as float in 12.6.1.1130 D>F;
– dividing by zero (12.6.1.1430 F/);

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 89

ANSI X3.215-1994

– exponent too big for conversion (12.6.2.1203 DF!, 12.6.2.1204 DF@, 12.6.2.2202 SF!,
12.6.2.2203 SF@);

– float less than one (12.6.2.1477 FACOSH);
– float less than or equal to minus-one (12.6.2.1554 FLNP1);
– float less than or equal to zero (12.6.2.1553 FLN, 12.6.2.1557 FLOG);
– float less than zero (12.6.2.1487 FASINH, 12.6.2.1618 FSQRT);
– float magnitude greater than one (12.6.2.1476 FACOS, 12.6.2.1486 FASIN, 12.6.2.1491 FATANH);
– integer part of float can't be represented by d in 12.6.1.1470 F>D;
– string larger than pictured-numeric output area (12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.).

12.4.1.3 Other system documentation

– no additional requirements.

12.4.2 Program documentation

12.4.2.1 Environmental dependencies

– requiring the floating-point stack to be larger than six items (12.3.3 Floating-point stack).

12.4.2.2 Other program documentation

– no additional requirements.

12.5 Compliance and labeling

12.5.1 ANS Forth systems
The phrase “Providing the Floating-Point word set” shall be appended to the label of any Standard System
that provides all of the Floating-Point word set.

The phrase “Providing name(s) from the Floating-Point Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Floating-Point Extensions word set.

The phrase “Providing the Floating-Point Extensions word set” shall be appended to the label of any
Standard System that provides all of the Floating-Point and Floating-Point Extensions word sets.

12.5.2 ANS Forth programs
The phrase “Requiring the Floating-Point word set” shall be appended to the label of Standard Programs
that require the system to provide the Floating-Point word set.

The phrase “Requiring name(s) from the Floating-Point Extensions word set” shall be appended to the
label of Standard Programs that require the system to provide portions of the Floating-Point Extensions
word set.

The phrase “Requiring the Floating-Point Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Floating-Point and Floating-Point Extensions word
sets.

90 Collating Sequence:

 ANSI X3.215-1994

12.6 Glossary

12.6.1 Floating-Point words

12.6.1.0558 >FLOAT “to-float” FLOATING

(c-addr u -- true | false) (F: -- r |) or (c-addr u -- r true | false)

An attempt is made to convert the string specified by c-addr and u to internal floating-point
representation. If the string represents a valid floating-point number in the syntax below, its
value r and true are returned. If the string does not represent a valid floating-point number
only false is returned.

A string of blanks should be treated as a special case representing zero.

The syntax of a convertible string := <significand>[<exponent>]
<significand> := [<sign>]{<digits>[.<digits0>] | .<digits> }
<exponent> := <marker><digits0>
<marker> := {<e-form> | <sign-form>}
<e-form> := <e-char>[<sign-form>]
<sign-form> := { + | – }
<e-char>:= { D | d | E | e }

12.6.1.1130 D>F “d-to-f” FLOATING

(d --) (F: -- r) or (d -- r)

r is the floating-point equivalent of d. An ambiguous condition exists if d cannot be precisely
represented as a floating-point value.

12.6.1.1400 F! “f-store” FLOATING

(f-addr --) (F: r --) or (r f-addr --)

 Store r at f-addr.

12.6.1.1410 F* “f-star” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

Multiply r1 by r2 giving r3.

12.6.1.1420 F+ “f-plus” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

Add r1 to r2 giving the sum r3.

12.6.1.1425 F- “f-minus” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

Subtract r2 from r1, giving r3.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 91

ANSI X3.215-1994

12.6.1.1430 F/ “f-slash” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

Divide r1 by r2, giving the quotient r3. An ambiguous condition exists if r2 is zero, or the
quotient lies outside of the range of a floating-point number.

12.6.1.1440 F0< “f-zero-less-than” FLOATING

(-- flag) (F: r --) or (r -- flag)

flag is true if and only if r is less than zero.

12.6.1.1450 F0= “f-zero-equals” FLOATING

(-- flag) (F: r --) or (r -- flag)

flag is true if and only if r is equal to zero.

12.6.1.1460 F< “f-less-than” FLOATING

(-- flag) (F: r1 r2 --) or (r1 r2 -- flag)

flag is true if and only if r1 is less than r2.

12.6.1.1470 F>D “f-to-d” FLOATING

(-- d) (F: r --) or (r -- d)

d is the double-cell signed-integer equivalent of the integer portion of r. The fractional portion
of r is discarded. An ambiguous condition exists if the integer portion of r cannot be precisely
represented as a double-cell signed integer.

12.6.1.1472 F@ “f-fetch” FLOATING

(f-addr --) (F: -- r) or (f-addr -- r)

r is the value stored at f-addr.

12.6.1.1479 FALIGN “f-align” FLOATING

(--)

If the data-space pointer is not float aligned, reserve enough data space to make it so.

12.6.1.1483 FALIGNED “f-aligned” FLOATING

(addr -- f-addr)

f-addr is the first float-aligned address greater than or equal to addr.

92 Collating Sequence:

 ANSI X3.215-1994

12.6.1.1492 FCONSTANT “f-constant” FLOATING

(“<spaces>name” --) (F: r --) or (r “<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below.

name is referred to as an “f-constant”.

 name Execution: (--) (F: -- r) or (-- r)

Place r on the floating-point stack.

 See: 3.4.1 Parsing.

12.6.1.1497 FDEPTH “f-depth” FLOATING

(-- +n)

+n is the number of values contained on the default separate floating-point stack. If floating-
point numbers are kept on the data stack, +n is the current number of possible floating-point
values contained on the data stack.

12.6.1.1500 FDROP “f-drop” FLOATING

(F: r --) or (r --)

Remove r from the floating-point stack.

12.6.1.1510 FDUP “f-dupe” FLOATING

(F: r -- r r) or (r -- r r)

Duplicate r.

12.6.1.1552 FLITERAL “f-literal” FLOATING

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (F: r --) or (r --)

Append the run-time semantics given below to the current definition.

 Run-time: (F: -- r) or (-- r)

Place r on the floating-point stack.

12.6.1.1555 FLOAT+ “float-plus” FLOATING

(f-addr1 -- f-addr2)

Add the size in address units of a floating-point number to f-addr1, giving f-addr2.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 93

ANSI X3.215-1994

12.6.1.1556 FLOATS FLOATING

(n1 -- n2)

n2 is the size in address units of n1 floating-point numbers.

12.6.1.1558 FLOOR FLOATING

(F: r1 -- r2) or (r1 -- r2)

Round r1 to an integral value using the “round toward negative infinity” rule, giving r2.

12.6.1.1562 FMAX “f-max” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the greater of r1 and r2.

12.6.1.1565 FMIN “f-min” FLOATING

(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the lesser of r1 and r2.

12.6.1.1567 FNEGATE “f-negate” FLOATING

(F: r1 -- r2) or (r1 -- r2)

r2 is the negation of r1.

12.6.1.1600 FOVER “f-over” FLOATING

(F: r1 r2 -- r1 r2 r1) or (r1 r2 -- r1 r2 r1)

Place a copy of r1 on top of the floating-point stack.

12.6.1.1610 FROT “f-rote” FLOATING

(F: r1 r2 r3 -- r2 r3 r1) or (r1 r2 r3 -- r2 r3 r1)

Rotate the top three floating-point stack entries.

12.6.1.1612 FROUND “f-round” FLOATING

(F: r1 -- r2) or (r1 -- r2)

Round r1 to an integral value using the “round to nearest” rule, giving r2.

 See: 12.3.2 Floating-point operations.

12.6.1.1620 FSWAP “f-swap” FLOATING

(F: r1 r2 -- r2 r1) or (r1 r2 -- r2 r1)

Exchange the top two floating-point stack items.

94 Collating Sequence:

 ANSI X3.215-1994

12.6.1.1630 FVARIABLE “f-variable” FLOATING

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name
with the execution semantics defined below. Reserve 1 FLOATS address units of data space
at a float-aligned address.

name is referred to as an “f-variable”.

 name Execution: (--f-addr)

f-addr is the address of the data space reserved by FVARIABLE when it created name. A
program is responsible for initializing the contents of the reserved space.

 See: 3.4.1 Parsing.

12.6.1.2143 REPRESENT FLOATING

(c-addr u -- n flag1 flag2) (F: r --) or (r c-addr u -- n flag1 flag2)

At c-addr, place the character-string external representation of the significand of the floating-
point number r. Return the decimal-base exponent as n, the sign as flag1 and “valid result” as
flag2. The character string shall consist of the u most significant digits of the significand
represented as a decimal fraction with the implied decimal point to the left of the first digit, and
the first digit zero only if all digits are zero. The significand is rounded to u digits following
the “round to nearest” rule; n is adjusted, if necessary, to correspond to the rounded magnitude
of the significand. If flag2 is true then r was in the implementation-defined range of floating-
point numbers. If flag1 is true then r is negative.

An ambiguous condition exists if the value of BASE is not decimal ten.

When flag2 is false, n and flag1 are implementation defined, as are the contents of c-addr.
Under these circumstances, the string at c-addr shall consist of graphic characters.

 See: 3.2.1.2 Digit conversion, 6.1.0750 BASE, 12.3.2 Floating-point operations.

12.6.2 Floating-Point extension words

12.6.2.1203 DF! “d-f-store” FLOATING EXT

(df-addr --) (F: r --) or (r df-addr --)

Store the floating-point number r as a 64-bit IEEE double-precision number at df-addr. If the
significand of the internal representation of r has more precision than the IEEE double-
precision format, it will be rounded using the “round to nearest” rule. An ambiguous condition
exists if the exponent of r is too large to be accommodated in IEEE double-precision format.

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 95

ANSI X3.215-1994

12.6.2.1204 DF@ “d-f-fetch” FLOATING EXT

(df-addr --) (F: -- r) or (df-addr -- r)

Fetch the 64-bit IEEE double-precision number stored at df-addr to the floating-point stack as r
in the internal representation. If the IEEE double-precision significand has more precision than
the internal representation it will be rounded to the internal representation using the “round to
nearest” rule. An ambiguous condition exists if the exponent of the IEEE double-precision
representation is too large to be accommodated by the internal representation.

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.1205 DFALIGN “d-f-align” FLOATING EXT

(--)

If the data-space pointer is not double-float aligned, reserve enough data space to make it so.

 See: 12.3.1.1 Addresses.

12.6.2.1207 DFALIGNED “d-f-aligned” FLOATING EXT

(addr -- df-addr)

df-addr is the first double-float-aligned address greater than or equal to addr.

 See: 12.3.1.1 Addresses.

12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT

(df-addr1 -- df-addr2)

Add the size in address units of a 64-bit IEEE double-precision number to df-addr1, giving df-
addr2.

 See: 12.3.1.1 Addresses.

12.6.2.1209 DFLOATS “d-floats” FLOATING EXT

(n1 -- n2)

n2 is the size in address units of n1 64-bit IEEE double-precision numbers.

12.6.2.1415 F** “f-star-star” FLOATING EXT

(F: r1 r2 -- r3) or (r1 r2 -- r3)

Raise r1 to the power r2, giving the product r3.

96 Collating Sequence:

 ANSI X3.215-1994

12.6.2.1427 F. “f-dot” FLOATING EXT

(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack using fixed-point
notation:

[-] <digits>.<digits0>

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.

 See: 12.6.1.0558 >FLOAT.

12.6.2.1474 FABS “f-abs” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the absolute value of r1.

12.6.2.1476 FACOS “f-a-cos” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose cosine is r1. An ambiguous condition exists if |r1| is
greater than one.

12.6.2.1477 FACOSH “f-a-cosh” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic cosine is r1. An ambiguous condition exists if
r1 is less than one.

12.6.2.1484 FALOG “f-a-log” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

Raise ten to the power r1, giving r2.

12.6.2.1486 FASIN “f-a-sine” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose sine is r1. An ambiguous condition exists if |r1| is greater
than one.

12.6.2.1487 FASINH “f-a-cinch” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic sine is r1. An ambiguous condition exists if r1
is less than zero.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 97

ANSI X3.215-1994

12.6.2.1488 FATAN “f-a-tan” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the principal radian angle whose tangent is r1.

12.6.2.1489 FATAN2 “f-a-tan-two” FLOATING EXT

(F: r1 r2 -- r3) or (r1 r2 -- r3)

r3 is the radian angle whose tangent is r1/r2. An ambiguous condition exists if r1 and r2 are
zero.

12.6.2.1491 FATANH “f-a-tan-h” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the floating-point value whose hyperbolic tangent is r1. An ambiguous condition exists if
r1 is outside the range of -1E0 to 1E0.

12.6.2.1493 FCOS “f-cos” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the cosine of the radian angle r1.

12.6.2.1494 FCOSH “f-cosh” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic cosine of r1.

12.6.2.1513 FE. “f-e-dot” FLOATING EXT

(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack using engineering
notation, where the significand is greater than or equal to 1.0 and less than 1000.0 and the
decimal exponent is a multiple of three.

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.

 See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.

12.6.2.1515 FEXP “f-e-x-p” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

Raise e to the power r1, giving r2.

98 Collating Sequence:

 ANSI X3.215-1994

12.6.2.1516 FEXPM1 “f-e-x-p-m-one” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

Raise e to the power r1 and subtract one, giving r2.

12.6.2.1553 FLN “f-l-n” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the natural logarithm of r1. An ambiguous condition exists if r1 is less than or equal to
zero.

12.6.2.1554 FLNP1 “f-l-n-p-one” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the natural logarithm of the quantity r1 plus one. An ambiguous condition exists if r1 is
less than or equal to negative one.

12.6.2.1557 FLOG “f-log” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the base-ten logarithm of r1. An ambiguous condition exists if r1 is less than or equal to
zero.

12.6.2.1613 FS. “f-s-dot” FLOATING EXT

(--) (F: r --) or (r --)

Display, with a trailing space, the top number on the floating-point stack in scientific notation:

<significand><exponent>

where:

<significand> := [–]<digit>.<digits0>
<exponent> := E[–]<digits>

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character
string representation exceeds the size of the pictured numeric output string buffer.

 See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT.

12.6.2.1614 FSIN “f-sine” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the sine of the radian angle r1.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 99

ANSI X3.215-1994

12.6.2.1616 FSINCOS “f-sine-cos” FLOATING EXT

(F: r1 -- r2 r3) or (r1 -- r2 r3)

r2 is the sine of the radian angle r1. r3 is the cosine of the radian angle r1.

12.6.2.1617 FSINH “f-cinch” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic sine of r1.

12.6.2.1618 FSQRT “f-square-root” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the square root of r1. An ambiguous condition exists if r1 is less than zero.

12.6.2.1625 FTAN “f-tan” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the tangent of the radian angle r1. An ambiguous condition exists if cos(r1) is zero.

12.6.2.1626 FTANH “f-tan-h” FLOATING EXT

(F: r1 -- r2) or (r1 -- r2)

r2 is the hyperbolic tangent of r1.

12.6.2.1640 F~ “f-proximate” FLOATING EXT

(-- flag) (F: r1 r2 r3 --) or (r1 r2 r3 -- flag)

If r3 is positive, flag is true if the absolute value of (r1 minus r2) is less than r3.

If r3 is zero, flag is true if the implementation-dependent encoding of r1 and r2 are exactly
identical (positive and negative zero are unequal if they have distinct encodings).

If r3 is negative, flag is true if the absolute value of (r1 minus r2) is less than the absolute value
of r3 times the sum of the absolute values of r1 and r2.

12.6.2.2035 PRECISION FLOATING EXT

(-- u)

Return the number of significant digits currently used by F., FE., or FS. as u.

12.6.2.2200 SET-PRECISION FLOATING EXT

(u --)

Set the number of significant digits currently used by F., FE., or FS. to u.

100 Collating Sequence:

 ANSI X3.215-1994

12.6.2.2202 SF! “s-f-store” FLOATING EXT

(sf-addr --) (F: r --) or (r sf-addr --)

Store the floating-point number r as a 32-bit IEEE single-precision number at sf-addr. If the
significand of the internal representation of r has more precision than the IEEE single-precision
format, it will be rounded using the “round to nearest” rule. An ambiguous condition exists if
the exponent of r is too large to be accommodated by the IEEE single-precision format.

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.2203 SF@ “s-f-fetch” FLOATING EXT

(sf-addr --) (F: -- r) or (sf-addr -- r)

Fetch the 32-bit IEEE single-precision number stored at sf-addr to the floating-point stack as r
in the internal representation. If the IEEE single-precision significand has more precision than
the internal representation, it will be rounded to the internal representation using the “round to
nearest” rule. An ambiguous condition exists if the exponent of the IEEE single-precision
representation is too large to be accommodated by the internal representation.

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations.

12.6.2.2204 SFALIGN “s-f-align” FLOATING EXT

(--)

If the data-space pointer is not single-float aligned, reserve enough data space to make it so.

 See: 12.3.1.1 Addresses.

12.6.2.2206 SFALIGNED “s-f-aligned” FLOATING EXT

(addr -- sf-addr)

sf-addr is the first single-float-aligned address greater than or equal to addr.

 See: 12.3.1.1 Addresses.

12.6.2.2207 SFLOAT+ “s-float-plus” FLOATING EXT

(sf-addr1 -- sf-addr2)

Add the size in address units of a 32-bit IEEE single-precision number to sf-addr1, giving sf-
addr2.

 See: 12.3.1.1 Addresses.

12.6.2.2208 SFLOATS “s-floats” FLOATING EXT

(n1 -- n2)

n2 is the size in address units of n1 32-bit IEEE single-precision numbers.

 See: 12.3.1.1 Addresses.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 101

ANSI X3.215-1994

13. The optional Locals word set

13.1 Introduction
See: Annex A.13 The Locals Word Set.

13.2 Additional terms and notation
None.

13.3 Additional usage requirements

13.3.1 Locals
A local is a data object whose execution semantics shall return its value, whose scope shall be limited to the
definition in which it is declared, and whose use in a definition shall not preclude reentrancy or recursion.

13.3.2 Environmental queries
Append table 13.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 13.1 – Environmental query strings

String Value data type Constant? Meaning
#LOCALS n yes maximum number of local variables in a

definition
LOCALS flag no locals word set present
LOCALS-EXT flag no locals extensions word set present

13.3.3 Processing locals
To support the locals word set, a system shall provide a mechanism to receive the messages defined by
(LOCAL) and respond as described here.

During the compilation of a definition after : (colon), :NONAME, or DOES>, a program may begin sending
local identifier messages to the system. The process shall begin when the first message is sent. The
process shall end when the “last local” message is sent. The system shall keep track of the names, order,
and number of identifiers contained in the complete sequence.

13.3.3.1 Compilation semantics

The system, upon receipt of a sequence of local-identifier messages, shall take the following actions at
compile time:

a) Create temporary dictionary entries for each of the identifiers passed to (LOCAL), such that each
identifier will behave as a local. These temporary dictionary entries shall vanish at the end of the
definition, denoted by ; (semicolon), ;CODE, or DOES>. The system need not maintain these
identifiers in the same way it does other dictionary entries as long as they can be found by normal
dictionary searching processes. Furthermore, if the Search-Order word set is present, local identifiers
shall always be searched before any of the word lists in any definable search order, and none of the
Search-Order words shall change the locals’ privileged position in the search order. Local identifiers
may reside in mass storage.

102 Collating Sequence:

 ANSI X3.215-1994

b) For each identifier passed to (LOCAL), the system shall generate an appropriate code sequence that
does the following at execution time:
1) Allocate a storage resource adequate to contain the value of a local. The storage shall be allocated

in a way that does not preclude re-entrancy or recursion in the definition using the local.
2) Initialize the value using the top item on the data stack. If more than one local is declared, the top

item on the stack shall be moved into the first local identified, the next item shall be moved into
the second, and so on.

 The storage resource may be the return stack or may be implemented in other ways, such as in
registers. The storage resource shall not be the data stack. Use of locals shall not restrict use of the
data stack before or after the point of declaration.

c) Arrange that any of the legitimate methods of terminating execution of a definition, specifically ;
(semicolon), ;CODE, DOES> or EXIT, will release the storage resource allocated for the locals, if any,
declared in that definition. ABORT shall release all local storage resources, and CATCH / THROW (if
implemented) shall release such resources for all definitions whose execution is being terminated.

d) Separate sets of locals may be declared in defining words before DOES> for use by the defining word,
and after DOES> for use by the word defined.

A system implementing the Locals word set shall support the declaration of at least eight locals in a
definition.

13.3.3.2 Syntax restrictions

Immediate words in a program may use (LOCAL) to implement syntaxes for local declarations with the
following restrictions:

a) A program shall not compile any executable code into the current definition between the time
(LOCAL) is executed to identify the first local for that definition and the time of sending the single
required “last local” message;

b) The position in program source at which the sequence of (LOCAL) messages is sent, referred to here
as the point at which locals are declared, shall not lie within the scope of any control structure;

c) Locals shall not be declared until values previously placed on the return stack within the definition
have been removed;

d) After a definition’s locals have been declared, a program may place data on the return stack. However,
if this is done, locals shall not be accessed until those values have been removed from the return stack;

e) Words that return execution tokens, such as ' (tick), ['], or FIND, shall not be used with local
names;

f) A program that declares more than eight locals in a single definition has an environmental dependency;
g) Locals may be accessed or updated within control structures, including do-loops;
h) Local names shall not be referenced by POSTPONE and [COMPILE].

See: 3.4 The Forth text interpreter.

13.4 Additional documentation requirements

13.4.1 System documentation

13.4.1.1 Implementation-defined options

– maximum number of locals in a definition (13.3.3 Processing locals, 13.6.2.1795 LOCALS|).

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 103

ANSI X3.215-1994

13.4.1.2 Ambiguous conditions

– executing a named local while in interpretation state (13.6.1.0086 (LOCAL));
– name not defined by VALUE or LOCAL (13.6.1.2295 TO).

13.4.1.3 Other system documentation

– no additional requirements.

13.4.2 Program documentation

13.4.2.1 Environmental dependencies

– declaring more than eight locals in a single definition (13.3.3 Processing locals).

13.4.2.2 Other program documentation

– no additional requirements.

13.5 Compliance and labeling

13.5.1 ANS Forth systems
The phrase “Providing the Locals word set” shall be appended to the label of any Standard System that
provides all of the Locals word set.

The phrase “Providing name(s) from the Locals Extensions word set” shall be appended to the label of any
Standard System that provides portions of the Locals Extensions word set.

The phrase “Providing the Locals Extensions word set” shall be appended to the label of any Standard
System that provides all of the Locals and Locals Extensions word sets.

13.5.2 ANS Forth programs
The phrase “Requiring the Locals word set” shall be appended to the label of Standard Programs that
require the system to provide the Locals word set.

The phrase “Requiring name(s) from the Locals Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the Locals Extensions word set.

The phrase “Requiring the Locals Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Locals and Locals Extensions word sets.

104 Collating Sequence:

 ANSI X3.215-1994

13.6 Glossary

13.6.1 Locals words

13.6.1.0086 (LOCAL) “paren-local-paren” LOCAL

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (c-addr u --)

When executed during compilation, (LOCAL) passes a message to the system that has one of
two meanings. If u is non-zero, the message identifies a new local whose definition name is
given by the string of characters identified by c-addr u. If u is zero, the message is “last local”
and c-addr has no significance.

The result of executing (LOCAL) during compilation of a definition is to create a set of named
local identifiers, each of which is a definition name, that only have execution semantics within
the scope of that definition’s source.

 local Execution: (-- x)

Push the local’s value, x, onto the stack. The local’s value is initialized as described in 13.3.3
Processing locals and may be changed by preceding the local’s name with TO. An ambiguous
condition exists when local is executed while in interpretation state.

 Note: This word does not have special compilation semantics in the usual sense because it provides
access to a system capability for use by other user-defined words that do have them. However,
the locals facility as a whole and the sequence of messages passed defines specific usage rules
with semantic implications that are described in detail in section 13.3.3 Processing locals.

 Note: This word is not intended for direct use in a definition to declare that definition’s locals. It is
instead used by system or user compiling words. These compiling words in turn define their
own syntax, and may be used directly in definitions to declare locals. In this context, the
syntax for (LOCAL) is defined in terms of a sequence of compile-time messages and is
described in detail in section 13.3.3 Processing locals.

 Note: The Locals word set modifies the syntax and semantics of 6.2.2295 TO as defined in the Core
Extensions word set.

 See: 3.4 The Forth text interpreter.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 105

ANSI X3.215-1994

13.6.1.2295 TO LOCAL

Extend the semantics of 6.2.2295 TO to be:

 Interpretation: (x “<spaces>name” --)

Skip leading spaces and parse name delimited by a space. Store x in name. An ambiguous
condition exists if name was not defined by VALUE.

 Compilation: (“<spaces>name” --)

Skip leading spaces and parse name delimited by a space. Append the run-time semantics
given below to the current definition. An ambiguous condition exists if name was not defined
by either VALUE or (LOCAL).

 Run-time: (x --)

Store x in name.

 Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO.

 See: 3.4.1 Parsing, 6.2.2295 TO, 6.2.2405 VALUE, 13.6.1.0086 (LOCAL).

13.6.2 Locals extension words

13.6.2.1795 LOCALS| “locals-bar” LOCAL EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (“<spaces>name1” “<spaces>name2” ... “<spaces>namen” “|” --)

Create up to eight local identifiers by repeatedly skipping leading spaces, parsing name, and
executing 13.6.1.0086 (LOCAL). The list of locals to be defined is terminated by |. Append
the run-time semantics given below to the current definition.

 Run-time: (xn ... x2 x1 --)

Initialize up to eight local identifiers as described in 13.6.1.0086 (LOCAL), each of which
takes as its initial value the top stack item, removing it from the stack. Identifier name1 is
initialized with x1, identifier name2 with x2, etc. When invoked, each local will return its value.
The value of a local may be changed using 13.6.1.2295 TO.

106 Collating Sequence:

 ANSI X3.215-1994

14. The optional Memory-Allocation word set

14.1 Introduction

14.2 Additional terms and notation
None.

14.3 Additional usage requirements

14.3.1 I/O Results data type
I/O results are single-cell numbers indicating the result of I/O operations. A value of zero indicates that the
I/O operation completed successfully; other values and their meanings are implementation-defined.

Append table 14.1 to table 3.1.

Table 14.1 – Data types
Symbol Data type Size on stack
ior I/O results 1 cell

14.3.2 Environmental queries
Append table 14.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 14.2 – Environmental query strings

String Value data type Constant? Meaning
MEMORY-ALLOC flag no memory-allocation word set present
MEMORY-ALLOC-EXT flag no memory-allocation extensions word set

present

14.3.3 Allocated regions
A program may address memory in data space regions made available by ALLOCATE or RESIZE and not
yet released by FREE.

See: 3.3.3 Data space.

14.4 Additional documentation requirements

14.4.1 System documentation

14.4.1.1 Implementation-defined options

– values and meaning of ior (14.3.1 I/O Results data type, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE,
14.6.1.2145 RESIZE).

14.4.1.2 Ambiguous conditions

– no additional requirements.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 107

ANSI X3.215-1994

14.4.1.3 Other system documentation

– no additional requirements.

14.4.2 Program documentation
– no additional requirements.

14.5 Compliance and labeling

14.5.1 ANS Forth systems
The phrase “Providing the Memory-Allocation word set” shall be appended to the label of any Standard
System that provides all of the Memory-Allocation word set.

The phrase “Providing name(s) from the Memory-Allocation Extensions word set” shall be appended to the
label of any Standard System that provides portions of the Memory-Allocation Extensions word set.

The phrase “Providing the Memory-Allocation Extensions word set” shall be appended to the label of any
Standard System that provides all of the Memory-Allocation and Memory-Allocation Extensions word sets.

14.5.2 ANS Forth programs
The phrase “Requiring the Memory-Allocation word set” shall be appended to the label of Standard
Programs that require the system to provide the Memory-Allocation word set.

The phrase “Requiring name(s) from the Memory-Allocation Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Memory-Allocation
Extensions word set.

The phrase “Requiring the Memory-Allocation Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Memory-Allocation and Memory-
Allocation Extensions word sets.

108 Collating Sequence:

 ANSI X3.215-1994

14.6 Glossary

14.6.1 Memory-Allocation words
14.6.1.0707 ALLOCATE MEMORY

(u -- a-addr ior)

Allocate u address units of contiguous data space. The data-space pointer is unaffected by this
operation. The initial content of the allocated space is undefined.

If the allocation succeeds, a-addr is the aligned starting address of the allocated space and ior
is zero.

If the operation fails, a-addr does not represent a valid address and ior is the implementation-
defined I/O result code.

 See: 6.1.1650 HERE, 14.6.1.1605 FREE, 14.6.1.2145 RESIZE.

14.6.1.1605 FREE MEMORY

(a-addr -- ior)

Return the contiguous region of data space indicated by a-addr to the system for later
allocation. a-addr shall indicate a region of data space that was previously obtained by
ALLOCATE or RESIZE. The data-space pointer is unaffected by this operation.

If the operation succeeds, ior is zero. If the operation fails, ior is the implementation-defined
I/O result code.

 See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.2145 RESIZE.

14.6.1.2145 RESIZE MEMORY

(a-addr1 u -- a-addr2 ior)

Change the allocation of the contiguous data space starting at the address a-addr1, previously
allocated by ALLOCATE or RESIZE, to u address units. u may be either larger or smaller than
the current size of the region. The data-space pointer is unaffected by this operation.

If the operation succeeds, a-addr2 is the aligned starting address of u address units of allocated
memory and ior is zero. a-addr2 may be, but need not be, the same as a-addr1. If they are not
the same, the values contained in the region at a-addr1 are copied to a-addr2, up to the
minimum size of either of the two regions. If they are the same, the values contained in the
region are preserved to the minimum of u or the original size. If a-addr2 is not the same as a-
addr1, the region of memory at a-addr1 is returned to the system according to the operation of
FREE.

If the operation fails, a-addr2 equals a-addr1, the region of memory at a-addr1 is unaffected,
and ior is the implementation-defined I/O result code.

 See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE.

14.6.2 Memory-Allocation extension words
None

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 109

ANSI X3.215-1994

15. The optional Programming-Tools word set

15.1 Introduction
This optional word set contains words most often used during the development of applications.

15.2 Additional terms and notation
None.

15.3 Additional usage requirements

15.3.1 Environmental queries
Append table 15.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 15.1 – Environmental query strings

String Value data type Constant? Meaning
TOOLS flag no programming-tools word set present
TOOLS-EXT flag no programming-tools extensions word set

present

15.3.2 The Forth dictionary
A program using the words CODE or ;CODE associated with assembler code has an environmental
dependency on that particular instruction set and assembler notation.

Programs using the words EDITOR or ASSEMBLER require the Search Order word set or an equivalent
implementation-defined capability.

See: 3.3 The Forth dictionary.

15.4 Additional documentation requirements

15.4.1 System documentation

15.4.1.1 Implementation-defined options

– ending sequence for input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE;
– manner of processing input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE;
– search-order capability for 15.6.2.1300 EDITOR and 15.6.2.0740 ASSEMBLER (15.3.3 The Forth

dictionary);
– source and format of display by 15.6.1.2194 SEE.

15.4.1.2 Ambiguous conditions

– deleting the compilation word-list (15.6.2.1580 FORGET);
– fewer than u+1 items on control-flow stack (15.6.2.1015 CSPICK, 15.6.2.1020 CSROLL);
– name can't be found (15.6.2.1580 FORGET);
– name not defined via 6.1.1000 CREATE (15.6.2.0470 ;CODE);
– 6.1.2033 POSTPONE applied to 15.6.2.2532 [IF];

110 Collating Sequence:

 ANSI X3.215-1994

– reaching the end of the input source before matching 15.6.2.2531 [ELSE] or 15.6.2.2533 [THEN]
(15.6.2.2532 [IF]);

– removing a needed definition (15.6.2.1580 FORGET).

15.4.1.3 Other system documentation

– no additional requirements.

15.4.2 Program documentation

15.4.2.1 Environmental dependencies

– using the words 15.6.2.0470 ;CODE or 15.6.2.0930 CODE.

15.4.2.2 Other program documentation

– no additional requirements.

15.5 Compliance and labeling

15.5.1 ANS Forth systems
The phrase “Providing the Programming-Tools word set” shall be appended to the label of any Standard
System that provides all of the Programming-Tools word set.

The phrase “Providing name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of any Standard System that provides portions of the Programming-Tools Extensions word set.

The phrase “Providing the Programming-Tools Extensions word set” shall be appended to the label of any
Standard System that provides all of the Programming-Tools and Programming-Tools Extensions word
sets.

15.5.2 ANS Forth programs
The phrase “Requiring the Programming-Tools word set” shall be appended to the label of Standard
Programs that require the system to provide the Programming-Tools word set.

The phrase “Requiring name(s) from the Programming-Tools Extensions word set” shall be appended to
the label of Standard Programs that require the system to provide portions of the Programming-Tools
Extensions word set.

The phrase “Requiring the Programming-Tools Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide all of the Programming-Tools and Programming-
Tools Extensions word sets.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 111

ANSI X3.215-1994

15.6 Glossary

15.6.1 Programming-Tools words

15.6.1.0220 .S “dot-s” TOOLS

(--)

Copy and display the values currently on the data stack. The format of the display is
implementation-dependent.

.S may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See: 3.3.3.6 Other transient regions.

15.6.1.0600 ? “question” TOOLS

(a-addr --)

Display the value stored at a-addr.

? may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See: 3.3.3.6 Other transient regions.

15.6.1.1280 DUMP TOOLS

(addr u --)

Display the contents of u consecutive addresses starting at addr. The format of the display is
implementation dependent.

DUMP may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See: 3.3.3.6 Other Transient Regions.

15.6.1.2194 SEE TOOLS

(“<spaces>name” --)

Display a human-readable representation of the named word’s definition. The source of the
representation (object-code decompilation, source block, etc.) and the particular form of the
display is implementation defined.

SEE may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See: 3.3.3.6 Other transient regions.

112 Collating Sequence:

 ANSI X3.215-1994

15.6.1.2465 WORDS TOOLS

(--)

List the definition names in the first word list of the search order. The format of the display is
implementation-dependent.

WORDS may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See: 3.3.3.6 Other Transient Regions.

15.6.2 Programming-Tools extension words

15.6.2.0470 ;CODE “semicolon-code” TOOLS EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: colon-sys --)

Append the run-time semantics below to the current definition. End the current definition,
allow it to be found in the dictionary, and enter interpretation state, consuming colon-sys.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in an
implementation-defined manner, generating the corresponding machine code. The process
continues, refilling the input buffer as needed, until an implementation-defined ending
sequence is processed.

 Run-time: (--) (R: nest-sys --)

Replace the execution semantics of the most recent definition with the name execution
semantics given below. Return control to the calling definition specified by nest-sys. An
ambiguous condition exists if the most recent definition was not defined with CREATE or a
user-defined word that calls CREATE.

 name Execution: (i*x -- j*x)

Perform the machine code sequence that was generated following ;CODE.

 See: 6.1.1250 DOES>.

15.6.2.0702 AHEAD TOOLS EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (C: -- orig)

Put the location of a new unresolved forward reference orig onto the control flow stack.
Append the run-time semantics given below to the current definition. The semantics are
incomplete until orig is resolved (e.g., by THEN).

 Run-time: (--)

Continue execution at the location specified by the resolution of orig.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 113

ANSI X3.215-1994

15.6.2.0740 ASSEMBLER TOOLS EXT

(--)

Replace the first word list in the search order with the ASSEMBLER word list.

 See: 16. The optional Search-Order word set.

15.6.2.0830 BYE TOOLS EXT

(--)

Return control to the host operating system, if any.

15.6.2.0930 CODE TOOLS EXT

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Create a definition for name,
called a “code definition”, with the execution semantics defined below.

Subsequent characters in the parse area typically represent source code in a programming
language, usually some form of assembly language. Those characters are processed in an
implementation-defined manner, generating the corresponding machine code. The process
continues, refilling the input buffer as needed, until an implementation-defined ending
sequence is processed.

 name Execution: (i*x -- j*x)

Execute the machine code sequence that was generated following CODE.

 See: 3.4.1 Parsing.

15.6.2.1015 CS-PICK “c-s-pick” TOOLS EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (C: destu ... orig0|dest0 -- destu ... orig0|dest0 destu)
(S: u --)

Remove u. Copy destu to the top of the control-flow stack. An ambiguous condition exists if
there are less than u+1 items, each of which shall be an orig or dest, on the control-flow stack
before CS-PICK is executed.

If the control-flow stack is implemented using the data stack, u shall be the topmost item on the
data stack.

114 Collating Sequence:

 ANSI X3.215-1994

15.6.2.1020 CS-ROLL “c-s-roll” TOOLS EXT

 Interpretation: Interpretation semantics for this word are undefined.

 Execution: (C: origu|destu origu-1|destu-1 ... orig0|dest0 -- origu-1|destu-1 ... orig0|dest0 origu|destu)
(S: u --)

Remove u. Rotate u+1 elements on top of the control-flow stack so that origu|destu is on top of
the control-flow stack. An ambiguous condition exists if there are less than u+1 items, each of
which shall be an orig or dest, on the control-flow stack before CS-ROLL is executed.

If the control-flow stack is implemented using the data stack, u shall be the topmost item on the
data stack.

15.6.2.1300 EDITOR TOOLS EXT

(--)

Replace the first word list in the search order with the EDITOR word list.

 See: 16. The Optional Search-Order Word Set.

15.6.2.1580 FORGET TOOLS EXT

(“<spaces>name” --)

Skip leading space delimiters. Parse name delimited by a space. Find name, then delete name
from the dictionary along with all words added to the dictionary after name. An ambiguous
condition exists if name cannot be found.

If the Search-Order word set is present, FORGET searches the compilation word list. An
ambiguous condition exists if the compilation word list is deleted.

An ambiguous condition exists if FORGET removes a word required for correct execution.

 Note: This word is obsolescent and is included as a concession to existing implementations.

 See: 3.4.1 Parsing.

15.6.2.2250 STATE TOOLS EXT

(-- a-addr)

Extend the semantics of 6.1.2250 STATE to allow ;CODE to change the value in STATE. A
program shall not directly alter the contents of STATE.

 See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ;, 6.1.0670 ABORT, 6.1.2050 QUIT,
6.1.2250 STATE, 6.1.2500 [, 6.1.2540], 6.2.0455 :NONAME, 15.6.2.0470 ;CODE.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 115

ANSI X3.215-1994

15.6.2.2531 [ELSE] “bracket-else” TOOLS EXT

 Compilation: Perform the execution semantics given below.

 Execution: (“<spaces>name ... ” --)

Skipping leading spaces, parse and discard space-delimited words from the parse area,
including nested occurrences of [IF] ... [THEN] and [IF] ... [ELSE] ...
[THEN], until the word [THEN] has been parsed and discarded. If the parse area becomes
exhausted, it is refilled as with REFILL. [ELSE] is an immediate word.

 See: 3.4.1 Parsing.

15.6.2.2532 [IF] “bracket-if” TOOLS EXT

 Compilation: Perform the execution semantics given below.

 Execution: (flag | flag “<spaces>name ... ” --)

If flag is true, do nothing. Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrences of [IF] ... [THEN]
and [IF] ... [ELSE] ... [THEN], until either the word [ELSE] or the word
[THEN] has been parsed and discarded. If the parse area becomes exhausted, it is refilled as
with REFILL. [IF] is an immediate word.

An ambiguous condition exists if [IF] is POSTPONEd, or if the end of the input buffer is
reached and cannot be refilled before the terminating [ELSE] or [THEN] is parsed.

 See: 3.4.1 Parsing.

15.6.2.2533 [THEN] “bracket-then” TOOLS EXT

 Compilation: Perform the execution semantics given below.

 Execution: (--)

Does nothing. [THEN] is an immediate word.

116 Collating Sequence:

 ANSI X3.215-1994

16. The optional Search-Order word set
16.1 Introduction
16.2 Additional terms and notation

compilation word list: The word list into which new definition names are placed.

search order: A list of word lists specifying the order in which the dictionary will be searched.

16.3 Additional usage requirements

16.3.1 Data types
Word list identifiers are implementation-dependent single-cell values that identify word lists.

Append table 16.1 to table 3.1.

Table 16.1 – Data types
Symbol Data type Size on stack
wid word list identifiers 1 cell

See: 3.1 Data types, 3.4.2 Finding definition names, 3.4 The Forth text interpreter.

16.3.2 Environmental queries
Append table 16.2 to table 3.5.

See: 3.2.6 Environmental queries.

Table 16.2 – Environmental query strings

String Value data type Constant? Meaning
SEARCH-ORDER flag no search-order word set present
SEARCH-ORDER-EXT flag no search-order extensions word set present
WORDLISTS n yes maximum number of word lists usable in the

search order

16.3.3 Finding definition names
When searching a word list for a definition name, the system shall search each word list from its last
definition to its first. The search may encompass only a single word list, as with SEARCH-WORDLIST, or
all the word lists in the search order, as with the text interpreter and FIND.

Changing the search order shall only affect the subsequent finding of definition names in the dictionary.

A system with the Search-Order word set shall allow at least eight word lists in the search order.

An ambiguous condition exists if a program changes the compilation word list during the compilation of a
definition or before modification of the behavior of the most recently compiled definition with ;CODE,
DOES>, or IMMEDIATE.

A program that requires more than eight word lists in the search order has an environmental dependency.

See: 3.4.2 Finding definition names

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 117

ANSI X3.215-1994

16.3.4 Contiguous regions
The regions of data space produced by the operations described in 3.3.3.2 Contiguous regions may be
non-contiguous if WORDLIST is executed between allocations.

16.4 Additional documentation requirements

16.4.1 System documentation

16.4.1.1 Implementation-defined options

– maximum number of word lists in the search order (16.3.3 Finding definition names, 16.6.1.2197
SET-ORDER);

– minimum search order (16.6.1.2197 SET-ORDER, 16.6.2.1965 ONLY).

16.4.1.2 Ambiguous conditions

– changing the compilation word list (16.3.3 Finding definition names);
– search order empty (16.6.2.2037 PREVIOUS);
– too many word lists in search order (16.6.2.0715 ALSO).

16.4.1.3 Other system documentation

– no additional requirements.

16.4.2 Program documentation

16.4.2.1 Environmental dependencies

– requiring more than eight word-lists in the search order (16.3.3 Finding definition names).

16.4.2.2 Other program documentation

– no additional requirements.

16.5 Compliance and labeling

16.5.1 ANS Forth systems
The phrase “Providing the Search-Order word set” shall be appended to the label of any Standard System
that provides all of the Search-Order word set.

The phrase “Providing name(s) from the Search-Order Extensions word set” shall be appended to the label
of any Standard System that provides portions of the Search-Order Extensions word set.

The phrase “Providing the Search-Order Extensions word set” shall be appended to the label of any
Standard System that provides all of the Search-Order and Search-Order Extensions word sets.

16.5.2 ANS Forth programs
The phrase “Requiring the Search-Order word set” shall be appended to the label of Standard Programs
that require the system to provide the Search-Order word set.

The phrase “Requiring name(s) from the Search-Order Extensions word set” shall be appended to the label
of Standard Programs that require the system to provide portions of the Search-Order Extensions word set.

The phrase “Requiring the Search-Order Extensions word set” shall be appended to the label of Standard
Programs that require the system to provide all of the Search-Order and Search-Order Extensions word
sets.

118 Collating Sequence:

 ANSI X3.215-1994

16.6 Glossary

16.6.1 Search-Order words

16.6.1.1180 DEFINITIONS SEARCH

(--)

Make the compilation word list the same as the first word list in the search order. Specifies that
the names of subsequent definitions will be placed in the compilation word list. Subsequent
changes in the search order will not affect the compilation word list.

 See: 16.3.3 Finding Definition Names.

16.6.1.1550 FIND SEARCH

Extend the semantics of 6.1.1550 FIND to be:

(c-addr -- c-addr 0 | xt 1 | xt -1)

Find the definition named in the counted string at c-addr. If the definition is not found after
searching all the word lists in the search order, return c-addr and zero. If the definition is
found, return xt. If the definition is immediate, also return one (1); otherwise also return
minus-one (-1). For a given string, the values returned by FIND while compiling may differ
from those returned while not compiling.

 See: 3.4.2 Finding definition names, 6.1.0070 ', 6.1.1550 FIND, 6.1.2033 POSTPONE,
6.1.2510 ['], D.6.7 Immediacy.

16.6.1.1595 FORTH-WORDLIST SEARCH

(-- wid)

Return wid, the identifier of the word list that includes all standard words provided by the
implementation. This word list is initially the compilation word list and is part of the initial
search order.

16.6.1.1643 GET-CURRENT SEARCH

(-- wid)

Return wid, the identifier of the compilation word list.

16.6.1.1647 GET-ORDER SEARCH

(-- widn ... wid1 n)

Returns the number of word lists n in the search order and the word list identifiers widn ... wid1
identifying these word lists. wid1 identifies the word list that is searched first, and widn the
word list that is searched last. The search order is unaffected.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 119

ANSI X3.215-1994

16.6.1.2192 SEARCH-WORDLIST SEARCH

(c-addr u wid -- 0 | xt 1 | xt -1)

Find the definition identified by the string c-addr u in the word list identified by wid. If the
definition is not found, return zero. If the definition is found, return its execution token xt and
one (1) if the definition is immediate, minus-one (-1) otherwise.

16.6.1.2195 SET-CURRENT SEARCH

(wid --)

Set the compilation word list to the word list identified by wid.

16.6.1.2197 SET-ORDER SEARCH

(widn ... wid1 n --)

Set the search order to the word lists identified by widn ... wid1. Subsequently, word list wid1
will be searched first, and word list widn searched last. If n is zero, empty the search order. If
n is minus one, set the search order to the implementation-defined minimum search order. The
minimum search order shall include the words FORTH-WORDLIST and SET-ORDER. A
system shall allow n to be at least eight.

16.6.1.2460 WORDLIST SEARCH

(-- wid)

Create a new empty word list, returning its word list identifier wid. The new word list may be
returned from a pool of preallocated word lists or may be dynamically allocated in data space.
A system shall allow the creation of at least 8 new word lists in addition to any provided as part
of the system.

16.6.2 Search-Order extension words

16.6.2.0715 ALSO SEARCH EXT

(--)

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into
widn, ... wid2, wid1, wid1. An ambiguous condition exists if there are too many word lists in the
search order.

16.6.2.1590 FORTH SEARCH EXT

(--)

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into
widn, ... wid2, widFORTH-WORDLIST.

120 Collating Sequence:

 ANSI X3.215-1994

16.6.2.1965 ONLY SEARCH EXT

(--)

Set the search order to the implementation-defined minimum search order. The minimum
search order shall include the words FORTH-WORDLIST and SET-ORDER.

16.6.2.1985 ORDER SEARCH EXT

(--)

Display the word lists in the search order in their search order sequence, from first searched to
last searched. Also display the word list into which new definitions will be placed. The
display format is implementation dependent.

ORDER may be implemented using pictured numeric output words. Consequently, its use may
corrupt the transient region identified by #>.

 See 3.3.3.6 Other Transient Regions.

16.6.2.2037 PREVIOUS SEARCH EXT

(--)

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into
widn, ... wid2. An ambiguous condition exists if the search order was empty before PREVIOUS
was executed.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 121

ANSI X3.215-1994

17. The optional String word set

17.1 Introduction

17.2 Additional terms and notation
None.

17.3 Additional usage requirements
Append table 17.1 to table 3.5.

See: 3.2.6 Environmental queries.

Table 17.1 – Environmental query strings

String Value data type Constant? Meaning
STRING flag no string word set present
STRING-EXT flag no string extensions word set present

17.4 Additional documentation requirements
None.

17.5 Compliance and labeling

17.5.1 ANS Forth systems
The phrase “Providing the String word set” shall be appended to the label of any Standard System that
provides all of the String word set.

The phrase “Providing name(s) from the String Extensions word set” shall be appended to the label of any
Standard System that provides portions of the String Extensions word set.

The phrase “Providing the String Extensions word set” shall be appended to the label of any Standard
System that provides all of the String and String Extensions word sets.

17.5.2 ANS Forth programs
The phrase “Requiring the String word set” shall be appended to the label of Standard Programs that
require the system to provide the String word set.

The phrase “Requiring name(s) from the String Extensions word set” shall be appended to the label of
Standard Programs that require the system to provide portions of the String Extensions word set.

The phrase “Requiring the String Extensions word set” shall be appended to the label of Standard Programs
that require the system to provide all of the String and String Extensions word sets.

122 Collating Sequence:

 ANSI X3.215-1994

17.6 Glossary

17.6.1 String words

17.6.1.0170 -TRAILING “dash-trailing” STRING

(c-addr u1 -- c-addr u2)

If u1 is greater than zero, u2 is equal to u1 less the number of spaces at the end of the character
string specified by c-addr u1. If u1 is zero or the entire string consists of spaces, u2 is zero.

17.6.1.0245 /STRING “slash-string” STRING

(c-addr1 u1 n -- c-addr2 u2)

Adjust the character string at c-addr1 by n characters. The resulting character string, specified
by c-addr2 u2, begins at c-addr1 plus n characters and is u1 minus n characters long.

17.6.1.0780 BLANK STRING

(c-addr u --)

If u is greater than zero, store the character value for space in u consecutive character positions
beginning at c-addr.

17.6.1.0910 CMOVE “c-move” STRING

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1
to that starting at c-addr2, proceeding character-by-character from lower addresses to higher
addresses.

 Contrast with: 17.6.1.0920 CMOVE>.

17.6.1.0920 CMOVE> “c-move-up” STRING

(c-addr1 c-addr2 u --)

If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1
to that starting at c-addr2, proceeding character-by-character from higher addresses to lower
addresses.

 Contrast with: 17.6.1.0910 CMOVE.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 123

ANSI X3.215-1994

17.6.1.0935 COMPARE STRING

(c-addr1 u1 c-addr2 u2 -- n)

Compare the string specified by c-addr1 u1 to the string specified by c-addr2 u2. The strings
are compared, beginning at the given addresses, character by character, up to the length of the
shorter string or until a difference is found. If the two strings are identical, n is zero. If the two
strings are identical up to the length of the shorter string, n is minus-one (-1) if u1 is less than
u2 and one (1) otherwise. If the two strings are not identical up to the length of the shorter
string, n is minus-one (-1) if the first non-matching character in the string specified by c-addr1
u1 has a lesser numeric value than the corresponding character in the string specified by c-
addr2 u2 and one (1) otherwise.

17.6.1.2191 SEARCH STRING

(c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag)

Search the string specified by c-addr1 u1 for the string specified by c-addr2 u2. If flag is true, a
match was found at c-addr3 with u3 characters remaining. If flag is false there was no match
and c-addr3 is c-addr1 and u3 is u1.

17.6.1.2212 SLITERAL STRING

 Interpretation: Interpretation semantics for this word are undefined.

 Compilation: (c-addr1 u --)

Append the run-time semantics given below to the current definition.

 Run-time: (-- c-addr2 u)

Return c-addr2 u describing a string consisting of the characters specified by c-addr1 u during
compilation. A program shall not alter the returned string.

17.6.2 String extension words

None

124 Collating Sequence:

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 125

A. Rationale (informative annex)

A.1 Introduction

A.1.1 Purpose

A.1.2 Scope
This Standard is more extensive than previous industry standards for the Forth language. Several things
made this necessary:

– the desire to resolve conflicts between previous standards;
– the need to eliminate semantic ambiguities and other inadequacies;
– the requirement to standardize common practice, where possible resolving divergences in a way that

minimizes the cost of compliance;
– the desire to standardize common system techniques, including those germane to hardware.

The result of the effort to satisfy all of these objectives is a Standard arranged so that the required word set
remains small. Thus ANS Forth can be provided for resource-constrained embedded systems. Words
beyond those in the required word set are organized into a number of optional word sets and their
extensions, enabling implementation of tailored systems that are Standard.

When judging relative merits, the members of the X3J14 Technical Committee were guided by the
following goals (listed in alphabetic order):

Consistency The Standard provides a functionally complete set of words with minimal
functional overlap.

Cost of compliance This goal includes such issues as common practice, how much existing code
would be broken by the proposed change, and the amount of effort required to
bring existing applications and systems into conformity with the Standard.

Efficiency Execution speed, memory compactness.

Portability Words chosen for inclusion should be free of system-dependent features.

Readability Forth definition names should clearly delineate their behavior. That behavior
should have an apparent simplicity which supports rapid understanding. Forth
should be easily taught and support readily maintained code.

Utility Be judged to have sufficiently essential functionality and frequency of use to be
deemed suitable for inclusion.

A.1.3 Document organization

A.1.3.1 Word sets

From the beginning, the X3J14 Technical Committee faced not only conflicting ideas as to what “real”
Forth is, but also conflicting needs of the various groups within the Forth community. At one extreme
were those who pressed for a “bare” Forth. At the other extreme were those who wanted a “fat” Forth.
Many were somewhere in between. All were convinced of the rightness of their own position and of the
wrongness of at least one of the two extremes. The committee’s composition reflected this full range of
interests.

The approach we have taken is to define a Core word set establishing a greatest lower bound for required
system functionality and to provide a portfolio of optional word sets for special purposes. This simple
approach parallels the fundamental nature of Forth as an extensible language, and thereby achieves a kind
of meta-extensibility.

ANSI X3.215-1994

 Collating Sequence: 126

With this key, high-level compromise, regardless of the actual makeup of the individual word sets, a firm
and workable framework is established for the long term. One may or may not agree that there should be a
Locals word set, or that the word COMPILE, belongs in the Core Extensions word set. But at least there is
a mechanism whereby such things can be included in a logical and orderly manner.

Several implications of this scheme of optional word sets are significant.

First, ANS Forth systems can continue to be implemented on a greater range of hardware than could be
claimed by almost any other single language. Since only the Core word set is required, very limited
hardware will be able to accommodate an ANS Forth implementation.

Second, a greater degree of portability of applications, and of programmers, is anticipated. The optional
word sets standardize various functions (e.g., floating point) that were widely implemented before, but not
with uniform definition names and methodologies, nor the same levels of completeness. With such words
now standardized in the optional word sets, communications between programmers – verbally, via
magazine or journal articles, etc. – will leap to a new level of facility, and the shareability of code and
applications should rise dramatically.

Third, ANS Forth systems may be designed to offer the user the power to selectively, even dynamically,
include or exclude one or more of the optional word sets or portions thereof. Also, lower-priced products
may be offered for the user who needs the Core word set and not much more. Thus, virtually unlimited
flexibility will be available to the user.

But these advantages have a price. The burden is on the user to decide what capabilities are desired, and to
select product offerings accordingly, especially when portability of applications is important. We do not
expect most implementors to attempt to provide all word sets, but rather to select those most valuable to
their intended markets.

The basic requirement is that if the implementor claims to have a particular optional word set the entire
required portion of that word set must be available. If the implementor wishes to offer only part of an
optional word set, it is acceptable to say, for example, “This system offers portions of the [named] word
set”, particularly if the selected or excluded words are itemized clearly.

Each optional word set will probably appeal to a particular constituency. For example, scientists
performing complex mathematical analysis may place a higher value on the Floating-Point word set than
programmers developing simple embedded controllers. As in the case of the core extensions, we expect
implementors to offer those word sets they expect will be valued by their users.

Optional word sets may be offered in source form or otherwise factored so that the user may selectively
load them.

The extensions to the optional word sets include words which are deemed less essential to performing the
primary activity supported by the word set, though clearly relevant to it. As in the case of the Core
Extensions, implementors may selectively add itemized subsets of a word set extension providing the
labeling doesn’t mislead the user into thinking incorrectly that all words are present.

A.2 Terms and notation

A.2.1 Definitions of terms
ambiguous condition

The response of a Standard System to an ambiguous condition is left to the discretion of the implementor.
A Standard System need not explicitly detect or report the occurrence of ambiguous conditions.

cross compiler

Cross-compilers may be used to prepare a program for execution in an embedded system, or may be used
to generate Forth kernels either for the same or a different run-time environment.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 127

data field

In earlier standards, data fields were known as “parameter fields”.

On subroutine threaded Forth systems, everything is object code. There are no traditional code or data
fields. Only a word defined by CREATE or by a word that calls CREATE has a data field. Only a data field
defined via CREATE can be manipulated portably.

word set

This Standard recognizes that some functions, while useful in certain application areas, are not sufficiently
general to justify requiring them in all Forth systems. Further, it is helpful to group Forth words according
to related functions. These issues are dealt with using the concept of word sets.

The “Core” word set contains the essential body of words in a Forth system. It is the only “required” word
set. Other word sets defined in this Standard are optional additions to make it possible to provide Standard
Systems with tailored levels of functionality.

A.2.2 Notation

A.2.2.2 Stack notation

The use of -sys, orig, and dest data types in stack effect diagrams conveys two pieces of information. First,
it warns the reader that many implementations use the data stack in unspecified ways for those purposes, so
that items underneath on either the control-flow or data stacks are unavailable. Second, in cases where orig
and dest are used, explicit pairing rules are documented on the assumption that all systems will implement
that model so that its results are equivalent to employment of some stack, and that in fact many
implementations do use the data stack for this purpose. However, nothing in this Standard requires that
implementations actually employ the data stack (or any other) for this purpose so long as the implied
behavior of the model is maintained.

A.3 Usage requirements
Forth systems are unusually simple to develop, in comparison with compilers for more conventional
languages such as C. In addition to Forth systems supported by vendors, public-domain implementations
and implementation guides have been widely available for nearly twenty years, and a large number of
individuals have developed their own Forth systems. As a result, a variety of implementation approaches
have developed, each optimized for a particular platform or target market.

The X3J14 Technical Committee has endeavored to accommodate this diversity by constraining
implementors as little as possible, consistent with a goal of defining a standard interface between an
underlying Forth System and an application program being developed on it.

Similarly, we will not undertake in this section to tell you how to implement a Forth System, but rather will
provide some guidance as to what the minimum requirements are for systems that can properly claim
compliance with this Standard.

A.3.1 Data-types
Most computers deal with arbitrary bit patterns. There is no way to determine by inspection whether a cell
contains an address or an unsigned integer. The only meaning a datum possesses is the meaning assigned
by an application.

When data are operated upon, the meaning of the result depends on the meaning assigned to the input
values. Some combinations of input values produce meaningless results: for instance, what meaning can be
assigned to the arithmetic sum of the ASCII representation of the character “A” and a TRUE flag? The
answer may be “no meaning”; or alternatively, that operation might be the first step in producing a
checksum. Context is the determiner.

ANSI X3.215-1994

 Collating Sequence: 128

The discipline of circumscribing meaning which a program may assign to various combinations of bit
patterns is sometimes called data typing. Many computer languages impose explicit data typing and have
compilers that prevent ill-defined operations.

Forth rarely explicitly imposes data-type restrictions. Still, data types implicitly do exist, and discipline is
required, particularly if portability of programs is a goal. In Forth, it is incumbent upon the programmer
(rather than the compiler) to determine that data are accurately typed.

This section attempts to offer guidance regarding de facto data typing in Forth.

A.3.1.2 Character types

The correct identification and proper manipulation of the character data type is beyond the purview of
Forth’s enforcement of data type by means of stack depth. Characters do not necessarily occupy the entire
width of their single stack entry with meaningful data. While the distinction between signed and unsigned
character is entirely absent from the formal specification of Forth, the tendency in practice is to treat
characters as short positive integers when mathematical operations come into play.

a) Standard Character Set

1) The storage unit for the character data type (C@, C!, FILL, etc.) must be able to contain unsigned
numbers from 0 through 255.

2) An implementation is not required to restrict character storage to that range, but a Standard Program
without environmental dependencies cannot assume the ability to store numbers outside that range in a
“char” location.

3) The allowed number representations are two’s-complement, one’s-complement, and signed-magnitude.
Note that all of these number systems agree on the representation of positive numbers.

4) Since a “char” can store small positive numbers and since the character data type is a sub-range of the
unsigned integer data type, C! must store the n least-significant bits of a cell (8 <= n <= bits/cell). Given
the enumeration of allowed number representations and their known encodings, “TRUE xx C! xx C@”
must leave a stack item with some number of bits set, which will thus will be accepted as non-zero by IF.

5) For the purposes of input (KEY, ACCEPT, etc.) and output (EMIT, TYPE, etc.), the encoding between
numbers and human-readable symbols is ISO646/IRV (ASCII) within the range from 32 to 126 (space
to ~). EBCDIC is out (most “EBCDIC” computer systems support ASCII too). Outside that range, it is up
to the implementation. The obvious implementation choice is to use ASCII control characters for the range
from 0 to 31, at least for the “displayable” characters in that range (TAB, RETURN, LINEFEED,
FORMFEED). However, this is not as clear-cut as it may seem, because of the variation between operating
systems on the treatment of those characters. For example, some systems TAB to 4 character boundaries,
others to 8 character boundaries, and others to preset tab stops. Some systems perform an automatic
linefeed after a carriage return, others perform an automatic carriage return after a linefeed, and others do
neither.

The codes from 128 to 255 may eventually be standardized, either formally or informally, for use as
international characters, such as the letters with diacritical marks found in many European languages. One
such encoding is the 8-bit ISO Latin-1 character set. The computer marketplace at large will eventually
decide which encoding set of those characters prevails. For Forth implementations running under an
operating system (the majority of those running on standard platforms these days), most Forth
implementors will probably choose to do whatever the system does, without performing any remapping
within the domain of the Forth system itself.

6) A Standard Program can depend on the ability to receive any character in the range 32 ... 126 through
KEY, and similarly to display the same set of characters with EMIT. If a program must be able to receive
or display any particular character outside that range, it can declare an environmental dependency on the
ability to receive or display that character.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 129

7) A Standard Program cannot use control characters in definition names. However, a Standard System is
not required to enforce this prohibition. Thus, existing systems that currently allow control characters in
words names from BLOCK source may continue to allow them, and programs running on those systems will
continue to work. In text file source, the parsing action with space as a delimiter (e.g., BL WORD) treats
control characters the same as spaces. This effectively implies that you cannot use control characters in
definition names from text-file source, since the text interpreter will treat the control characters as
delimiters. Note that this “control-character folding” applies only when space is the delimiter, thus the
phrase “CHAR) WORD” may collect a string containing control characters.

b) Storage and retrieval

Characters are transferred from the data stack to memory by C! and from memory to the data stack by C@.
A number of lower-significance bits equivalent to the implementation-dependent width of a character are
transferred from a popped data stack entry to an address by the action of C! without affecting any bits
which may comprise the higher-significance portion of the cell at the destination address; however, the
action of C@ clears all higher-significance bits of the data stack entry which it pushes that are beyond the
implementation-dependent width of a character (which may include implementation-defined display
information in the higher-significance bits). The programmer should keep in mind that operating upon
arbitrary stack entries with words intended for the character data type may result in truncation of such data.

c) Manipulation on the stack

In addition to C@ and C!, characters are moved to, from and upon the data stack by the following words:

>R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

d) Additional operations

The following mathematical operators are valid for character data:

+ - * / /MOD MOD

The following comparison and bitwise operators may be valid for characters, keeping in mind that display
information cached in the most significant bits of characters in an implementation-defined fashion may
have to be masked or otherwise dealt with:

AND OR > < U> U< = <> 0= 0<> MAX MIN
LSHIFT RSHIFT

A.3.1.3 Single-cell types

A single-cell stack entry viewed without regard to typing is the fundamental data type of Forth. All other
data types are actually represented by one or more single-cell stack entries.

a) Storage and retrieval

Single-cell data are transferred from the stack to memory by !; from memory to the stack by @. All bits are
transferred in both directions and no type checking of any sort is performed, nor does the Standard System
check that a memory address used by ! or @ is properly aligned or properly sized to hold the datum thus
transferred.

b) Manipulation on the stack

Here is a selection of the most important words which move single-cell data to, from and upon the data
stack:

! @ >R ?DUP DROP DUP OVER PICK R> R@ ROLL ROT SWAP

c) Comparison operators

The following comparison operators are universally valid for one or more single cells:

ANSI X3.215-1994

 Collating Sequence: 130

= <> 0= 0<>

A.3.1.3.1 Flags

A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag is a single-cell datum with all bits
set. While Forth words which test flags accept any non-null bit pattern as true, there exists the concept of
the well-formed flag. If an operation whose result is to be used as a flag may produce any bit-mask other
than TRUE or FALSE, the recommended discipline is to convert the result to a well-formed flag by means
of the Forth word 0<> so that the result of any subsequent logical operations on the flag will be
predictable.

In addition to the words which move, fetch and store single-cell items, the following words are valid for
operations on one or more flag data residing on the data stack:

AND OR XOR INVERT

A.3.1.3.2 Integers

A single-cell datum may be treated by a Standard Program as a signed integer. Moving and storing such
data is performed as for any single-cell data. In addition to the universally-applicable operators for single-
cell data specified above, the following mathematical and comparison operators are valid for single-cell
signed integers:

* */ */MOD /MOD MOD + +! - / 1+ 1- ABS MAX MIN NEGATE
0< 0> < >

Given the same number of bits, unsigned integers usually represent twice the number of absolute values
representable by signed integers.

A single-cell datum may be treated by a Standard Program as an unsigned integer. Moving and storing
such data is performed as for any single-cell data. In addition, the following mathematical and comparison
operators are valid for single-cell unsigned integers:

UM* UM/MOD + +! - 1+ 1- * U< U>

A.3.1.3.3 Addresses

An address is uniquely represented as a single cell unsigned number and can be treated as such when being
moved to, from, or upon the stack. Conversely, each unsigned number represents a unique address (which
is not necessarily an address of accessible memory). This one-to-one relationship between addresses and
unsigned numbers forces an equivalence between address arithmetic and the corresponding operations on
unsigned numbers.

Several operators are provided specifically for address arithmetic:

CHAR+ CHARS CELL+ CELLS

and, if the floating-point word set is present:

FLOAT+ FLOATS SFLOAT+ SFLOATS DFLOAT+ DFLOATS

A Standard Program may never assume a particular correspondence between a Forth address and the
physical address to which it is mapped.

A.3.1.3.4 Counted strings

The trend in ANS Forth is to move toward the consistent use of the “c-addr u” representation of strings on
the stack. The use of the alternate “address of counted string” stack representation is discouraged. The
traditional Forth words WORD and FIND continue to use the “address of counted string” representation for

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 131

historical reasons. The new word C" , added as a porting aid for existing programs, also uses the counted
string representation.

Counted strings remain useful as a way to store strings in memory. This use is not discouraged, but when
references to such strings appear on the stack, it is preferable to use the “c-addr u” representation.

A.3.1.3.5 Execution tokens

The association between an execution token and a definition is static. Once made, it does not change with
changes in the search order or anything else. However it may not be unique, e.g., the phrases
 ' 1+ and
 ' CHAR+
might return the same value.

A.3.1.4 Cell-pair types

a) Storage and retrieval

Two operators are provided to fetch and store cell pairs:

2@ 2!

b) Manipulation on the stack

Additionally, these operators may be used to move cell pairs from, to and upon the stack:

2>R 2DROP 2DUP 2OVER 2R> 2SWAP 2ROT

c) Comparison

The following comparison operations are universally valid for cell pairs:

D= D0=

A.3.1.4.1 Double-Cell Integers

If a double-cell integer is to be treated as signed, the following comparison and mathematical operations
are valid:

D+ D- D< D0< DABS DMAX DMIN DNEGATE M*/ M+

If a double-cell integer is to be treated as unsigned, the following comparison and mathematical operations
are valid:

D+ D- UM/MOD DU<

A.3.1.4.2 Character strings

See: A.3.1.3.4 Counted Strings.

A.3.2 The Implementation environment

A.3.2.1 Numbers

Traditionally, Forth has been implemented on two’s-complement machines where there is a one-to-one
mapping of signed numbers to unsigned numbers – any single cell item can be viewed either as a signed or
unsigned number. Indeed, the signed representation of any positive number is identical to the equivalent
unsigned representation. Further, addresses are treated as unsigned numbers: there is no distinct pointer
type. Arithmetic ordering on two’s complement machines allows + and - to work on both signed and
unsigned numbers. This arithmetic behavior is deeply embedded in common Forth practice.

ANSI X3.215-1994

 Collating Sequence: 132

As a consequence of these behaviors, the likely ranges of signed and unsigned numbers for
implementations hosted on each of the permissible arithmetic architectures is:

Arithmetic architecture signed numbers unsigned numbers

Two’s complement -n-1 to n 0 to 2n+1
One’s complement -n to n 0 to n
Signed magnitude -n to n 0 to n

where n is the largest positive signed number. For all three architectures, signed numbers in the 0 to n
range are bitwise identical to the corresponding unsigned number. Note that unsigned numbers on a signed
magnitude machine are equivalent to signed non-negative numbers as a consequence of the forced
correspondence between addresses and unsigned numbers and of the required behavior of + and -.

For reference, these number representations may be defined by the way that NEGATE is implemented:

two’s complement: : NEGATE INVERT 1+ ;
one’s complement: : NEGATE INVERT ;
signed-magnitude: : NEGATE HIGH-BIT XOR ;

where HIGH-BIT is a bit mask with only the most-significant bit set. Note that all of these number
systems agree on the representation of non-negative numbers.

Per 3.2.1.1 Internal number representation and 6.1.0270 0=, the implementor must ensure that no
standard or supported word return negative zero for any numeric (non-Boolean or flag) result. Many
existing programmer assumptions will be violated otherwise.

There is no requirement to implement circular unsigned arithmetic, nor to set the range of unsigned
numbers to the full size of a cell. There is historical precedent for limiting the range of u to that of +n,
which is permissible when the cell size is greater than 16 bits.

A.3.2.1.2 Digit conversion

For example, an implementation might convert the characters “a” through “z” identically to the characters
“A” through “Z”, or it might treat the characters “ [” through “~” as additional digits with decimal values
36 through 71, respectively.

A.3.2.2 Arithmetic

A.3.2.2.1 Integer division

The Forth-79 Standard specifies that the signed division operators (/, /MOD, MOD, */MOD, and */) round
non-integer quotients towards zero (symmetric division). Forth 83 changed the semantics of these
operators to round towards negative infinity (floored division). Some in the Forth community have
declined to convert systems and applications from the Forth-79 to the Forth-83 divide. To resolve this
issue, an ANS Forth system is permitted to supply either floored or symmetric operators. In addition, ANS
Forth systems must provide a floored division primitive (FM/MOD), a symmetric division primitive
(SM/REM), and a mixed precision multiplication operator (M*).

This compromise protects the investment made in current Forth applications; Forth-79 and Forth-83
programs are automatically compliant with ANS Forth with respect to division. In practice, the rounding
direction rarely matters to applications. However, if a program requires a specific rounding direction, it
can use the floored division primitive FM/MOD or the symmetric division primitive SM/REM to construct a
division operator of the desired flavor. This simple technique can be used to convert Forth-79 and
Forth-83 programs to ANS Forth without any analysis of the original programs.

A.3.2.2.2 Other integer operations

Whether underflow occurs depends on the data-type of the result. For example, the phrase 1 2 -
underflows if the result is unsigned and produces the valid signed result -1.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 133

A.3.2.3 Stacks

The only data type in Forth which has concrete rather than abstract existence is the stack entry. Even this
primitive typing Forth only enforces by the hard reality of stack underflow or overflow. The programmer
must have a clear idea of the number of stack entries to be consumed by the execution of a word and the
number of entries that will be pushed back to a stack by the execution of a word. The observation of
anomalous occurrences on the data stack is the first line of defense whereby the programmer may recognize
errors in an application program. It is also worth remembering that multiple stack errors caused by
erroneous application code are frequently of equal and opposite magnitude, causing complementary (and
deceptive) results.

For these reasons and a host of other reasons, the one unambiguous, uncontroversial, and indispensable
programming discipline observed since the earliest days of Forth is that of providing a stack diagram for all
additions to the application dictionary with the exception of static constructs such as VARIABLEs and
CONSTANTs.

A.3.2.3.2 Control-flow stack

The simplest use of control-flow words is to implement the basic control structures shown in figure A.1.

IF

THEN

BEGIN

UNTIL

BEGIN

AGAIN

Figure A.1 – The basic control-flow patterns.

In control flow every branch, or transfer of control, must terminate at some destination. A natural
implementation uses a stack to remember the origin of forward branches and the destination of backward
branches. At a minimum, only the location of each origin or destination must be indicated, although other
implementation-dependent information also may be maintained.

An origin is the location of the branch itself. A destination is where control would continue if the branch
were taken. A destination is needed to resolve the branch address for each origin, and conversely, if every
control-flow path is completed no unused destinations can remain.

With the addition of just three words (AHEAD, CS-ROLL and CS-PICK), the basic control-flow words
supply the primitives necessary to compile a variety of transportable control structures. The abilities
required are compilation of forward and backward conditional and unconditional branches and compile-
time management of branch origins and destinations. Table A.1 shows the desired behavior.

The requirement that control-flow words are properly balanced by other control-flow words makes
reasonable the description of a compile-time implementation-defined control-flow stack. There is no
prescription as to how the control-flow stack is implemented, e.g., data stack, linked list, special array.
Each element of the control-flow stack mentioned above is the same size.

Table A.1 – Compilation behavior of control-flow words
at compile time,
word:

supplies:

resolves:

is used to:

IF orig mark origin of forward conditional branch
THEN orig resolve IF or AHEAD
BEGIN dest mark backward destination
AGAIN dest resolve with backward unconditional branch
UNTIL dest resolve with backward conditional branch

ANSI X3.215-1994

 Collating Sequence: 134

AHEAD orig mark origin of forward unconditional branch
CS-PICK copy item on control-flow stack
CS-ROLL reorder items on control-flow stack

With these tools, the remaining basic control-structure elements, shown in figure A.2, can be defined. The
stack notation used here for immediate words is (compilation / execution).

: WHILE (dest -- orig dest / flag --)
 \ conditional exit from loops
 POSTPONE IF \ conditional forward branch
 1 CS-ROLL \ keep dest on top
; IMMEDIATE

: REPEAT (orig dest -- / --)
 \ resolve a single WHILE and return to BEGIN
 POSTPONE AGAIN \ uncond. backward branch to dest
 POSTPONE THEN \ resolve forward branch from orig
; IMMEDIATE

: ELSE (orig1 -- orig2 / --)
 \ resolve IF supplying alternate execution
 POSTPONE AHEAD \ unconditional forward branch orig2
 1 CS-ROLL \ put orig1 back on top
 POSTPONE THEN \ resolve forward branch from orig1
; IMMEDIATE

IF

THEN

BEGIN

ELSE WHILE

REPEAT

Figure A.2 – Additional basic control-flow patterns.
Forth control flow provides a solution for well-known problems with strictly structured programming.
The basic control structures can be supplemented, as shown in the examples in figure A.3, with additional
WHILEs in BEGIN ... UNTIL and BEGIN ... WHILE ... REPEAT structures. However, for
each additional WHILE there must be a THEN at the end of the structure. THEN completes the syntax with
WHILE and indicates where to continue execution when the WHILE transfers control. The use of more
than one additional WHILE is possible but not common. Note that if the user finds this use of THEN
undesirable, an alias with a more likable name could be defined.
Additional actions may be performed between the control flow word (the REPEAT or UNTIL) and the
THEN that matches the additional WHILE. Further, if additional actions are desired for normal termination

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 135

and early termination, the alternative actions may be separated by the ordinary Forth ELSE. The
termination actions are all specified after the body of the loop.

BEGIN

WHILE

REPEAT

WHILE

THEN

BEGIN

WHILE

THEN

UNTIL

ELSE

Figure A.3 – Extended control-flow pattern examples.

Note that REPEAT creates an anomaly when matching the WHILE with ELSE or THEN, most notably when
compared with the BEGIN...UNTIL case. That is, there will be one less ELSE or THEN than there are
WHILEs because REPEAT resolves one THEN. As above, if the user finds this count mismatch
undesirable, REPEAT could be replaced in-line by its own definition.
Other loop-exit control-flow words, and even other loops, can be defined. The only requirements are that
the control-flow stack is properly maintained and manipulated.
The simple implementation of the ANS Forth CASE structure below is an example of control structure
extension. Note the maintenance of the data stack to prevent interference with the possible control-flow
stack usage.

0 CONSTANT CASE IMMEDIATE (init count of OFs)

: OF (#of -- orig #of+1 / x --)
 1+ (count OFs)
 >R (move off the stack in case the control-flow)
 (stack is the data stack.)
 POSTPONE OVER POSTPONE = (copy and test case value)
 POSTPONE IF (add orig to control flow stack)
 POSTPONE DROP (discards case value if =)
 R> (we can bring count back now)
; IMMEDIATE

: ENDOF (orig1 #of -- orig2 #of)
 >R (move off the stack in case the control-flow)
 (stack is the data stack.)
 POSTPONE ELSE
 R> (we can bring count back now)
; IMMEDIATE

: ENDCASE (orig1..orign #of --)
 POSTPONE DROP (discard case value)
 0 ?DO
 POSTPONE THEN
 LOOP
; IMMEDIATE

ANSI X3.215-1994

 Collating Sequence: 136

A.3.2.3.3 Return stack

The restrictions in section 3.2.3.3 Return stack are necessary if implementations are to be allowed to place
loop parameters on the return stack.

A.3.2.6 Environmental queries

The size in address units of various data types may be determined by phrases such as 1 CHARS. Similarly,
alignment may be determined by phrases such as 1 ALIGNED.

The environmental queries are divided into two groups: those that always produce the same value and those
that might not. The former groups include entries such as MAX-N. This information is fixed by the
hardware or by the design of the Forth system; a user is guaranteed that asking the question once is
sufficient.

The other group of queries are for things that may legitimately change over time. For example an
application might test for the presence of the Double Number word set using an environment query. If it is
missing, the system could invoke a system-dependent process to load the word set. The system is permitted
to change ENVIRONMENT?’s database so that subsequent queries about it indicate that it is present.

Note that a query that returns an “unknown” response could produce a “known” result on a subsequent
query.

A.3.3 The Forth dictionary
A Standard Program may redefine a standard word with a non-standard definition. The program is still
Standard (since it can be built on any Standard System), but the effect is to make the combined entity
(Standard System plus Standard Program) a non-standard system.

A.3.3.1 Name space

A.3.3.1.2 Definition names

The language in this section is there to ensure the portability of Standard Programs. If a program uses
something outside the Standard that it does not provide itself, there is no guarantee that another
implementation will have what the program needs to run. There is no intent whatsoever to imply that all
Forth programs will be somehow lacking or inferior because they are not standard; some of the finest
jewels of the programmer’s art will be non-standard. At the same time, the committee is trying to ensure
that a program labeled “Standard” will meet certain expectations, particularly with regard to portability.

In many system environments the input source is unable to supply certain non-graphic characters due to
external factors, such as the use of those characters for flow control or editing. In addition, when
interpreting from a text file, the parsing function specifically treats non-graphic characters like spaces; thus
words received by the text interpreter will not contain embedded non-graphic characters. To allow
implementations in such environments to call themselves Standard, this minor restriction on Standard
Programs is necessary.

A Standard System is allowed to permit the creation of definition names containing non-graphic characters.
Historically, such names were used for keyboard editing functions and “invisible” words.

A.3.3.2 Code space

A.3.3.3 Data space

The words #TIB, >IN, BASE, BLK, SCR, SOURCE, SOURCE-ID, STATE, and TIB contain information
used by the Forth system in its operation and may be of use to the application. Any assumption made by
the application about data available in the Forth system it did not store other than the data just listed is an
environmental dependency.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 137

There is no point in specifying (in the Standard) both what is and what is not addressable.

A Standard Program may NOT address:

– Directly into the data or return stacks;
– Into a definition’s data field if not stored by the application.

The read-only restrictions arise because some Forth systems run from ROM and some share I/O buffers
with other users or systems. Portable programs cannot know which areas are affected, hence the general
restrictions.

A.3.3.3.1 Address alignment

Many processors have restrictions on the addresses that can be used by memory access instructions. For
example, on a Motorola 68000, 16-bit or 32-bit data can be accessed only at even addresses. Other
examples include RISC architectures where 16-bit data can be loaded or stored only at even addresses and
32-bit data only at addresses that are multiples of four.

An implementor of ANS Forth can handle these alignment restrictions in one of two ways. Forth’s
memory access words (@, !, +!, etc.) could be implemented in terms of smaller-width access instructions
which have no alignment restrictions. For example, on a 68000 Forth with 16-bit cells, @ could be
implemented with two 68000 byte-fetch instructions and a reassembly of the bytes into a 16-bit cell.
Although this conceals hardware restrictions from the programmer, it is inefficient, and may have
unintended side effects in some hardware environments. An alternate implementation of ANS Forth could
define each memory-access word using the native instructions that most closely match the word’s function.
On a 68000 Forth with 16-bit cells, @ would use the 68000’s 16-bit move instruction. In this case,
responsibility for giving @ a correctly-aligned address falls on the programmer. A portable ANS Forth
program must assume that alignment may be required and follow the requirements of this section.

A.3.3.3.2 Contiguous regions

The data space of a Forth system comes in discontinuous regions! The location of some regions is
provided by the system, some by the program. Data space is contiguous within regions, allowing address
arithmetic to generate valid addresses only within a single region. A Standard Program cannot make any
assumptions about the relative placement of multiple regions in memory.

Section 3.3.3.2 does prescribe conditions under which contiguous regions of data space may be obtained.
For example:

CREATE TABLE 1 C, 2 C, ALIGN 1000 , 2000 ,

makes a table whose address is returned by TABLE. In accessing this table,

TABLE C@ will return 1
TABLE CHAR+ C@ will return 2
TABLE 2 CHARS + ALIGNED @ will return 1000
TABLE 2 CHARS + ALIGNED CELL+ @ will return 2000.

Similarly,

CREATE DATA 1000 ALLOT

makes an array 1000 address units in size. A more portable strategy would define the array in application
units, such as:

500 CONSTANT NCELLS
CREATE CELL-DATA NCELLS CELLS ALLOT

This array can be indexed like this:

: LOOK NCELLS 0 DO CELL-DATA I CELLS + ? LOOP ;

ANSI X3.215-1994

 Collating Sequence: 138

A.3.3.3.6 Other transient regions

In many existing Forth systems, these areas are at HERE or just beyond it, hence the many restrictions.

(2*n)+2 is the size of a character string containing the unpunctuated binary representation of the maximum
double number with a leading minus sign and a trailing space.

Implementation note: Since the minimum value of n is 16, the absolute minimum size of the pictured
numeric output string is 34 characters. But if your implementation has a larger n, you must also increase
the size of the pictured numeric output string.

A.3.4 The Forth text interpreter

A.3.4.3 Semantics

The “initiation semantics” correspond to the code that is executed upon entering a definition, analogous to
the code executed by EXIT upon leaving a definition. The “run-time semantics” correspond to code
fragments, such as literals or branches, that are compiled inside colon definitions by words with explicit
compilation semantics.

In a Forth cross-compiler, the execution semantics may be specified to occur in the host system only, the
target system only, or in both systems. For example, it may be appropriate for words such as CELLS to
execute on the host system returning a value describing the target, for colon definitions to execute only on
the target, and for CONSTANT and VARIABLE to have execution behaviors on both systems. Details of
cross-compiler behavior are beyond the scope of this Standard.

A.3.4.3.2 Interpretation semantics

For a variety of reasons, this Standard does not define interpretation semantics for every word. Examples
of these words are >R, .", DO, and IF. Nothing in this Standard precludes an implementation from
providing interpretation semantics for these words, such as interactive control-flow words. However, a
Standard Program may not use them in interpretation state.

A.3.4.5 Compilation

Compiler recursion at the definition level consumes excessive resources, especially to support locals. The
Technical Committee does not believe that the benefits justify the costs. Nesting definitions is also not
common practice and won’t work on many systems.

A.4 Documentation requirements

A.4.1 System documentation

A.4.2 Program documentation

A.5 Compliance and labeling

A.5.1 ANS Forth systems
Section 5.1 defines the criteria that a system must meet in order to justify the label “ANS Forth System”.
Briefly, the minimum requirement is that the system must “implement” the Core word set. There are
several ways in which this requirement may be met. The most obvious is that all Core words may be in a
pre-compiled kernel. This is not the only way of satisfying the requirement, however. For example, some
words may be provided in source blocks or files with instructions explaining how to add them to the system
if they are needed. So long as the words are provided in such a way that the user can obtain access to them
with a clear and straightforward procedure, they may be considered to be present.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 139

A Forth cross-compiler has many characteristics in common with an ANS Forth System, in that both use
similar compiling tools to process a program. However, in order to fully specify an ANS Forth cross
compiler it would be necessary to address complex issues dealing with compilation and execution
semantics in both host and target environments as well as ROMability issues. The level of effort to do this
properly has proved to be impractical at this time. As a result, although it may be possible for a Forth
cross-compiler to correctly prepare an ANS Forth program for execution in a target environment, it is
inappropriate for a cross-compiler to be labeled an ANS Forth System.

A.5.2 ANS Forth programs

A.5.2.2 Program labeling

Declaring an environmental dependency should not be considered undesirable, merely an acknowledgment
that the author has taken advantage of some assumed architecture. For example, most computers in
common use are based on two’s complement binary arithmetic. By acknowledging an environmental
dependency on this architecture, a programmer becomes entitled to use the number -1 to represent all bits
set without significantly restricting the portability of the program.

Because all programs require space for data and instructions, and time to execute those instructions, they
depend on the presence of an environment providing those resources. It is impossible to predict how little
of some of these resources (e.g. stack space) might be necessary to perform some task, so this Standard
does not do so.

On the other hand, as a program requires increasing levels of resources, there will probably be sucessively
fewer systems on which it will execute sucessfully. An algorithm requiring an array of 109 cells might run
on fewer computers than one requiring only 103.

Since there is also no way of knowing what minimum level of resources will be implemented in a system
useful for at least some tasks, any program performing real work labeled simply an “ANS Forth Program”
is unlikely to be labeled correctly.

A.6 Glossary
In this and following sections we present rationales for the handling of specific words: why we included
them, why we placed them in certain word sets, or why we specified their names or meaning as we did.

Words in this section are organized by word set, retaining their index numbers for easy cross-referencing to
the glossary.

Historically, many Forth systems have been written in Forth. Many of the words in Forth originally had as
their primary purpose support of the Forth system itself. For example, WORD and FIND are often used as
the principle instruments of the Forth text interpreter, and CREATE in many systems is the primitive for
building dictionary entries. In defining words such as these in a standard way, we have endeavored not to
do so in such a way as to preclude their use by implementors. One of the features of Forth that has
endeared it to its users is that the same tools that are used to implement the system are available to the
application programmer – a result of this approach is the compactness and efficiency that characterizes
most Forth implementations.

A.6.1 Core words

A.6.1.0070 '

Typical use: ... ' name .

Many Forth systems use a state-smart tick. Many do not. ANS Forth follows the usage of Forth 83.

See: A.3.4.3..2 Interpretation semantics, A.6.1.1550 FIND.

ANSI X3.215-1994

 Collating Sequence: 140

A.6.1.0080 (

Typical use: ... (ccc) ...

A.6.1.0140 +LOOP

Typical use:

: X ... limit first DO ... step +LOOP ;

A.6.1.0150 ,

The use of , (comma) for compiling execution tokens is not portable.

See: 6.2.0945 COMPILE,.

A.6.1.0190 ."

Typical use: : X" ccc" ... ;

An implementation may define interpretation semantics for ." if desired. In one plausible implementation,
interpreting ." would display the delimited message. In another plausible implementation, interpreting ."
would compile code to display the message later. In still another plausible implementation, interpreting ."
would be treated as an exception. Given this variation a Standard Program may not use ." while
interpreting. Similarly, a Standard Program may not compile POSTPONE ." inside a new word, and then
use that word while interpreting.

A.6.1.0320 2*

Historically, 2* has been implemented on two’s-complement machines as a logical left-shift instruction.
Multiplication by two is an efficient side-effect on these machines. However, shifting implies a knowledge
of the significance and position of bits in a cell. While the name implies multiplication, most implementors
have used a hardware left shift to implement 2*.

A.6.1.0330 2/

This word has the same common usage and misnaming implications as 2*. It is often implemented on
two’s-complement machines with a hardware right shift that propagates the sign bit.

A.6.1.0350 2@

With 2@ the storage order is specified by the Standard.

A.6.1.0450 :

Typical use: : name ... ;

In Forth 83, this word was specified to alter the search order. This specification is explicitly removed in
this Standard. We believe that in most cases this has no effect; however, systems that allow many search
orders found the Forth-83 behavior of colon very undesirable.

Note that colon does not itself invoke the compiler. Colon sets compilation state so that later words in the
parse area are compiled.

A.6.1.0460 ;

Typical use: : name ... ;

One function performed by both ; and ;CODE is to allow the current definition to be found in the
dictionary. If the current definition was created by :NONAME the current definition has no definition name
and thus cannot be found in the dictionary. If :NONAME is implemented the Forth compiler must

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 141

maintain enough information about the current definition to allow ; and ;CODE to determine whether or
not any action must be taken to allow it to be found.

A.6.1.0550 >BODY

a-addr is the address that HERE would have returned had it been executed immediately after the execution
of the CREATE that defined xt.

A.6.1.0680 ABORT"

Typical use: : X ... test ABORT" ccc" ... ;

A.6.1.0695 ACCEPT

Previous standards specified that collection of the input string terminates when either a “return” is received
or when +n1 characters have been received. Terminating when +n1 characters have been received is
difficult, expensive, or impossible to implement in some system environments. Consequently, a number of
existing implementations do not comply with this requirement. Since line-editing and collection functions
are often implemented by system components beyond the control of the Forth implementation, this
Standard imposes no such requirement. A Standard Program may only assume that it can receive an input
string with ACCEPT or EXPECT. The detailed sequence of user actions necessary to prepare and transmit
that line are beyond the scope of this Standard.

Specification of a non-zero, positive integer count (+n1) for ACCEPT allows some implementors to
continue their practice of using a zero or negative value as a flag to trigger special behavior. Insofar as
such behavior is outside the Standard, Standard Programs cannot depend upon it, but the Technical
Committee doesn’t wish to preclude it unnecessarily. Since actual values are almost always small integers,
no functionality is impaired by this restriction.

ACCEPT and EXPECT perform similar functions. ACCEPT is recommended for new programs, and future
use of EXPECT is discouraged.

It is recommended that all non-graphic characters be reserved for editing or control functions and not be
stored in the input string.

Commonly, when the user is preparing an input string to be transmitted to a program, the system allows the
user to edit that string and correct mistakes before transmitting the final version of the string. The editing
function is supplied sometimes by the Forth system itself, and sometimes by external system software or
hardware. Thus, control characters and functions may not be available on all systems. In the usual case,
the end of the editing process and final transmission of the string is signified by the user pressing a
“Return” or “Enter” key.

As in previous standards, EXPECT returns the input string immediately after the requested number of
characters are entered, as well as when a line terminator is received. The “automatic termination after
specified count of characters have been entered” behavior is widely considered undesirable because the
user “loses control” of the input editing process at a potentially unknown time (the user does not
necessarily know how many characters were requested from EXPECT). Thus EXPECT and SPAN have
been made obsolescent and exist in the Standard only as a concession to existing implementations. If
EXPECT exists in a Standard System it must have the “automatic termination” behavior.

ACCEPT does not have the “automatic termination” behavior of EXPECT. However, because external
system hardware and software may perform the ACCEPT function, when a line terminator is received the
action of the cursor, and therefore the display, is implementation-defined. It is recommended that the
cursor remain immediately following the entered text after a line terminator is received.

A.6.1.0705 ALIGN

In this Standard we have attempted to provide transportability across various CPU architectures. One of
the frequent causes of transportability problems is the requirement of cell-aligned addresses on some

ANSI X3.215-1994

 Collating Sequence: 142

CPUs. On these systems, ALIGN and ALIGNED may be required to build and traverse data structures built
with C,. Implementors may define these words as no-ops on systems for which they aren’t functional.

A.6.1.0706 ALIGNED

See: A.6.1.0705 ALIGN.

A.6.1.0760 BEGIN

Typical use:

: X ... BEGIN ... test UNTIL ;

or
 : X ... BEGIN ... test WHILE ... REPEAT ;

A.6.1.0770 BL

Because space is used throughout Forth as the standard delimiter, this word is the only way a program has
to find and use the system value of “space”. The value of a space character can not be obtained with CHAR,
for instance.

A.6.1.0880 CELL+

As with ALIGN and ALIGNED, the words CELL and CELL+ were added to aid in transportability across
systems with different cell sizes. They are intended to be used in manipulating indexes and addresses in
integral numbers of cell-widths.

Example:

2VARIABLE DATA

0 100 DATA 2!

DATA @ . 100

DATA CELL+ @ . 0

A.6.1.0890 CELLS

See: A.6.1.0880 CELL+.

Example: CREATE NUMBERS 100 CELLS ALLOT

(Allots space in the array NUMBERS for 100 cells of data.)

A.6.1.0895 CHAR

Typical use: ... CHAR A CONSTANT "A" ...

A.6.1.0950 CONSTANT

Typical use: ... DECIMAL 10 CONSTANT TEN ...

A.6.1.1000 CREATE

The data-field address of a word defined by CREATE is given by the data-space pointer immediately
following the execution of CREATE

Reservation of data field space is typically done with ALLOT.

Typical use: ... CREATE SOMETHING ...

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 143

A.6.1.1240 DO

Typical use:

: X ... limit first DO ... LOOP ;

or

: X ... limit first DO ... step +LOOP ;

A.6.1.1250 DOES>

Typical use: : X ... DOES> ... ;

Following DOES>, a Standard Program may not make any assumptions regarding the ability to find either
the name of the definition containing the DOES> or any previous definition whose name may be concealed
by it. DOES> effectively ends one definition and begins another as far as local variables and control-flow
structures are concerned. The compilation behavior makes it clear that the user is not entitled to place
DOES> inside any control-flow structures.

A.6.1.1310 ELSE

Typical use: : X ... test IF ... ELSE ... THEN ;

A.6.1.1345 ENVIRONMENT?

In a Standard System that contains only the Core word set, effective use of ENVIRONMENT? requires
either its use within a definition, or the use of user-supplied auxiliary definitions. The Core word set lacks
both a direct method for collecting a string in interpretation state (11.6.1.2165 S" is in an optional word
set) and also a means to test the returned flag in interpretation state (e.g. the optional 15.6.2.2532 [IF]).

The combination of 6.1.1345 ENVIRONMENT?, 11.6.1.2165 S", 15.6.2.2532 [IF], 15.6.2.2531 [ELSE],
and 15.6.2.2533 [THEN] constitutes an effective suite of words for conditional compilation that works in
interpretation state.

A.6.1.1360 EVALUATE

The Technical Committee is aware that this function is commonly spelled EVAL. However, there exist
implementations that could suffer by defining the word as is done here. We also find EVALUATE to be
more readable and explicit. There was some sentiment for calling this INTERPRET, but that too would
have undesirable effects on existing code. The longer spelling was not deemed significant since this is not
a word that should be used frequently in source code.

A.6.1.1380 EXIT

Typical use: : X ... test IF ... EXIT THEN ... ;

A.6.1.1550 FIND
One of the more difficult issues which the Committee took on was the problem of divorcing the
specification of implementation mechanisms from the specification of the Forth language. Three basic
implementation approaches can be quickly enumerated:

1) Threaded code mechanisms. These are the traditional approaches to implementing Forth, but other
techniques may be used.

2) Subroutine threading with “macro-expansion” (code copying). Short routines, like the code for DUP,
are copied into a definition rather than compiling a JSR reference.

3) Native coding with optimization. This may include stack optimization (replacing such phrases as
SWAP ROT + with one or two machine instructions, for example), parallelization (the trend in the
newer RISC chips is to have several functional subunits which can execute in parallel), and so on.

ANSI X3.215-1994

 Collating Sequence: 144

The initial requirement (inherited from Forth 83) that compilation addresses be compiled into the dictionary
disallowed type 2 and type 3 implementations.

Type 3 mechanisms and optimizations of type 2 implementations were hampered by the explicit
specification of immediacy or non-immediacy of all standard words. POSTPONE allowed de-specification of
immediacy or non-immediacy for all but a few Forth words whose behavior must be STATE-independent.

One type 3 implementation, Charles Moore’s cmForth, has both compiling and interpreting versions of
many Forth words. At the present, this appears to be a common approach for type 3 implementations. The
Committee felt that this implementation approach must be allowed. Consequently, it is possible that words
without interpretation semantics can be found only during compilation, and other words may exist in two
versions: a compiling version and an interpreting version. Hence the values returned by FIND may
depend on STATE, and ' and ['] may be unable to find words without interpretation semantics.

A.6.1.1561 FM/MOD

By introducing the requirement for “floored” division, Forth 83 produced much controversy and concern
on the part of those who preferred the more common practice followed in other languages of implementing
division according to the behavior of the host CPU, which is most often symmetric (rounded toward zero).
In attempting to find a compromise position, this Standard provides primitives for both common varieties,
floored and symmetric (see SM/REM). FM/MOD is the floored version.

The Technical Committee considered providing two complete sets of explicitly named division operators,
and declined to do so on the grounds that this would unduly enlarge and complicate the Standard. Instead,
implementors may define the normal division words in terms of either FM/MOD or SM/REM providing they
document their choice. People wishing to have explicitly named sets of operators are encouraged to do so.
FM/MOD may be used, for example, to define:

: /_MOD (n1 n2 -- n3 n4) >R S>D R> FM/MOD ;

: /_ (n1 n2 -- n3) /_MOD SWAP DROP ;

: _MOD (n1 n2 -- n3) /_MOD DROP ;

: */_MOD (n1 n2 n3 -- n4 n5) >R M* R> FM/MOD ;

: */_ (n1 n2 n3 -- n4) */_MOD SWAP DROP ;

A.6.1.1700 IF

Typical use:

: X ... test IF ... THEN ... ;

or

: X ... test IF ... ELSE ... THEN ... ;

A.6.1.1710 IMMEDIATE

Typical use: : X ... ; IMMEDIATE

A.6.1.1720 INVERT

The word NOT was originally provided in Forth as a flag operator to make control structures readable.
Under its intended usage the following two definitions would produce identical results:

: ONE (flag --)
 IF ." true" ELSE ." false" THEN ;

: TWO (flag --)
 NOT IF ." false" ELSE ." true" THEN ;

This was common usage prior to the Forth-83 Standard which redefined NOT as a cell-wide one’s-
complement operation, functionally equivalent to the phrase -1 XOR. At the same time, the data type

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 145

manipulated by this word was changed from a flag to a cell-wide collection of bits and the standard value
for true was changed from “1” (rightmost bit only set) to “-1” (all bits set). As these definitions of TRUE
and NOT were incompatible with their previous definitions, many Forth users continue to rely on the old
definitions. Hence both versions are in common use.

Therefore, usage of NOT cannot be standardized at this time. The two traditional meanings of NOT – that
of negating the sense of a flag and that of doing a one’s complement operation – are made available by 0=
and INVERT, respectively.

A.6.1.1730 J

J may only be used with a nested DO...LOOP, DO...+LOOP, ?DO...LOOP, or ?DO...+LOOP, for example, in
the form:

: X ... DO ... DO ... J ... LOOP ... +LOOP ... ;

A.6.1.1760 LEAVE

Note that LEAVE immediately exits the loop. No words following LEAVE within the loop will be
executed. Typical use:

: X ... DO ... IF ... LEAVE THEN ... LOOP ... ;

A.6.1.1780 LITERAL

Typical use: : X ... [x] LITERAL ... ;

A.6.1.1800 LOOP

Typical use:

: X ... limit first DO ... LOOP ... ;

or

: X ... limit first ?DO ... LOOP ... ;

A.6.1.1810 M*

This word is a useful early step in calculation, going to extra precision conveniently. It has been in use
since the Forth systems of the early 1970’s.

A.6.1.1900 MOVE

CMOVE and CMOVE> are the primary move operators in Forth 83. They specify a behavior for moving that
implies propagation if the move is suitably invoked. In some hardware, this specific behavior cannot be
achieved using the best move instruction. Further, CMOVE and CMOVE> move characters; ANS Forth
needs a move instruction capable of dealing with address units. Thus MOVE has been defined and added to
the Core word set, and CMOVE and CMOVE> have been moved to the String word set.

A.6.1.2033 POSTPONE

Typical use:

: ENDIF POSTPONE THEN ; IMMEDIATE

: X ... IF ... ENDIF ... ;

POSTPONE replaces most of the functionality of COMPILE and [COMPILE]. COMPILE and
[COMPILE] are used for the same purpose: postpone the compilation behavior of the next word in the
parse area. COMPILE was designed to be applied to non-immediate words and [COMPILE] to immediate
words. This burdens the programmer with needing to know which words in a system are immediate.

ANSI X3.215-1994

 Collating Sequence: 146

Consequently, Forth standards have had to specify the immediacy or non-immediacy of all words covered
by the Standard. This unnecessarily constrains implementors.

A second problem with COMPILE is that some programmers have come to expect and exploit a particular
implementation, namely:

: COMPILE R> DUP @ , CELL+ >R ;

This implementation will not work on native code Forth systems. In a native code Forth using inline code
expansion and peephole optimization, the size of the object code produced varies; this information is
difficult to communicate to a “dumb” COMPILE. A “smart” (i.e., immediate) COMPILE would not have
this problem, but this was forbidden in previous standards.

For these reasons, COMPILE has not been included in the Standard and [COMPILE] has been moved in
favor of POSTPONE. Additional discussion can be found in Hayes, J.R., “Postpone”, Proceedings of the
1989 Rochester Forth Conference.

A.6.1.2120 RECURSE

Typical use: : X ... RECURSE ... ;

This is Forth’s recursion operator; in some implementations it is called MYSELF. The usual example is the
coding of the factorial function.

: FACTORIAL (+n1 -- +n2)
 DUP 2 < IF DROP 1 EXIT THEN
 DUP 1- RECURSE *
;

n2 = n1(n1-1)(n1-2)...(2)(1), the product of n1 with all positive integers less than itself (as a special case,
zero factorial equals one). While beloved of computer scientists, recursion makes unusually heavy use of
both stacks and should therefore be used with caution. See alternate definition in A.6.1.2140 REPEAT.

A.6.1.2140 REPEAT

Typical use:

: FACTORIAL (+n1 -- +n2)
 DUP 2 < IF DROP 1 EXIT THEN
 DUP
 BEGIN DUP 2 > WHILE
 1- SWAP OVER * SWAP
 REPEAT DROP
;

A.6.1.2165 S"

Typical use: : X ... S" ccc" ... ;

This word is found in many systems under the name " (quote). However, current practice is almost evenly
divided on the use of ", with many systems using the execution semantics given here, while others return
the address of a counted string. We attempt here to satisfy both camps by providing two words, S" and the
Core Extension word C" so that users may have whichever behavior they expect with a simple renaming
operation.

A.6.1.2214 SM/REM

See the previous discussion of division under FM/MOD. SM/REM is the symmetric-division primitive,
which allows programs to define the following symmetric-division operators:

: /-REM (n1 n2 -- n3 n4) >R S>D R> SM/REM ;

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 147

: /- (n1 n2 -- n3) /-REM SWAP DROP ;

: -REM (n1 n2 -- n3) /-REM DROP ;

: */-REM (n1 n2 n3 -- n4 n5) >R M* R> SM/REM ;

: */- (n1 n2 n3 -- n4) */-REM SWAP DROP ;

A.6.1.2216 SOURCE

SOURCE simplifies the process of directly accessing the input buffer by hiding the differences between its
location for different input sources. This also gives implementors more flexibility in their implementation
of buffering mechanisms for different input sources. The committee moved away from an input buffer
specification consisting of a collection of individual variables, declaring TIB and #TIB obsolescent.

SOURCE in this form exists in F83, polyFORTH, LMI’s Forths and others. In conventional systems it is
equivalent to the phrase

BLK @ IF BLK @ BLOCK 1024 ELSE TIB #TIB @ THEN

A.6.1.2250 STATE

Although EVALUATE, LOAD, INCLUDE-FILE, and INCLUDED are not listed as words which alter
STATE, the text interpreted by any one of these words could include one or more words which explicitly
alter STATE. EVALUATE, LOAD, INCLUDE-FILE, and INCLUDED do not in themselves alter STATE.

STATE does not nest with text interpreter nesting. For example, the code sequence:

: FOO S"]" EVALUATE ; FOO

will leave the system in compilation state. Similarly, after LOADing a block containing], the system will
be in compilation state.

Note that] does not affect the parse area and that the only effect that : has on the parse area is to parse a
word. This entitles a program to use these words to set the state with known side-effects on the parse area.
For example:

: NOP : POSTPONE ; IMMEDIATE ;

NOP ALIGN NOP ALIGNED

Some non-ANS Forth compliant systems have] invoke a compiler loop in addition to setting STATE.
Such a system would inappropriately attempt to compile the second use of NOP.

Also note that nothing in the Standard prevents a program from finding the execution tokens of] or [and
using these to affect STATE. These facts suggest that implementations of] will do nothing but set STATE
and a single interpreter/compiler loop will monitor STATE.

A.6.1.2270 THEN

Typical use:

: X ... test IF ... THEN ... ;

or

: X ... test IF ... ELSE ... THEN ... ;

ANSI X3.215-1994

 Collating Sequence: 148

A.6.1.2380 UNLOOP

Typical use:

: X ...
 limit first DO
 ... test IF ... UNLOOP EXIT THEN ...
 LOOP ...
;

UNLOOP allows the use of EXIT within the context of DO ... LOOP and related do-loop constructs.
UNLOOP as a function has been called UNDO. UNLOOP is more indicative of the action: nothing gets
undone -- we simply stop doing it.

A.6.1.2390 UNTIL

Typical use: : X ... BEGIN ... test UNTIL ... ;

A.6.1.2410 VARIABLE

Typical use: ... VARIABLE XYZ ...

A.6.1.2430 WHILE

Typical use: : X ... BEGIN ... test WHILE ... REPEAT ... ;

A.6.1.2450 WORD

Typical use: char WORD ccc<char>

A.6.1.2500 [

Typical use: : X ... [4321] LITERAL ... ;

A.6.1.2510 [']

Typical use: : X ... ['] name ... ;

See: A.6.1.1550 FIND.

A.6.1.2520 [CHAR]

Typical use: : X ... [CHAR] ccc ... ;

A.6.1.2540]

Typical use: : X ... [1234] LITERAL ... ;

A.6.2 Core extension words
The words in this collection fall into several categories:

– Words that are in common use but are deemed less essential than Core words (e.g., 0<>);
– Words that are in common use but can be trivially defined from Core words (e.g., FALSE);
– Words that are primarily useful in narrowly defined types of applications or are in less frequent use

(e.g., PARSE);
– Words that are being deprecated in favor of new words introduced to solve specific problems (e.g.,

CONVERT).

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 149

Because of the varied justifications for inclusion of these words, the Technical Committee does not
encourage implementors to offer the complete collection, but to select those words deemed most valuable
to their clientele.

A.6.2.0060 #TIB

The function of #TIB has been superseded by SOURCE.

A.6.2.0200 .(

Typical use: .(ccc)

A.6.2.0210 .R

In .R, “R” is short for RIGHT.

A.6.2.0340 2>R

Historically, 2>R has been used to implement DO. Hence the order of parameters on the return stack.

The primary advantage of 2>R is that it puts the top stack entry on the top of the return stack. For instance,
a double-cell number may be transferred to the return stack and still have the most significant cell
accessible on the top of the return stack.

A.6.2.0410 2R>

Note that 2R> is not equivalent to R> R>. Instead, it mirrors the action of 2>R (see A.6.2.0340).

A.6.2.0455 :NONAME

:NONAME allows a user to create an execution token with the semantics of a colon definition without an
associated name. Previously, only : (colon) could create an execution token with these semantics. Thus,
Forth code could only be compiled using the syntax of :, that is:

: NAME ... ;

:NONAME removes this constraint and places the Forth compiler in the hands of the programmer.

:NONAME can be used to create application-specific programming languages. One technique is to mix
Forth code fragments with application-specific constructs. The application-specific constructs use
:NONAME to compile the Forth code and store the corresponding execution tokens in data structures.

The functionality of :NONAME can be built on any Forth system. For years, expert Forth programmers
have exploited intimate knowledge of their systems to generate unnamed code fragments. Now, this
function has been named and can be used in a portable program.

For example, :NONAME can be used to build a table of code fragments where indexing into the table allows
executing a particular fragment. The declaration syntax of the table is:

:NONAME .. code for command 0 .. ; 0 CMD !

:NONAME .. code for command 1 .. ; 1 CMD !

 ...

:NONAME .. code for command 99 .. ; 99 CMD !

... 5 CMD @ EXECUTE ...

ANSI X3.215-1994

 Collating Sequence: 150

The definitions of the table building words are:

CREATE CMD-TABLE \ table for command execution tokens
 100 CELLS ALLOT

: CMD (n -- a-addr) \ nth element address in table
 CELLS CMD-TABLE + ;

As a further example, a defining word can be created to allow performance monitoring. In the example
below, the number of times a word is executed is counted. : must first be renamed to allow the definition
of the new ;.

: DOCOLON (--)
\ Modify CREATEd word to execute like a colon def
 DOES> (i*x a-addr -- j*x)
 1 OVER +! \ count executions
 CELL+ @ EXECUTE \ execute :NONAME definition
;

: OLD: : ; \ just an alias

OLD: : ("name" -- a-addr xt colon-sys)
\ begins an execution-counting colon definition
 CREATE HERE 0 , \ storage for execution counter
 0 , \ storage for execution token
 DOCOLON \ set run time for CREATEd word
 :NONAME \ begin unnamed colon definition
;

(Note the placement of DOES>: DOES> must modify the CREATEd word and not the :NONAME
definition, so DOES> must execute before :NONAME.)

OLD: ; (a-addr xt colon-sys --)
\ ends an execution-counting colon definition)
 POSTPONE ; \ complete compilation of colon def
 SWAP CELL+ ! \ save execution token
; IMMEDIATE

The new : and ; are used just like the standard ones to define words:

... : xxx ... ; ... xxx ...

Now however, these words may be “ticked” to retrieve the count (and execution token):

... ' xxx >BODY ? ...

A.6.2.0620 ?DO

Typical use:

: FACTORIAL (+n1 -- +n2) 1 SWAP 1+ ?DO I * LOOP ;

This word was added in response to many requests for a resolution of the difficulty introduced by
Forth-83’s DO, which on a 16-bit system will loop 65,535 times if given equal arguments. As this Standard
also encourages 32-bit systems, this behavior can be intolerable. The Technical Committee considered
applying these semantics to DO, but declined on the grounds that it might break existing code.

A.6.2.0700 AGAIN

Typical use: : X ... BEGIN ... AGAIN ... ;

Unless word-sequence has a way to terminate, this is an endless loop.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 151

A.6.2.0855 C"

Typical use: : X ... C" ccc" ... ;

It is easy to convert counted strings to pointer/length but hard to do the opposite. C" is the only new word
that uses the “address of counted string” stack representation. It is provided as an aid to porting existing
programs to ANS Forth systems. It is relatively difficult to implement C" in terms of other standard words,
considering its “compile string into the current definition” semantics.

Users of C" are encouraged to migrate their application code toward the consistent use of the preferred
“c-addr u” stack representation with the alternate word S". This may be accomplished by converting
application words with counted string input arguments to use the preferred “c-addr u” representation, thus
eliminating the need for C" .

See: A.3.1.3.4 Counted strings.

A.6.2.0873 CASE

Typical use:

: X ...
 CASE
 test1 OF ... ENDOF
 testn OF ... ENDOF
 ... (default)
 ENDCASE ...
;

A.6.2.0945 COMPILE,

COMPILE, is the compilation equivalent of EXECUTE. In many cases, it is possible to compile a word by
using POSTPONE without resorting to the use of COMPILE,. However, the use of POSTPONE requires
that the name of the word must be known at compile time, whereas COMPILE, allows the word to be
located at any time. It is sometime possible to use EVALUATE to compile a word whose name is not
known until run time. This has two possible problems:

– EVALUATE is slower than COMPILE, because a dictionary search is required.
– The current search order affects the outcome of EVALUATE.

In traditional threaded-code implementations, compilation is performed by , (comma). This usage is not
portable; it doesn’t work for subroutine-threaded, native code, or relocatable implementations. Use of
COMPILE, is portable.

In most systems it is possible to implement COMPILE, so it will generate code that is optimized to the
same extent as code that is generated by the normal compilation process. However, in some
implementations there are two different “tokens” corresponding to a particular definition name: the normal
“execution token” that is used while interpreting or with EXECUTE, and another “compilation token” that
is used while compiling. It is not always possible to obtain the compilation token from the execution token.
In these implementations, COMPILE, might not generate code that is as efficient as normally compiled
code.

A.6.2.0970 CONVERT

CONVERT may be defined as follows:

: CONVERT CHAR+ 65535 >NUMBER DROP ;

ANSI X3.215-1994

 Collating Sequence: 152

A.6.2.1342 ENDCASE

Typical use:

: X ...
 CASE
 test1 OF ... ENDOF
 testn OF ... ENDOF
 ... (default)
 ENDCASE ...
;

A.6.2.1343 ENDOF

Typical use:

: X ...
 CASE
 test1 OF ... ENDOF
 testn OF ... ENDOF
 ... (default)
 ENDCASE ...
;

A.6.2.1390 EXPECT

Specification of positive integer counts (+n) for EXPECT allows some implementors to continue their
practice of using a zero or negative value as a flag to trigger special behavior. Insofar as such behavior is
outside the Standard, Standard Programs cannot depend upon it, but the Technical Committee doesn’t wish
to preclude it unnecessarily. Since actual values are almost always small integers, no functionality is
impaired by this restriction.

A.6.2.1850 MARKER

As dictionary implementations have gotten more elaborate and in some cases have used multiple address
spaces, FORGET has become prohibitively difficult or impossible to implement on many Forth systems.
MARKER greatly eases the problem by making it possible for the system to remember “landmark
information” in advance that specifically marks the spots where the dictionary may at some future time
have to be rearranged.

A.6.2.1950 OF

Typical use:

: X ...
 CASE
 test1 OF ... ENDOF
 testn OF ... ENDOF
 ... (default)
 ENDCASE ...
;

A.6.2.2000 PAD

PAD has been available as scratch storage for strings since the earliest Forth implementations. It was
brought to our attention that many programmers are reluctant to use PAD, fearing incompatibilities with
system uses. PAD is specifically intended as a programmer convenience, however, which is why we
documented the fact that no standard words use it.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 153

A.6.2.2008 PARSE

Typical use: char PARSE ccc<char>

The traditional Forth word for parsing is WORD. PARSE solves the following problems with WORD:

a) WORD always skips leading delimiters. This behavior is appropriate for use by the text interpreter,
which looks for sequences of non-blank characters, but is inappropriate for use by words like (, .(,
and ." . Consider the following (flawed) definition of .(:

: .([CHAR]) WORD COUNT TYPE ; IMMEDIATE

This works fine when used in a line like:
.(HELLO) 5 .

but consider what happens if the user enters an empty string:
.() 5 .

The definition of .(shown above would treat the) as a leading delimiter, skip it, and continue
consuming characters until it located another) that followed a non-) character, or until the parse area
was empty. In the example shown, the 5 . would be treated as part of the string to be printed.
With PARSE, we could write a correct definition of .(:

: .([CHAR]) PARSE TYPE ; IMMEDIATE

This definition avoids the “empty string” anomaly.
b) WORD returns its result as a counted string. This has four bad effects:

1) The characters accepted by WORD must be copied from the input buffer into a temporary buffer, in
order to make room for the count character that must be at the beginning of the counted string. The
copy step is inefficient, compared to PARSE, which leaves the string in the input buffer and doesn’t
need to copy it anywhere.
2) WORD must be careful not to store too many characters into the temporary buffer, thus overwriting
something beyond the end of the buffer. This adds to the overhead of the copy step. (WORD may have
to scan a lot of characters before finding the trailing delimiter.)
3) The count character limits the length of the string returned by WORD to 255 characters (longer
strings can easily be stored in blocks!). This limitation does not exist for PARSE.
4) The temporary buffer is typically overwritten by the next use of WORD. This introduces a
temporal dependency; the value returned by WORD is only valid for a limited duration. PARSE has a
temporal dependency, too, related to the lifetime of the input buffer, but that is less severe in most
cases than WORD’s temporal dependency.

The behavior of WORD with respect to skipping leading delimiters is useful for parsing blank-delimited
names. Many system implementations include an additional word for this purpose, similar to PARSE with
respect to the “c-addr u” return value, but without an explicit delimiter argument (the delimiter set is
implicitly “white space”), and which does skip leading delimiters. A common description for this word is:

PARSE-WORD (“<spaces>name” -- c-addr u)
Skip leading spaces and parse name delimited by a space. c-addr is the address within the input buffer
and u is the length of the selected string. If the parse area is empty, the resulting string has a zero
length.

If both PARSE and PARSE-WORD are present, the need for WORD is largely eliminated.

A.6.2.2030 PICK

0 PICK is equivalent to DUP and 1 PICK is equivalent to OVER.

ANSI X3.215-1994

 Collating Sequence: 154

A.6.2.2040 QUERY

The function of QUERY may be performed with ACCEPT and EVALUATE.

A.6.2.2125 REFILL

This word is a useful generalization of QUERY. Re-defining QUERY to meet this specification would have
broken existing code. REFILL is designed to behave reasonably for all possible input sources. If the input
source is coming from the user, as with QUERY, REFILL could still return a false value if, for instance, a
communication channel closes so that the system knows that no more input will be available.

A.6.2.2150 ROLL

2 ROLL is equivalent to ROT, 1 ROLL is equivalent to SWAP and 0 ROLL is a null operation.

A.6.2.2182 SAVE-INPUT

SAVE-INPUT and RESTORE-INPUT allow the same degree of input source repositioning within a text
file as is available with BLOCK input. SAVE-INPUT and RESTORE-INPUT “hide the details” of the
operations necessary to accomplish this repositioning, and are used the same way with all input sources.
This makes it easier for programs to reposition the input source, because they do not have to inspect several
variables and take different action depending on the values of those variables.

SAVE-INPUT and RESTORE-INPUT are intended for repositioning within a single input source; for
example, the following scenario is NOT allowed for a Standard Program:

: XX
 SAVE-INPUT CREATE
 S" RESTORE-INPUT" EVALUATE
 ABORT" couldn't restore input"
;

This is incorrect because, at the time RESTORE-INPUT is executed, the input source is the string via
EVALUATE, which is not the same input source that was in effect when SAVE-INPUT was executed.

The following code is allowed:

: XX
 SAVE-INPUT CREATE
 S" .(Hello)" EVALUATE
 RESTORE-INPUT ABORT" couldn't restore input"
;

After EVALUATE returns, the input source specification is restored to its previous state, thus SAVE-
INPUT and RESTORE-INPUT are called with the same input source in effect.

In the above examples, the EVALUATE phrase could have been replaced by a phrase involving INCLUDE-
FILE and the same rules would apply.

The Standard does not specify what happens if a program violates the above rules. A Standard System
might check for the violation and return an exception indication from RESTORE-INPUT, or it might fail in
an unpredictable way.

The return value from RESTORE-INPUT is primarily intended to report the case where the program
attempts to restore the position of an input source whose position cannot be restored. The keyboard might
be such an input source.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 155

Nesting of SAVE-INPUT and RESTORE-INPUT is allowed. For example, the following situation works
as expected:

: XX
 SAVE-INPUT
 S" f1" INCLUDED
 \ The file "f1" includes:
 \ ... SAVE-INPUT ... RESTORE-INPUT ...
 \ End of file "f1"
 RESTORE-INPUT ABORT" couldn't restore input"
;

In principle, RESTORE-INPUT could be implemented to “always fail”, e.g.:

: RESTORE-INPUT (x1 ... xn n -- flag)
 0 ?DO DROP LOOP TRUE
;

Such an implementation would not be useful in most cases. It would be preferable for a system to leave
SAVE-INPUT and RESTORE-INPUT undefined, rather than to create a useless implementation. In the
absence of the words, the application programmer could choose whether or not to create “dummy”
implementations or to work-around the problem in some other way.

Examples of how an implementation might use the return values from SAVE-INPUT to accomplish the
save/restore function:

Input Source possible stack values
block >IN @ BLK @ 2
EVALUATE >IN @ 1
keyboard >IN @ 1
text file >IN @ lo-pos hi-pos 3

These are examples only; a Standard Program may not assume any particular meaning for the individual
stack items returned by SAVE-INPUT.

A.6.2.2290 TIB

The function of TIB has been superseded by SOURCE.

A.6.2.2295 TO

Historically, some implementations of TO have not explicitly parsed. Instead, they set a mode flag that is
tested by the subsequent execution of name. ANS Forth explicitly requires that TO must parse, so that TO’s
effect will be predictable when it is used at the end of the parse area.

Typical use: x TO name

A.6.2.2298 TRUE

TRUE is equivalent to the phrase 0 0=.

A.6.2.2405 VALUE

Typical use:

0 VALUE DATA

: EXCHANGE (n1 -- n2) DATA SWAP TO DATA ;

ANSI X3.215-1994

 Collating Sequence: 156

EXCHANGE leaves n1 in DATA and returns the prior value n2.

A.6.2.2440 WITHIN

We describe WITHIN without mentioning circular number spaces (an undefined term) or providing the
code. Here is a number line with the overflow point (o) at the far right and the underflow point (u) at the
far left:

u--o

There are two cases to consider: either the n2|u2..n3|u3 range straddles the overflow/underflow points or it
does not. Lets examine the non-straddle case first:

u-------------------[.....................)------------------------o

The [denotes n2|u2, the) denotes n3|u3, and the dots and [are numbers WITHIN the range. n3|u3 is greater
than n2|u2, so the following tests will determine if n1|u1 is WITHIN n2|u2 and n3|u3:

n2|u2 ≤ n1|u1 and n1|u1 < n3|u3.
In the case where the comparison range straddles the overflow/underflow points:

u...............)-----------------------------[........................o

n3|u3 is less than n2|u2 and the following tests will determine if n1|u1 is WITHIN n2|u2 and n3|u3:

n2|u2 ≤ n1|u1 or n1|u1 < n3|u3.
WITHIN must work for both signed and unsigned arguments. One obvious implementation does not work:

: WITHIN (test low high -- flag)
 >R OVER < 0= (test flag1) SWAP R> < (flag1 flag2) AND
;

Assume two’s-complement arithmetic on a 16-bit machine, and consider the following test:

33000 32000 34000 WITHIN

The above implementation returns false for that test, even though the unsigned number 33000 is clearly
within the range {{32000 .. 34000}}.

The problem is that, in the incorrect implementation, the signed comparison < gives the wrong answer
when 32000 is compared to 33000, because when those numbers are treated as signed numbers, 33000 is
treated as negative 32536, while 32000 remains positive.

Replacing < with U< in the above implementation makes it work with unsigned numbers, but causes
problems with certain signed number ranges; in particular, the test:

1 -5 5 WITHIN

would give an incorrect answer.

For two’s-complement machines that ignore arithmetic overflow (most machines), the following
implementation works in all cases:

: WITHIN (test low high -- flag) OVER - >R - R> U< ;

A.6.2.2530 [COMPILE]

Typical use: : name2 ... [COMPILE] name1 ... ; IMMEDIATE

A.6.2.2535 \

Typical use: 5 CONSTANT THAT \ THIS IS A COMMENT ABOUT THAT

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 157

A.7 The optional Block word set
Early Forth systems ran stand-alone, with no host OS. Blocks of 1024 bytes were designed as a convenient
unit of disk, and most native Forth systems still use them. It is relatively easy to write a native disk driver
that maps head/track/sector addresses to block numbers. Such disk drivers are extremely fast in
comparison with conventional file-oriented operating systems, and security is high because there is no
reliance on a disk map.

Today many Forth implementations run under host operating systems, because the compatibility they offer
the user outweighs the performance overhead. Many people who use such systems prefer using host OS
files only; however, people who use both native and non-native Forths need a compatible way of accessing
disk. The Block Word set includes the most common words for accessing program source and data on
disk.

In order to guarantee that Standard Programs that need access to mass storage have a mechanism
appropriate for both native and non-native implementations, ANS Forth requires that the Block word set be
available if any mass storage facilities are provided. On non-native implementations, blocks normally
reside in host OS files.

A.7.2 Additional terms
block

Many Forth systems use blocks to contain program source. Conventionally such blocks are formatted for
editing as 16 lines of 64 characters. Source blocks are often referred to as “screens”.

A.7.6 Glossary

A.7.6.2.2190 SCR

SCR is short for screen.

A.8 The optional Double-Number word set
Forth systems on 8-bit and 16-bit processors often find it necessary to deal with double-length numbers.
But many Forths on small embedded systems do not, and many users of Forth on systems with a cell size of
32-bits or more find that the necessity for double-length numbers is much diminished. Therefore, we have
factored the words that manipulate double-length entities into this optional word set.

Please note that the naming convention used in this word set conveys some important information:

1. Words whose names are of the form 2xxx deal with cell pairs, where the relationship between the cells
is unspecified. They may be two-vectors, double-length numbers, or any pair of cells that it is
convenient to manipulate together.

2. Words with names of the form Dxxx deal specifically with double-length integers.
3. Words with names of the form Mxxx deal with some combination of single and double integers. The

order in which these appear on the stack is determined by long-standing common practice.

Refer to A.3.1 for a discussion of data types in Forth.

A.8.6 Glossary

A.8.6.1.0360 2CONSTANT

Typical use: x1 x2 2CONSTANT name

A.8.6.1.0390 2LITERAL

Typical use: : X ... [x1 x2] 2LITERAL ... ;

ANSI X3.215-1994

 Collating Sequence: 158

A.8.6.1.0440 2VARIABLE

Typical use: 2VARIABLE name

A.8.6.1.1070 D.R

In D.R, the “R” is short for RIGHT.

A.8.6.1.1090 D2*

See: A.6.1.0320 2* for applicable discussion.

A.8.6.1.1100 D2/

See: A.6.1.0330 2/ for applicable discussion.

A.8.6.1.1140 D>S

There exist number representations, e.g., the sign-magnitude representation, where reduction from double-
to single-precision cannot simply be done with DROP. This word, equivalent to DROP on two’s
complement systems, desensitizes application code to number representation and facilitates portability.

A.8.6.1.1820 M*/

M*/ was once described by Chuck Moore as the most useful arithmetic operator in Forth. It is the main
workhorse in most computations involving double-cell numbers. Note that some systems allow signed
divisors. This can cost a lot in performance on some CPUs. The requirement for a positive divisor has not
proven to be a problem.

A.8.6.1.1830 M+

M+ is the classical method for integrating.

A.9 The optional Exception word set
CATCH and THROW provide a reliable mechanism for handling exceptions, without having to propagate
exception flags through multiple levels of word nesting. It is similar in spirit to the “non-local return”
mechanisms of many other languages, such as C’s setjmp() and longjmp(), and LISP’s CATCH and
THROW. In the Forth context, THROW may be described as a “multi-level EXIT”, with CATCH marking a
location to which a THROW may return.

Several similar Forth “multi-level EXIT” exception-handling schemes have been described and used in
past years. It is not possible to implement such a scheme using only standard words (other than CATCH
and THROW), because there is no portable way to “unwind” the return stack to a predetermined place.

THROW also provides a convenient implementation technique for the standard words ABORT and ABORT",
allowing an application to define, through the use of CATCH, the behavior in the event of a system ABORT.

This sample implementation of CATCH and THROW uses the non-standard words described below. They or
their equivalents are available in many systems. Other implementation strategies, including directly saving
the value of DEPTH, are possible if such words are not available.

SP@ (-- addr) returns the address corresponding to the top of data stack.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 159

SP! (addr --) sets the stack pointer to addr, thus restoring the stack depth to the same depth that
existed just before addr was acquired by executing SP@.
RP@ (-- addr) returns the address corresponding to the top of return stack.
RP! (addr --) sets the return stack pointer to addr, thus restoring the return stack depth to the same
depth that existed just before addr was acquired by executing RP@.
VARIABLE HANDLER 0 HANDLER ! \ last exception handler

: CATCH (xt -- exception# | 0) \ return addr on stack
 SP@ >R (xt) \ save data stack pointer
 HANDLER @ >R (xt) \ and previous handler
 RP@ HANDLER ! (xt) \ set current handler
 EXECUTE () \ execute returns if no THROW
 R> HANDLER ! () \ restore previous handler
 R> DROP () \ discard saved stack ptr
 0 (0) \ normal completion
;

: THROW (??? exception# -- ??? exception#)
 ?DUP IF (exc#) \ 0 THROW is no-op
 HANDLER @ RP! (exc#) \ restore prev return stack
 R> HANDLER ! (exc#) \ restore prev handler
 R> SWAP >R (saved-sp) \ exc# on return stack
 SP! DROP R> (exc#) \ restore stack
 \ Return to the caller of CATCH because return
 \ stack is restored to the state that existed
 \ when CATCH began execution
 THEN
;

In a multi-tasking system, the HANDLER variable should be in the per-task variable area (i.e., a user
variable).

This sample implementation does not explicitly handle the case in which CATCH has never been called
(i.e., the ABORT behavior). One solution is to add the following code after the IF in THROW:

HANDLER @ 0= IF (empty the stack) QUIT THEN

Another solution is to execute CATCH within QUIT, so that there is always an “exception handler of last
resort” present. For example:

: QUIT
 (empty the return stack and)
 (set the input source to the user input device)
 POSTPONE [
 BEGIN
 REFILL
 WHILE
 ['] INTERPRET CATCH
 CASE
 0 OF STATE @ 0= IF ." OK" THEN CR ENDOF
 -1 OF (Aborted) ENDOF
 -2 OF (display message from ABORT") ENDOF
 (default) DUP ." Exception # " .
 ENDCASE
 REPEAT BYE
;

ANSI X3.215-1994

 Collating Sequence: 160

This example assumes the existance of a system-implementation word INTERPRET that embodies the text
interpreter semantics described in 3.4 The Forth text interpreter. Note that this implementation of QUIT
automatically handles the emptying of the stack and return stack, due to THROW’s inherent restoration of
the data and return stacks. Given this definition of QUIT, it’s easy to define:

: ABORT -1 THROW ;

In systems with other stacks in addition to the data and return stacks, the implementation of CATCH and
THROW must save and restore those stack pointers as well. Such an “extended version” can be built on top
of this basic implementation. For example, with another stack pointer accessed with FP@ and FP! only
CATCH needs to be redefined:

: CATCH (xt -- exception# | 0)
 FP@ >R CATCH R> OVER IF FP! ELSE DROP THEN ;

No change to THROW is necessary in this case. Note that, as with all redefinitions, the redefined version of
CATCH will only be available to definitions compiled after the redefinition of CATCH.

CATCH and THROW provide a convenient way for an implementation to “clean up” the state of open files if
an exception occurs during the text interpretation of a file with INCLUDE-FILE. The implementation of
INCLUDE-FILE may guard (with CATCH) the word that performs the text interpretation, and if CATCH
returns an exception code, the file may be closed and the exception reTHROWn so that the files being
included at an outer nesting level may be closed also. Note that the Standard allows, but does not require,
INCLUDE-FILE to close its open files if an exception occurs. However, it does require INCLUDE-FILE
to unnest the input source specification if an exception is THROWn.

A.9.3 Additional usage requirements
One important use of an exception handler is to maintain program control under many conditions which
ABORT. This is practicable only if a range of codes is reserved. Note that an application may overload
many standard words in such a way as to THROW ambiguous conditions not normally THROWn by a
particular system.

A.9.3.6 Exception handling
The method of accomplishing this coupling is implementation dependent. For example, LOAD could
“know” about CATCH and THROW (by using CATCH itself, for example), or CATCH and THROW could
“know” about LOAD (by maintaining input source nesting information in a data structure known to THROW,
for example). Under these circumstances it is not possible for a Standard Program to define words such as
LOAD in a completely portable way.

A.9.6 Glossary

A.9.6.1.2275 THROW

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had returned
it. In that case, the stack depth is the same as it was just before CATCH began execution. The values of the
i*x stack arguments could have been modified arbitrarily during the execution of xt. In general, nothing
useful may be done with those stack items, but since their number is known (because the stack depth is
deterministic), the application may DROP them to return to a predictable stack state.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 161

Typical use:

: could-fail (-- char)
 KEY DUP [CHAR] Q = IF 1 THROW THEN ;

: do-it (a b -- c) 2DROP could-fail ;

: try-it (--)
 1 2 ['] do-it CATCH IF
 (x1 x2) 2DROP ." There was an exception" CR
 ELSE ." The character was " EMIT CR
 THEN
;

: retry-it (--)
 BEGIN 1 2 ['] do-it CATCH WHILE
 (x1 x2) 2DROP ." Exception, keep trying" CR
 REPEAT (char)
 ." The character was " EMIT CR
;

A.10 The optional Facility word set

A.10.6 Glossary

A.10.6.1.0742 AT-XY

Most implementors supply a method of positioning a cursor on a CRT screen, but there is great variance in
names and stack arguments. This version is supported by at least one major vendor.

A.10.6.1.1755 KEY?

The Technical Committee has gone around several times on the stack effects. Whatever is decided will
violate somebody’s practice and penalize some machine. This way doesn’t interfere with type-ahead on
some systems, while requiring the implementation of a single-character buffer on machines where polling
the keyboard inevitably results in the destruction of the character.

Use of KEY or KEY? indicates that the application does not wish to bother with non-character events, so
they are discarded, in anticipation of eventually receiving a valid character. Applications wishing to handle
non-character events must use EKEY and EKEY?. It is possible to mix uses of KEY? / KEY and EKEY? /
EKEY within a single application, but the application must use KEY? and KEY only when it wishes to
discard non-character events until a valid character is received.

A.10.6.2.1305 EKEY

EKEY provides a standard word to access a system-dependent set of “raw” keyboard events, including
events corresponding to members of the standard character set, events corresponding to other members of
the implementation-defined character set, and keystrokes that do not correspond to members of the
character set.

EKEY assumes no particular numerical correspondence between particular event code values and the values
representing standard characters. On some systems, this may allow two separate keys that correspond to
the same standard character to be distinguished from one another.

In systems that combine both keyboard and mouse events into a single “event stream”, the single number
returned by EKEY may be inadequate to represent the full range of input possibilities. In such systems, a
single “event record” may include a time stamp, the x,y coordinates of the mouse position, the keyboard
state, and the state of the mouse buttons. In such systems, it might be appropriate for EKEY to return the
address of an “event record” from which the other information could be extracted.

ANSI X3.215-1994

 Collating Sequence: 162

Also, consider a hypothetical Forth system running under MS-DOS on a PC-compatible computer.
Assume that the implementation-defined character set is the “normal” 8-bit PC character set. In that
character set, the codes from 0 to 127 correspond to ASCII characters. The codes from 128 to 255
represent characters from various non-English languages, mathematical symbols, and some graphical
symbols used for line drawing. In addition to those characters, the keyboard can generate various other
“scan codes”, representing such non-character events as arrow keys and function keys.

There may be multiple keys, with different scan codes, corresponding to the same standard character. For
example, the character representing the number “1” often appears both in the row of number keys above
the alphabetic keys, and also in the separate numeric keypad.

When a program asks the MS-DOS operating system for a keyboard event, it receives either a single non-
zero byte, representing a character, or a zero byte followed by a “scan code” byte, representing a non-
character keyboard event (e.g., a function key).

EKEY represents each keyboard event as a single number, rather than as a sequence of numbers. For the
system described above, the following would be a reasonable implementation of EKEY and related words:

The MAX-CHAR environmental query would return 255.
Assume the existence of a word DOS-KEY (-- char) which executes the MS-DOS “Direct STDIN
Input” system call (Interrupt 21h, Function 07h) and a word DOS-KEY? (-- flag) which executes the
MS-DOS “Check STDIN Status” system call (Interrupt 21h, Function 0Bh).
: EKEY? (-- flag) DOS-KEY? 0<> ;

: EKEY (-- u) DOS-KEY ?DUP 0= IF DOS-KEY 256 + THEN ;

: EKEY>CHAR (u -- u false | char true)
 DUP 255 > IF (u)
 DUP 259 = IF \ 259 is Ctrl-@ (ASCII NUL)
 DROP 0 TRUE EXIT \ so replace with character
 THEN FALSE EXIT \ otherwise extended character
 THEN TRUE \ normal extended ASCII char.
;

VARIABLE PENDING-CHAR -1 PENDING-CHAR !

: KEY? (-- flag)
 PENDING-CHAR @ 0< IF
 BEGIN EKEY? WHILE
 EKEY EKEY>CHAR IF
 PENDING-CHAR ! TRUE EXIT
 THEN DROP
 REPEAT FALSE EXIT
 THEN TRUE
;

: KEY (-- char)
 PENDING-CHAR @ 0< IF
 BEGIN EKEY EKEY>CHAR 0= WHILE
 DROP
 REPEAT EXIT
 THEN PENDING-CHAR @ -1 PENDING-CHAR !
;

This is a full-featured implementation, providing the application program with an easy way to either handle
non-character events (with EKEY), or to ignore them and to only consider “real” characters (with KEY).

Note that EKEY maps scan codes from 0 to 255 into numbers from 256 to 511. EKEY maps the number
259, representing the keyboard combination Ctrl-Shift-@, to the character whose numerical value is 0
(ASCII NUL). Many ASCII keyboards generate ASCII NUL for Ctrl-Shift-@, so we use that key
combination for ASCII NUL (which is otherwise unavailable from MS-DOS, because the zero byte
signifies that another scan-code byte follows).

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 163

One consequence of using the “Direct STDIN Input” system call (function 7) instead of the “STDIN Input”
system call (function 8) is that the normal DOS “Ctrl-C interrupt” behavior is disabled when the system is
waiting for input (Ctrl-C would still cause an interrupt while characters are being output). On the other
hand, if the “STDIN Input” system call (function 8) were used to implement EKEY, Ctrl-C interrupts would
be enabled, but Ctrl-Shift-@ would also cause an interrupt, because the operating system would treat the
second byte of the 0,3 sequence as a Ctrl-C, even though the 3 is really a scan code and not a character.
One “best of both worlds” solution is to use function 8 for the first byte received by EKEY, and function 7
for the scan code byte. For example:

: EKEY (-- u)
 DOS-KEY-FUNCTION-8 ?DUP 0= IF
 DOS-KEY-FUNCTION-7 DUP 3 = IF
 DROP 0 ELSE 256 +
 THEN
 THEN
;

Of course, if the Forth implementor chooses to pass Ctrl-C through to the program, without using it for its
usual interrupt function, then DOS function 7 is appropriate in both cases (and some additional care must
be taken to prevent a typed-ahead Ctrl-C from interrupting the Forth system during output operations).

A Forth system might also choose a simpler implementation of KEY, without implementing EKEY, as
follows:

: KEY (-- char) DOS-KEY ;

: KEY? (-- flag) DOS-KEY? 0<> ;

The disadvantages of the simpler version are:

a) An application program that uses KEY, expecting to receive only valid characters, might receive a
sequence of bytes (e.g., a zero byte followed by a byte with the same numerical value as the letter “A”)
that appears to contain a valid character, even though the user pressed a key (e.g., function key 4) that
does not correspond to any valid character.
b) An application program that wishes to handle non-character events will have to execute KEY twice
if it returns zero the first time. This might appear to be a reasonable and easy thing to do. However,
such code is not portable to other systems that do not use a zero byte as an “escape” code. Using the
EKEY approach, the algorithm for handling keyboard events can be the same for all systems; the
system dependencies can be reduced to a table or set of constants listing the system-dependent key
codes used to access particular application functions. Without EKEY, the algorithm, not just the table,
is likely to be system dependent.

Another approach to EKEY on MS-DOS is to use the BIOS “Read Keyboard Status” function (Interrupt
16h, Function 01h) or the related “Check Keyboard” function (Interrupt 16h, Function 11h). The
advantage of this function is that it allows the program to distinguish between different keys that
correspond to the same character (e.g. the two “1” keys). The disadvantage is that the BIOS keyboard
functions read only the keyboard. They cannot be “redirected” to another “standard input” source, as can
the DOS STDIN Input functions.

A.10.6.2.1306 EKEY>CHAR

EKEY>CHAR translates a keyboard event into the corresponding member of the character set, if such a
correspondence exists for that event.

It is possible that several different keyboard events may correspond to the same character, and other
keyboard events may correspond to no character.

A.10.6.2.1325 EMIT?

An indefinite delay is a device related condition, such as printer off-line, that requires operator intervention
before the device will accept new data.

ANSI X3.215-1994

 Collating Sequence: 164

A.10.6.2.1905 MS

Although their frequencies vary, every system has a clock. Since many programs need to time intervals,
this word is offered. Use of milliseconds as an internal unit of time is a practical “least common
denominator” external unit. It is assumed implementors will use “clock ticks” (whatever size they are) as
an internal unit and convert as appropriate.

A.10.6.2.2292 TIME&DATE

Most systems have a real-time clock/calendar. This word gives portable access to it.

A.11 The optional File-Access word set
Many Forth systems support access to a host file system, and many of these support interpretation of Forth
from source text files. The Forth-83 Standard did not address host OS files. Nevertheless, a degree of
similarity exists among modern implementations.

For example, files must be opened and closed, created and deleted. Forth file-system implementations
differ mostly in the treatment and disposition of the exception codes, and in the format of the file-
identification strings. The underlying mechanism for creating file-control blocks might or might not be
visible. We have chosen to keep it invisible.

Files must also be read and written. Text files, if supported, must be read and written one line at a time.
Interpretation of text files implies that they are somehow integrated into the text interpreter input
mechanism. These and other requirements have shaped the file-access extensions word set.

Most of the existing implementations studied use simple English words for common host file functions:
OPEN, CLOSE, READ, etc. Although we would have preferred to do likewise, there were so many minor
variations in implementation of these words that adopting any particular meaning would have broken much
existing code. We have used names with a suffix -FILE for most of these words. We encourage
implementors to conform their single-word primitives to the ANS behaviors, and hope that if this is done
on a widespread basis we can adopt better definition names in a future standard.

Specific rationales for members of this word set follow.

A.11.3 Additional usage requirements

A.11.3.2 Blocks in files

Many systems reuse file identifiers; when a file is closed, a subsequently opened file may be given the
same identifier. If the original file has blocks still in block buffers, these will be incorrectly associated with
the newly opened file with disastrous results. The block buffer system must be flushed to avoid this.

A.11.6 Glossary

A.11.6.1.0765 BIN

Some operating systems require that files be opened in a different mode to access their contents as an
unstructured stream of binary data rather than as a sequence of lines.

The arguments to READ-FILE and WRITE-FILE are arrays of character storage elements, each
element consisting of at least 8 bits. The Technical Committee intends that, in BIN mode, the contents of
these storage elements can be written to a file and later read back without alteration. The Technical

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 165

Committee has declined to address issues regarding the impact of “wide” characters on the File and Block
word sets.

A.11.6.1.1010 CREATE-FILE

Typical use:

: X .. S" TEST.FTH" R/W CREATE-FILE ABORT" CREATE-FILE FAILED" ... ;

A.11.6.1.1717 INCLUDE-FILE

Here are two implementation alternatives for saving the input source specification in the presence of text
file input:

1) Save the file position (as returned by FILE-POSITION) of the beginning of the line being
interpreted. To restore the input source specification, seek to that position and re-read the line into the
input buffer.
2) Allocate a separate line buffer for each active text input file, using that buffer as the input buffer.
This method avoids the “seek and reread” step, and allows the use of “pseudo-files” such as pipes and
other sequential-access-only communication channels.

A.11.6.1.1718 INCLUDED

Typical use: ... S" filename" INCLUDED ...

A.11.6.1.1970 OPEN-FILE

Typical use:

: X .. S" TEST.FTH" R/W OPEN-FILE ABORT" OPEN-FILE FAILED" ... ;

A.11.6.1.2080 READ-FILE

A typical sequential file-processing algorithm might look like:

BEGIN ()
 ... READ-FILE THROW (length)
?DUP WHILE (length)
 ... ()
REPEAT ()

In this example, THROW is used to handle (unexpected) exception conditions, which are reported as non-
zero values of the ior return value from READ-FILE. End-of-file is reported as a zero value of the
“length” return value.

A.11.6.1.2090 READ-LINE

Implementations are allowed to store the line terminator in the memory buffer in order to allow the use of
line reading functions provided by host operating systems, some of which store the terminator. Without
this provision, a temporary buffer might be needed. The two-character limitation is sufficient for the vast
majority of existing operating systems. Implementations on host operating systems whose line terminator
sequence is longer than two characters may have to take special action to prevent the storage of more than
two terminator characters.

Standard Programs may not depend on the presence of any such terminator sequence in the buffer.

ANSI X3.215-1994

 Collating Sequence: 166

A typical line-oriented sequential file-processing algorithm might look like:

BEGIN ()
 . . . READ-LINE THROW (length not-eof-flag)
WHILE (length)
 . . . ()
REPEAT DROP ()

In this example, THROW is used to handle (unexpected) I/O exception condition, which are reported as non-
zero values of the “ior” return value from READ-LINE.

READ-LINE needs a separate end-of-file flag because empty (zero-length) lines are a routine occurrence,
so a zero-length line cannot be used to signify end-of-file.

A.11.6.1.2165 S"

Typical use: ... S" ccc" ...

The interpretation semantics for S" are intended to provide a simple mechanism for entering a string in the
interpretation state. Since an implementation may choose to provide only one buffer for interpreted strings,
an interpreted string is subject to being overwritten by the next execution of S" in interpretation state. It is
intended that no standard words other than S" should in themselves cause the interpreted string to be
overwritten. However, since words such as EVALUATE, LOAD, INCLUDE-FILE and INCLUDED can
result in the interpretation of arbitrary text, possibly including instances of S", the interpreted string may
be invalidated by some uses of these words.

When the possibility of overwriting a string can arise, it is prudent to copy the string to a “safe” buffer
allocated by the application.

Programs wishing to parse in the fashion of S" are advised to use PARSE or WORD COUNT instead of S",
preventing the overwriting of the interpreted string buffer.

A.12 The optional Floating-Point word set
The Technical Committee has considered many proposals dealing with the inclusion and makeup of the
Floating-Point Word Sets in ANS Forth. Although it has been argued that ANS Forth should not address
floating-point arithmetic and numerous Forth applications do not need floating-point, there are a growing
number of important Forth applications from spread sheets to scientific computations that require the use of
floating-point arithmetic. Initially the Technical Committee adopted proposals that made the Forth
Vendors Group Floating-Point Standard, first published in 1984, the framework for inclusion of Floating-
Point in ANS Forth. There is substantial common practice and experience with the Forth Vendors Group
Floating-Point Standard. Subsequently the Technical Committee adopted proposals that placed the basic
floating-point arithmetic, stack and support words in the Floating-Point word set and the floating-point
transcendental functions in the Floating-Point Extensions word set. The Technical Committee also adopted
proposals that:

– changed names for clarity and consistency; e.g., REALS to FLOATS, and REAL+ to FLOAT+ .
– removed words; e.g., FPICK .
– added words for completeness and increased functionality; e.g., FSINCOS, F~, DF@, DF!, SF@ and

SF!
Several issues concerning the Floating-Point word set were resolved by consensus in the Technical
Committee:

Floating-point stack: By default the floating-point stack is separate from the data and return stacks;
however, an implementation may keep floating-point numbers on the data stack. A program can
determine whether floating-point numbers are kept on the data stack by passing the string
FLOATING-STACK to ENVIRONMENT? It is the experience of several members of the Technical

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 167

Committee that with proper coding practices it is possible to write floating-point code that will run
identically on systems with a separate floating-point stack and with floating-point numbers kept on the
data stack.

Floating-point input: The current base must be DECIMAL. Floating-point input is not allowed in an
arbitrary base. All floating-point numbers to be interpreted by an ANS Forth system must contain the
exponent indicator “E” (see 12.3.7 Text interpreter input number conversion). Consensus in the
Technical Committee deemed this form of floating-point input to be in more common use than the
alternative that would have a floating-point input mode that would allow numbers with embedded
decimal points to be treated as floating-point numbers.

Floating-point representation: Although the format and precision of the significand and the format and
range of the exponent of a floating-point number are implementation defined in ANS Forth, the
Floating-Point Extensions word set contains the words DF@, SF@, DF!, and SF! for fetching and
storing double- and single-precision IEEE floating-point-format numbers to memory. The IEEE
floating-point format is commonly used by numeric math co-processors and for exchange of floating-
point data between programs and systems.

A.12.3 Additional usage requirements

A.12.3.5 Address alignment

In defining custom floating-point data structures, be aware that CREATE doesn’t necessarily leave the data
space pointer aligned for various floating-point data types. Programs may comply with the requirement for
the various kinds of floating-point alignment by specifying the appropriate alignment both at compile-time
and execution time. For example:

: FCONSTANT (F: r --)
 CREATE FALIGN HERE 1 FLOATS ALLOT F!
 DOES> (F: -- r) FALIGNED F@ ;

A.12.3.7 Text interpreter input number conversion

The Technical Committee has more than once received the suggestion that the text interpreter in Standard
Forth systems should treat numbers that have an embedded decimal point, but no exponent, as floating-
point numbers rather than double cell numbers. This suggestion, although it has merit, has always been
voted down because it would break too much existing code; many existing implementations put the full
digit string on the stack as a double number and use other means to inform the application of the location of
the decimal point.

A.12.6 Glossary

A.12.6.1.0558 >FLOAT

>FLOAT enables programs to read floating-point data in legible ASCII format. It accepts a much broader
syntax than does the text interpreter since the latter defines rules for composing source programs whereas
>FLOAT defines rules for accepting data. >FLOAT is defined as broadly as is feasible to permit input of
data from ANS Forth systems as well as other widely used standard programming environments.

This is a synthesis of common FORTRAN practice. Embedded spaces are explicitly forbidden in much
scientific usage, as are other field separators such as comma or slash.

While >FLOAT is not required to treat a string of blanks as zero, this behavior is strongly encouraged,
since a future version of ANS Forth may include such a requirement.

A.12.6.1.1427 F.

For example, 1E3 F. displays 1000. .

ANSI X3.215-1994

 Collating Sequence: 168

A.12.6.1.1492 FCONSTANT

Typical use: r FCONSTANT name

A.12.6.1.1552 FLITERAL

Typical use: : X ... [... (r)] FLITERAL ... ;

A.12.6.1.1630 FVARIABLE

Typical use: FVARIABLE name

A.12.6.1.2143 REPRESENT

This word provides a primitive for floating-point display. Some floating-point formats, including those
specified by IEEE-754, allow representations of numbers outside of an implementation-defined range.
These include plus and minus infinities, denormalized numbers, and others. In these cases we expect that
REPRESENT will usually be implemented to return appropriate character strings, such as “+infinity” or
“nan”, possibly truncated.

A.12.6.2.1489 FATAN2

FSINCOS and FATAN2 are a complementary pair of operators which convert angles to 2-vectors and vice-
versa. They are essential to most geometric and physical applications since they correctly and
unambiguously handle this conversion in all cases except null vectors, even when the tangent of the angle
would be infinite.

FSINCOS returns a Cartesian unit vector in the direction of the given angle, measured counter-clockwise
from the positive X-axis. The order of results on the stack, namely y underneath x, permits the 2-vector
data type to be additionally viewed and used as a ratio approximating the tangent of the angle. Thus the
phrase FSINCOS F/ is functionally equivalent to FTAN, but is useful over only a limited and
discontinuous range of angles, whereas FSINCOS and FATAN2 are useful for all angles. This ordering has
been found convenient for nearly two decades, and has the added benefit of being easy to remember. A
corollary to this observation is that vectors in general should appear on the stack in this order.

The argument order for FATAN2 is the same, converting a vector in the conventional representation to a
scalar angle. Thus, for all angles, FSINCOS FATAN2 is an identity within the accuracy of the arithmetic
and the argument range of FSINCOS. Note that while FSINCOS always returns a valid unit vector,
FATAN2 will accept any non-null vector. An ambiguous condition exists if the vector argument to
FATAN2 has zero magnitude.

A.12.6.2.1516 FEXPM1

This function allows accurate computation when its arguments are close to zero, and provides a useful base
for the standard exponential functions. Hyperbolic functions such as cosh(x) can be efficiently and
accurately implemented by using FEXPM1; accuracy is lost in this function for small values of x if the word
FEXP is used.

An important application of this word is in finance; say a loan is repaid at 15% per year; what is the daily
rate? On a computer with single precision (six decimal digit) accuracy:

1. Using FLN and FEXP:

FLN of 1.15 = 0.139762,
divide by 365 = 3.82910E-4,
form the exponent using FEXP = 1.00038, and
subtract one (1) and convert to percentage = 0.038%.

Thus we only have two digit accuracy.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 169

2. Using FLNP1 and FEXPM1:

FLNP1 of 0.15 = 0.139762, (this is the same value as in the first example, although with the argument
closer to zero it may not be so)
divide by 365 = 3.82910E-4,
form the exponent and subtract one (1) using FEXPM1 = 3.82983E-4, and
convert to percentage = 0.0382983%.

This is full six digit accuracy.

The presence of this word allows the hyperbolic functions to be computed with usable accuracy. For
example, the hyperbolic sine can be defined as:

: FSINH (r1 -- r2)
 FEXPM1 FDUP FDUP 1.0E0 F+ F/ F+ 2.0E0 F/ ;

A.12.6.2.1554 FLNP1

This function allows accurate compilation when its arguments are close to zero, and provides a useful base
for the standard logarithmic functions. For example, FLN can be implemented as:

: FLN 1.0E0 F- FLNP1 ;

See: A.12.6.2.1516 FEXPM1.

A.12.6.2.1616 FSINCOS

See: A.12.6.2.1489 FATAN2.

A.12.6.2.1640 F~

This provides the three types of “floating point equality” in common use -- “close” in absolute terms, exact
equality as represented, and “relatively close”.

A.13 The optional Locals word set
The Technical Committee has had a problem with locals. It has been argued forcefully that ANS Forth
should say nothing about locals since:

– there is no clear accepted practice in this area;
– not all Forth programmers use them or even know what they are; and
– few implementations use the same syntax, let alone the same broad usage rules and general

approaches.

It has also been argued, it would seem equally forcefully, that the lack of any standard approach to locals is
precisely the reason for this lack of accepted practice since locals are at best non-trivial to implement in a
portable and useful way. It has been further argued that users who have elected to become dependent on
locals tend to be locked into a single vendor and have little motivation to join the group that it is hoped will
“broadly accept” ANS Forth unless the Standard addresses their problems.

Since the Technical Committee has been unable to reach a strong consensus on either leaving locals out or
on adopting any particular vendor’s syntax, it has sought some way to deal with an issue that it has been
unable to simply dismiss. Realizing that no single mechanism or syntax can simultaneously meet the
desires expressed in all the locals proposals that have been received, it has simplified the problem statement
to be to define a locals mechanism that:

– is independent of any particular syntax;
– is user extensible;
– enables use of arbitrary identifiers, local in scope to a single definition;
– supports the fundamental cell size data types of Forth; and
– works consistently, especially with respect to re-entrancy and recursion.

ANSI X3.215-1994

 Collating Sequence: 170

This appears to the Technical Committee to be what most of those who actively use locals are trying to
achieve with them, and it is at present the consensus of the Technical Committee that if ANS Forth has
anything to say on the subject this is an acceptable thing for it to say.

This approach, defining (LOCAL), is proposed as one that can be used with a small amount of user coding
to implement some, but not all, of the locals schemes in use. The following coding examples illustrate how
it can be used to implement two syntaxes.

– The syntax defined by this Standard and used in the systems of Creative Solutions, Inc.:

: LOCALS| ("name...name |" --)
 BEGIN
 BL WORD COUNT OVER C@
 [CHAR] | - OVER 1 - OR WHILE
 (LOCAL)
 REPEAT 2DROP 0 0 (LOCAL)
; IMMEDIATE

: EXAMPLE (n -- n**2 n**3)
 LOCALS| N | N DUP N * DUP N * ;

– A proposed syntax: (LOCAL name) with additional usage rules:

: LOCAL ("name" --) BL WORD COUNT (LOCAL) ; IMMEDIATE

: END-LOCALS (--) 0 0 (LOCAL) ; IMMEDIATE

: EXAMPLE (n -- n n**2 n**3)
 LOCAL N END-LOCALS N DUP N * DUP N * ;

Other syntaxes can be implemented, although some will admittedly require considerably greater effort or in
some cases program conversion. Yet other approaches to locals are completely incompatible due to gross
differences in usage rules and in some cases even scope identifiers. For example, the complete local
scheme in use at Johns Hopkins had elaborate semantics that cannot be duplicated in terms of this model.

To reinforce the intent of section 13, here are two examples of actual use of locals. The first illustrates
correct usage:

a) : { ("name ... }" -)
 BEGIN BL WORD COUNT
 OVER C@ [CHAR] } - OVER 1 - OR WHILE
 (LOCAL)
 REPEAT 2DROP 0 0 (LOCAL)
; IMMEDIATE

b) : JOE (a b c -- n)
 >R 2* R> 2DUP + 0
 { ANS 2B+C C 2B A }
 2 0 DO 1 ANS + I + TO ANS ANS . CR LOOP
 ANS . 2B+C . C . 2B . A . CR ANS
;

c) 100 300 10 JOE .

The word { at a) defines a local declaration syntax that surrounds the list of locals with braces. It doesn’t
do anything fancy, such as reordering locals or providing initial values for some of them, so locals are
initialized from the stack in the default order. The definition of JOE at b) illustrates a use of this syntax.
Note that work is performed at execution time in that definition before locals are declared. It’s OK to use
the return stack as long as whatever is placed there is removed before the declarations begin.

Note that before declaring locals, B is doubled, a subexpression (2B+C) is computed, and an initial value
(zero) for ANS is provided. After locals have been declared, JOE proceeds to use them. Note that locals

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 171

may be accessed and updated within do-loops. The effect of interpreting line c) is to display the following
values:

1 (ANS the first time through the loop),
3 (ANS the second time),
3 (ANS), 610 (2B+C), 10 (C), 600 (2B), 100 (A), and
3 (ANS left on the stack by JOE).

The names of the locals vanish after JOE has been compiled. The storage and meaning of locals appear
when JOE’s locals are declared and vanish as JOE returns to its caller at ; (semicolon).

A second set of examples illustrates various things that break the rules. We assume that the definitions of
LOCAL and END-LOCALS above are present, along with { from the preceding example.

d) : ZERO 0 POSTPONE LITERAL POSTPONE LOCAL ; IMMEDIATE

e) : MOE (a b)
 ZERO TEMP LOCAL B 1+ LOCAL A+ ZERO ANSWER ;

f) : BOB (a b c d) { D C } { B A } ;

Here are two definitions with various violations of rule 13.3.3.2a. In e) the declaration of TEMP is legal
and creates a local whose initial value is zero. It’s OK because the executable code that ZERO generates
precedes the first use of (LOCAL) in the definition. However, the 1+ preceding the declaration of A+ is
illegal. Likewise the use of ZERO to define ANSWER is illegal because it generates executable code
between uses of (LOCAL). Finally, MOE terminates illegally (no END-LOCALS). BOB inf) violates the
rule against declaring two sets of locals.

g) : ANN (a b -- b) DUP >R DUP IF { B A } THEN R> ;

h) : JANE (a b -- n) { B A } A B + >R A B - R> / ;

ANN in g) violates two rules. The IF ... THEN around the declaration of its locals violates 13.3.3.2b, and
the copy of B left on the return stack before declaring locals violates 13.3.3.2c. JANE in h) violates
13.3.3.2d by accessing locals after placing the sum of A and B on the return stack without first removing
that sum.

i) : CHRIS (a b)
 { B A } ['] A EXECUTE 5 ['] B >BODY ! [' A] LITERAL LEE ;

CHRIS in i) illustrates three violations of 13.3.3.2e. The attempt to EXECUTE the local called A is
inconsistent with some implementations. The store into B via >BODY is likely to cause tragic results with
many implementations; moreover, if locals are in registers they can’t be addressed as memory no matter
what is written.

The third violation, in which an execution token for a definition’s local is passed as an argument to the
word LEE, would, if allowed, have the unpleasant implication that LEE could EXECUTE the token and
obtain a value for A from the particular execution of CHRIS that called LEE this time.

A.13.3 Additional usage requirements
Rule 13.3.3.2d could be relaxed without affecting the integrity of the rest of this structure. 13.3.3.2c could
not be.

13.3.3.2b forbids the use of the data stack for local storage because no usage rules have been articulated for
programmer users in such a case. Of course, if the data stack is somehow employed in such a way that
there are no usage rules, then the locals are invisible to the programmer, are logically not on the stack, and
the implementation conforms.

The minimum required number of locals can (and should) be adjusted to minimize the cost of compliance
for existing users of locals.

ANSI X3.215-1994

 Collating Sequence: 172

Access to previously declared local variables is prohibited by Section 13.3.3.2d until any data placed onto
the return stack by the application has been removed, due to the possible use of the return stack for storage
of locals.

Authorization for a Standard Program to manipulate the return stack (e.g., via >R R>) while local
variables are active overly constrains implementation possibilities. The consensus of users of locals was
that Local facilities represent an effective functional replacement for return stack manipulation, and
restriction of standard usage to only one method was reasonable.

Access to Locals within DO..LOOPs is expressly permitted as an additional requirement of conforming
systems by Section 13.3.3.2g. Although words, such as (LOCALS), written by a System Implementor,
may require inside knowledge of the internal structure of the return stack, such knowledge is not required
of a user of compliant Forth systems.

A.13.6 Glossary

A.13.6.1.2295 TO

Typical use: x TO name

See: A.6.2.2295 TO.

A.13.6.2.1795 LOCALS|

A possible implementation of this word and an example of usage is given in A.13, above. It is intended as
an example only; any implementation yielding the described semantics is acceptable.

A.14 The optional Memory-Allocation word set
The Memory-Allocation word set provides a means for acquiring memory other than the contiguous data
space that is allocated by ALLOT. In many operating system environments it is inappropriate for a process
to pre-allocate large amounts of contiguous memory (as would be necessary for the use of ALLOT). The
Memory-Allocation word set can acquire memory from the system at any time, without knowing in
advance the address of the memory that will be acquired.

A.15 The optional Programming-Tools word set
These words have been in widespread common use since the earliest Forth systems.

Although there are environmental dependencies intrinsic to programs using an assembler, virtually all Forth
systems provide such a capability. Insofar as many Forth programs are intended for real-time applications
and are intrinsically non-portable for this reason, the Technical Committee believes that providing a
standard window into assemblers is a useful contribution to Forth programmers.

Similarly, the programming aids DUMP, etc., are valuable tools even though their specific formats will
differ between CPUs and Forth implementations. These words are primarily intended for use by the
programmer, and are rarely invoked in programs.

One of the original aims of Forth was to erase the boundary between “user” and “programmer” – to give all
possible power to anyone who had occasion to use a computer. Nothing in the above labeling or remarks
should be construed to mean that this goal has been abandoned.

A.15.6 Glossary

A.15.6.1.0220 .S

.S is a debugging convenience found on almost all Forth systems. It is universally mentioned in Forth
texts.

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 173

A.15.6.1.2194 SEE

SEE acts as an on-line form of documentation of words, allowing modification of words by decompiling
and regenerating with appropriate changes.

A.15.6.1.2465 WORDS

WORDS is a debugging convenience found on almost all Forth systems. It is universally referred to in Forth
texts.

A.15.6.2.0470 ;CODE

Typical use: : namex ... <create> ... ;CODE ...

where namex is a defining word, and <create> is CREATE or any user defined word that calls CREATE.

A.15.6.2.0930 CODE

Some Forth systems implement the assembly function by adding an ASSEMBLER word list to the search
order, using the text interpreter to parse a postfix assembly language with lexical characteristics similar to
Forth source code. Typically, in such systems, assembly ends when a word END-CODE is interpreted.

A.15.6.2.1015 CS-PICK

The intent is to reiterate a dest on the control-flow stack so that it can be resolved more than once. For
example:

\ Conditionally transfer control to beginning of loop
\ This is similar in spirit to C's "continue" statement.

: ?REPEAT (dest -- dest) \ Compilation
 (flag --) \ Execution
 0 CS-PICK POSTPONE UNTIL
; IMMEDIATE

: XX (--) \ Example use of ?REPEAT
 BEGIN
 ...
 flag ?REPEAT (Go back to BEGIN if flag is false)
 ...
 flag ?REPEAT (Go back to BEGIN if flag is false)
 ...
 flag UNTIL (Go back to BEGIN if flag is false)
 ...
;

A.15.6.2.1020 CS-ROLL

The intent is to modify the order in which the origs and dests on the control-flow stack are to be resolved
by subsequent control-flow words. For example, WHILE could be implemented in terms of IF and CS-
ROLL, as follows:

: WHILE (dest -- orig dest)
 POSTPONE IF 1 CS-ROLL
; IMMEDIATE

A.15.6.2.1580 FORGET

Typical use: ... FORGET name ...

ANSI X3.215-1994

 Collating Sequence: 174

FORGET assumes that all the information needed to restore the dictionary to its previous state is inferable
somehow from the forgotten word. While this may be true in simple linear dictionary models, it is difficult
to implement in other Forth systems; e.g., those with multiple address spaces. For example, if Forth is
embedded in ROM, how does FORGET know how much RAM to recover when an array is forgotten? A
general and preferred solution is provided by MARKER.

A.15.6.2.2531 [ELSE]

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2532 [IF]

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

A.15.6.2.2533 [THEN]

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ...

Software that runs in several system environments often contains some source code that is environmentally
dependent. Conditional compilation – the selective inclusion or exclusion of portions of the source code at
compile time – is one technique that is often used to assist in the maintenance of such source code.

Conditional compilation is sometimes done with “smart comments” – definitions that either skip or do not
skip the remainder of the line based on some test. For example:

\ If 16-Bit? contains TRUE, lines preceded by 16BIT\
\ will be skipped. Otherwise, they will not be skipped.

VARIABLE 16-BIT?

: 16BIT\ (--) 16-BIT? @ IF POSTPONE \ THEN
; IMMEDIATE

This technique works on a line by line basis, and is good for short, isolated variant code sequences.

More complicated conditional compilation problems suggest a nestable method that can encompass more
than one source line at a time. The words included in the ANS Forth optional Programming tools
extensions word set are useful for this purpose. The implementation given below works with any input
source (keyboard, EVALUATE, BLOCK, or text file).

: [ELSE] (--)
 1 BEGIN \ level
 BEGIN BL WORD COUNT DUP WHILE \ level adr len
 2DUP S" [IF]" COMPARE 0= IF \ level adr len
 2DROP 1+ \ level'
 ELSE \ level adr len
 2DUP S" [ELSE]" COMPARE 0= IF \ level adr len
 2DROP 1- DUP IF 1+ THEN \ level'
 ELSE \ level adr len
 S" [THEN]" COMPARE 0= IF \ level
 1- \ level'
 THEN
 THEN
 THEN ?DUP 0= IF EXIT THEN \ level'
 REPEAT 2DROP \ level
 REFILL 0= UNTIL \ level
 DROP
; IMMEDIATE

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 175

: [IF] (flag --)
 0= IF POSTPONE [ELSE] THEN
; IMMEDIATE

: [THEN] (--) ; IMMEDIATE

A.16 The optional Search-Order word set
Search-order specification and control mechanisms vary widely. The FIG-Forth, Forth-79, polyFORTH,
and Forth-83 vocabulary and search order mechanisms are all mutually incompatible. The complete list of
incompatible mechanisms, in use or proposed, is much longer. The ALSO/ONLY scheme described in a
Forth-83 Experimental Proposal has substantial community support. However, many consider it to be
fundamentally flawed, and oppose it vigorously.

Recognizing this variation, this Standard specifies a new “primitive” set of tools from which various
schemes may be constructed. This primitive search-order word set is intended to be a portable
“construction set” from which search-order words may be built, rather than a user interface. ALSO/ONLY
or the various “vocabulary” schemes supported by the major Forth vendors can be defined in terms of the
primitive search-order word set.

The encoding for word list identifiers wid might be a small-integer index into an array of word-list
definition records, the data-space address of such a record, a user-area offset, the execution token of a
Forth-83 style sealed vocabulary, the link-field address of the first definition in a word list, or anything
else. It is entirely up to the system implementor.

In some systems the interpretation of numeric literals is controlled by including “pseudo word lists” that
recognize numbers at the end of the search order. This technique is accommodated by the “default search
order” behavior of SET-ORDER when given an argument of -1. In a system using the traditional
implementation of ALSO/ONLY , the minimum search order would be equivalent to the word ONLY.

There has never been a portable way to restore a saved search order. F83 (not Forth 83) introduced the
word PREVIOUS , which almost made it possible to “unload” the search order by repeatedly executing the
phrase CONTEXT @ PREVIOUS. The search order could be “reloaded” by repeating ALSO CONTEXT
!. Unfortunately there was no portable way to determine how many word lists were in the search order.

ANS Forth has removed the word CONTEXT because in many systems its contents refer to more than one
word list, compounding portability problems.

Note that : (colon) no longer affects the search order. The previous behavior, where the compilation word
list replaces the first word list of the search order, can be emulated with the following redefinition of :
(colon).

: : GET-ORDER SWAP DROP GET-CURRENT SWAP SET-ORDER : ;

A.16.2 Additional terms
search order

Note that the use of the term “list” does not necessarily imply implementation as a linked list.

A.16.3.3 Finding definition names

In other words, the following is not guaranteed to work:

: FOO ... [... SET-CURRENT] ... RECURSE ...
; IMMEDIATE

RECURSE, ; (semicolon), and IMMEDIATE may or may not need information stored in the compilation
word list.

ANSI X3.215-1994

 Collating Sequence: 176

A.16.6 Glossary

A.16.6.1.2192 SEARCH-WORDLIST

The string argument to SEARCH-WORDLIST is represented by c-addr u, rather than by just c-addr as with
FIND. The committee wishes to establish c-addr u as the preferred representation of a string on the stack,
and has adopted that representation for all new functions that accept string arguments. While this decision
may cause the implementation of SEARCH-WORDLIST to be somewhat more difficult in existing systems,
the committee feels that the additional difficulty is minor.

When SEARCH-WORDLIST fails to find the word, it does not return the string, as does FIND. This is in
accordance with the general principle that Forth words consume their arguments.

A.16.6.2.0715 ALSO

Here is an implementation of ALSO/ONLY in terms of the primitive search-order word set.

WORDLIST CONSTANT ROOT ROOT SET-CURRENT

: DO-VOCABULARY (--) \ Implementation factor
 DOES> @ >R () (R: widnew)
 GET-ORDER SWAP DROP (wid1 ... widn-1 n)
 R> SWAP SET-ORDER
;

: DISCARD (x1 .. xu u -) \ Implementation factor
 0 ?DO DROP LOOP \ DROP u+1 stack items
;

CREATE FORTH FORTH-WORDLIST , DO-VOCABULARY

: VOCABULARY (name --) WORDLIST CREATE , DO-VOCABULARY ;

: ALSO (--) GET-ORDER OVER SWAP 1+ SET-ORDER ;

: PREVIOUS (--) GET-ORDER SWAP DROP 1- SET-ORDER ;

: DEFINITIONS (--) GET-ORDER OVER SET-CURRENT DISCARD ;

: ONLY (--) ROOT ROOT 2 SET-ORDER ;

\ Forth-83 version; just removes ONLY
: SEAL (--) GET-ORDER 1- SET-ORDER DROP ;

\ F83 and F-PC version; leaves only CONTEXT
: SEAL (--) GET-ORDER OVER 1 SET-ORDER DISCARD ;

The preceding definition of ONLY in terms of a “ROOT” word list follows F83 usage, and assumes that the
default search order just includes ROOT and FORTH. A more portable definition of FORTH and ONLY,
without the assumptions, is:

<omit the ... WORDLIST CONSTANT ROOT ... line>

CREATE FORTH GET-ORDER OVER , DISCARD DO-VOCABULARY

: ONLY (--) -1 SET-ORDER ;

Here is a simple implementation of GET-ORDER and SET-ORDER, including a corresponding definition
of FIND. The implementations of WORDLIST, SEARCH-WORDLIST, GET-CURRENT and SET-
CURRENT depend on system details and are not given here.

16 CONSTANT #VOCS

VARIABLE #ORDER

CREATE CONTEXT #VOCS CELLS ALLOT

ANSI X3.215-1994

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 177

: GET-ORDER (-- wid1 .. widn n)
 #ORDER @ 0 ?DO
 #ORDER @ I - 1- CELLS CONTEXT + @
 LOOP
 #ORDER @
;

: SET-ORDER (wid1 .. widn n --)
 DUP -1 = IF
 DROP <push system default word lists and n>
 THEN
 DUP #ORDER !
 0 ?DO I CELLS CONTEXT + ! LOOP
;

: FIND (c-addr -- c-addr 0 | w 1 | w -1)
 0 (c-addr 0)
 #ORDER @ 0 ?DO
 OVER COUNT (c-addr 0 c-addr' u)
 I CELLS CONTEXT + @ (c-addr 0 c-addr' u wid)
 SEARCH-WORDLIST (c-addr 0; 0 | w 1 | w -1)
 ?DUP IF (c-addr 0; w 1 | w -1)
 2SWAP 2DROP LEAVE (w 1 | w -1)
 THEN (c-addr 0)
 LOOP (c-addr 0 | w 1 | w -1)
;

In an implementation where the dictionary search mechanism uses a hash table or lookup cache to reduce
the search time, SET-ORDER might need to reconstruct the hash table or flush the cache.

A.17 The optional String word set

A.17.6 Glossary

A.17.6.1.0245 /STRING

/STRING is used to remove or add characters relative to the “left” end of the character string. Positive
values of n will exclude characters from the string while negative values of n will include characters to the
left of the string. /STRING is a natural factor of WORD and commonly available.

A.17.6.1.0910 CMOVE

If c-addr2 lies within the source region (i.e., when c-addr2 is not less than c-addr1 and c-addr2 is less than
the quantity c-addr1 u CHARS +), memory propagation occurs.

Typical use: Assume a character string at address 100: “ABCD”. Then after
 100 DUP CHAR+ 3 CMOVE the string at address 100 is “AAAA”.

Rationale for CMOVE and CMOVE> follows MOVE.

A.17.6.1.0920 CMOVE>

If c-addr1 lies within the destination region (i.e., when c-addr1 is greater than or equal to c-addr2 and c-
addr2 is less than the quantity c-addr1 u CHARS +), memory propagation occurs.

Typical use: Assume a character string at address 100: “ABCD”. Then after
 100 DUP CHAR+ SWAP 3 CMOVE> the string at address 100 is “DDDD”.

ANSI X3.215-1994

 Collating Sequence: 178

A.17.6.1.0935 COMPARE

Existing Forth systems perform string comparison operations using words that differ in spelling, input and
output arguments, and case sensitivity. One in widespread use was chosen.

A.17.6.1.2191 SEARCH

Existing Forth systems perform string searching operations using words that differ in spelling, input and
output arguments, and case sensitivity. One in widespread use was chosen.

A.17.6.1.2212 SLITERAL

The current functionality of 6.1.2165 S" may be provided by the following definition:

: S" ("ccc<quote>" --)
 [CHAR] " PARSE POSTPONE SLITERAL
; IMMEDIATE

 ANSI X3.215-1994

B. Bibliography (informative annex)

Industry standards

Forth-77 Standard, Forth Users Group, FST-780314.

Forth-78 Standard, Forth International Standards Team.

Forth-79 Standard, Forth Standards Team.

Forth-83 Standard and Appendices, Forth Standards Team.

The standards referenced in this section were developed by the Forth Standards Team, a volunteer group
which included both implementors and users. This was a volunteer organization operating under its own
charter and without any formal ties to ANSI, IEEE or any similar standards body. Several members of the
Forth Standards Team have also been members of the X3J14 Technical Committee.

Books

Brodie, L. Starting FORTH (2nd ed). Englewood Cliffs, NJ: Prentice Hall, 1987.

Brodie, L. Thinking FORTH. Englewood Cliffs, NJ: Prentice Hall, 1984.

Feierbach, G. and Thomas, P. Forth Tools & Applications. Reston, VA: Reston Computer Books, 1985.

Haydon, Dr. Glen B. All About FORTH, Third Edition. La Honda, CA: 1990.

Kelly, Mahlon G. and Spies, N. FORTH: A Text and Reference. Englewood Cliffs, NJ: Prentice Hall,
1986.

Knecht, K. Introduction to Forth. Indiana: Howard Sams & Co., 1982.

Koopman, P. Stack Computers, The New Wave. Chichester, West Sussex, England: Ellis Horwood Ltd.
1989

Martin, Thea, editor. A Bibliography of Forth References, Third Edition. Rochester, New York: Institute
of Applied Forth Research, 1987.

McCabe, C. K. Forth Fundamentals (2 volumes). Oregon: Dilithium Press, 1983.

Pountain, R. Object Oriented Forth. London, England: Academic Press, 1987.

Ouverson, Marlin, editor. Dr. Dobbs Toolbook of Forth. Redwood City, CA: M&T Press, Vol. 1, 1986;
Vol. 2, 1987.

Terry, J. D. Library of Forth Routines and Utilities. New York: Shadow Lawn Press, 1986

Tracy, M. and Anderson, A. Mastering FORTH (revised ed). New York: Brady Books, 1989.

Winfield, A. The Complete Forth. New York: Wiley Books, 1983.

Journals, magazines and newsletters

Forsley, Lawrence P., Conference Chairman. Rochester Forth Conference Proceedings. Rochester, New
York: Institute of Applied Forth Research, 1981 to present.

Forsley, Lawrence P., Editor-in-Chief. The Journal of Forth Application and Research. Rochester, New
York: Institute of Applied Forth Research, 1983 to present.

Frenger, Paul, editor. SIGForth Newsletter. New York, NY: Association for Computing Machinery, 1989
to present.

Ouverson, Marlin, editor. Forth Dimensions. San Jose, CA: The Forth Interest Group, 1978 to present.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 179

ANSI X3.215-1994

Reiling, Robert, editor. FORML Conference Proceedings. San Jose, CA: The Forth Interest Group, 1980
to present.

Ting, Dr. C. H., editor. More on Forth Engines. San Mateo, CA: Offete Enterprises, 1986 to present.

Selected articles

Hayes, J.R. “Postpone” Proceedings of the 1989 Rochester Forth Conference. Rochester, New York:
Institute for Applied Forth Research, 1989.

Kelly, Guy M. “Forth.” McGraw-Hill Personal Computer Programming Encyclopedia – Languages and
Operation Systems. New York: McGraw-Hill, 1985.

Kogge, P. M. “An Architectural Trail to Threaded Code Systems.” IEEE Computer (March, 1982).

Moore, C. H. “The Evolution of FORTH – An Unusual Language.” Byte (August 1980).

Rather, E. D. “Forth Programming Language.” Encyclopedia of Physical Science & Technology (Vol. 5).
New York: Academic Press, 1987.

Rather, E. D. “FORTH.” Computer Programming Management. Auerbach Publishers, Inc., 1985.

Rather, E. D.; Colburn, D. R.; Moore, C. H. “The Evolution of Forth.” ACM SIGPLAN Notices (Vol. 28,
No. 3, March 1993).

180 Collating Sequence:

 ANSI X3.215-1994

C. Perspective (informative annex)

The purpose of this section is to provide an informal overview of Forth as a language, illustrating its
history, most prominent features, usage, and common implementation techniques. Nothing in this section
should be considered as binding upon either implementors or users. A list of books and articles is given in
Annex B for those interested in learning more about Forth.

C.1 Features of Forth
Forth provides an interactive programming environment. Its primary uses have been in scientific and
industrial applications such as instrumentation, robotics, process control, graphics and image processing,
artificial intelligence and business applications. The principal advantages of Forth include rapid,
interactive software development and efficient use of computer hardware.

Forth is often spoken of as a language because that is its most visible aspect. But in fact, Forth is both
more and less than a conventional programming language: more in that all the capabilities normally
associated with a large portfolio of separate programs (compilers, editors, etc.) are included within its range
and less in that it lacks (deliberately) the complex syntax characteristic of most high-level languages.

The original implementations of Forth were stand-alone systems that included functions normally
performed by separate operating systems, editors, compilers, assemblers, debuggers and other utilities. A
single simple, consistent set of rules governed this entire range of capabilities. Today, although very fast
stand-alone versions are still marketed for many processors, there are also many versions that run co-
resident with conventional operating systems such as MS-DOS and UNIX.

Forth is not derived from any other language. As a result, its appearance and internal characteristics may
seem unfamiliar to new users. But Forth’s simplicity, extreme modularity, and interactive nature offset the
initial strangeness, making it easy to learn and use. A new Forth programmer must invest some time
mastering its large command repertoire. After a month or so of full-time use of Forth, that programmer
could understand more of its internal working than is possible with conventional operating systems and
compilers.

The most unconventional feature of Forth is its extensibility. The programming process in Forth consists of
defining new “words” – actually new commands in the language. These may be defined in terms of
previously defined words, much as one teaches a child concepts by explaining them in terms of previously
understood concepts. Such words are called “high-level definitions”. Alternatively, new words may also be
defined in assembly code, since most Forth implementations include an assembler for the host processor.

This extensibility facilitates the development of special application languages for particular problem areas
or disciplines.

Forth’s extensibility goes beyond just adding new commands to the language. With equivalent ease, one
can also add new kinds of words. That is, one may create a word which itself will define words. In
creating such a defining word the programmer may specify a specialized behavior for the words it will
create which will be effective at compile time, at run-time, or both. This capability allows one to define
specialized data types, with complete control over both structure and behavior. Since the run-time behavior
of such words may be defined either in high-level or in code, the words created by this new defining word
are equivalent to all other kinds of Forth words in performance. Moreover, it is even easy to add new
compiler directives to implement special kinds of loops or other control structures.

Most professional implementations of Forth are written in Forth. Many Forth systems include a “meta-
compiler” which allows the user to modify the internal structure of the Forth system itself.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 181

ANSI X3.215-1994

C.2 History of Forth
Forth was invented by Charles H. Moore. A direct outgrowth of Moore’s work in the 1960’s, the first
program to be called Forth was written in about 1970. The first complete implementation was used in 1971
at the National Radio Astronomy Observatory’s 11-meter radio telescope in Arizona. This system was
responsible for pointing and tracking the telescope, collecting data and recording it on magnetic tape, and
supporting an interactive graphics terminal on which an astronomer could analyze previously recorded
data. The multi-tasking nature of the system allowed all these functions to be performed concurrently,
without timing conflicts or other interference – a very advanced concept for that time.

The system was so useful that astronomers from all over the world began asking for copies. Its use spread
rapidly, and in 1976 Forth was adopted as a standard language by the International Astronomical Union.

In 1973, Moore and colleagues formed FORTH, Inc. to explore commercial uses of the language. FORTH,
Inc. developed multi-user versions of Forth on minicomputers for diverse projects ranging from data bases
to scientific applications such as image processing. In 1977, FORTH, Inc. developed a version for the
newly introduced 8-bit microprocessors called “microFORTH”, which was successfully used in embedded
microprocessor applications in the United States, Britain and Japan.

Stimulated by the volume marketing of microFORTH, a group of computer hobbyists in Northern
California became interested in Forth, and in 1978 formed the Forth Interest Group (FIG). They developed
a simplified model which they implemented on several microprocessors and published listings and disks at
very low cost. Interest in Forth spread rapidly, and today there are chapters of the Forth Interest Group
throughout the U.S. and in over fifteen countries.

By 1980, a number of new Forth vendors had entered the market with versions of Forth based upon the
FIG model. Primarily designed for personal computers, these relatively inexpensive Forth systems have
been distributed very widely.

C.3 Hardware implementations of Forth
The internal architecture of Forth simulates a computer with two stacks, a set of registers, and other
standardized features. As a result, it was almost inevitable that someone would attempt to build a hardware
representation of an actual Forth computer.

In the early 1980’s, Rockwell produced a 6502-variant with Forth primitives in on-board ROM, the
Rockwell 65F11. This chip has been used successfully in many embedded microprocessor applications. In
the mid-1980’s Zilog developed the z8800 (Super8) which offered ENTER (nest), EXIT (unnest) and
NEXT in microcode.

In 1981, Moore undertook to design a chip-level implementation of the Forth virtual machine. Working
first at FORTH, Inc. and subsequently with the start-up company NOVIX, formed to develop the chip,
Moore completed the design in 1984, and the first prototypes were produced in early 1985. More recently,
Forth processors have been developed by Harris Semiconductor Corp., Johns Hopkins University, and
others.

C.4 Standardization efforts
The first major effort to standardize Forth was a meeting in Utrecht in 1977. The attendees produced a
preliminary standard, and agreed to meet the following year. The 1978 meeting was also attended by
members of the newly formed Forth Interest Group. In 1979 and 1980 a series of meetings attended by
both users and vendors produced a more comprehensive standard called Forth 79.

Although Forth 79 was very influential, many Forth users and vendors found serious flaws in it, and in
1983 a new standard called Forth 83 was released.

Encouraged by the widespread acceptance of Forth 83, a group of users and vendors met in 1986 to
investigate the feasibility of an American National Standard. The X3J14 Technical Committee for ANS
Forth held its first meeting in 1987. This Standard is the result.

182 Collating Sequence:

 ANSI X3.215-1994

C.5 Programming in Forth
Forth is an English-like language whose elements (called “words”) are named data items, procedures, and
defining words capable of creating data items with customized characteristics. Procedures and defining
words may be defined in terms of previously defined words or in machine code, using an embedded
assembler.

Forth “words” are functionally analogous to subroutines in other languages. They are also equivalent to
commands in other languages – Forth blurs the distinction between linguistic elements and functional
elements.

Words are referred to either from the keyboard or in program source by name. As a result, the term “word”
is applied both to program (and linguistic) units and to their text names. In parsing text, Forth considers a
word to be any string of characters bounded by spaces. There are a few special characters that cannot be
included in a word or start a word: space (the universal delimiter), CR (which ends terminal input), and
backspace or DEL (for backspacing during keyboard input). Many groups adopt naming conventions to
improve readability. Words encountered in text fall into three categories: defined words (i.e., Forth
routines), numbers, and undefined words. For example, here are four words:

HERE DOES> ! 8493

The first three are standard-defined words. This means that they have entries in Forth’s dictionary,
described below, explaining what Forth is to do when these words are encountered. The number “8493”
will presumably not be found in the dictionary, and Forth will convert it to binary and place it on its push-
down stack for parameters. When Forth encounters an undefined word and cannot convert it to a number,
the word is returned to the user with an exception message.

Architecturally, Forth words adhere strictly to the principles of “structured programming”:

– Words must be defined before they are used.
– Logical flow is restricted to sequential, conditional, and iterative patterns. Words are included to

implement the most useful program control structures.
– The programmer works with many small, independent modules (words) for maximum testability and

reliability.

Forth is characterized by five major elements: a dictionary, two push-down stacks, interpreters, an
assembler, and virtual storage. Although each of these may be found in other systems, the combination
produces a synergy that yields a powerful and flexible system.

C.5.1 The Forth dictionary
A Forth program is organized into a dictionary that occupies most of the memory used by the system. This
dictionary is a threaded list of variable-length items, each of which defines a word. The content of each
definition depends upon the type of word (data item, constant, sequence of operations, etc.). The
dictionary is extensible, usually growing toward high memory. On some multi-user systems individual
users have private dictionaries, each of which is connected to a shared system dictionary.

Words are added to the dictionary by “defining words”, of which the most commonly used is : (colon).
When : is executed, it constructs a definition for the word that follows it. In classical implementations2,
the content of this definition is a string of addresses of previously defined words which will be executed in
turn whenever the word being defined is invoked. The definition is terminated by ; (semicolon). For
example, here is a definition:

: RECEIVE (-- addr n) PAD DUP 32 ACCEPT ;

The name of the new word is RECEIVE. The comment (in parentheses) indicates that it requires no
parameters and will return an address and count on the data stack. When RECEIVE is executed, it will

2 Other common implementation techniques include direct translation to code and other types of tokens.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 183

ANSI X3.215-1994

perform the words in the remainder of the definition in sequence. The word PAD places on the stack the
address of a scratch pad used to handle strings. DUP duplicates the top stack item, so we now have two
copies of the address. The number 32 is also placed on the stack. The word ACCEPT takes an address
(provided by PAD) and length (32) on the stack, accepts from the keyboard a string of up to 32 characters
which will be placed at the specified address, and returns the number of characters received. The copy of
the scratch-pad address remains on the stack below the count so that the routine that called RECEIVE can
use it to pick up the received string.

C.5.2 Push-down stacks
The example above illustrates the use of push-down stacks for passing parameters between Forth words.
Forth maintains two push-down stacks, or LIFO lists. These provide communication between Forth words
plus an efficient mechanism for controlling logical flow. A stack contains 16-bit items on 8-bit and 16-bit
computers, and 32-bit items on 32-bit processors. Double-cell numbers occupy two stack positions, with
the most-significant part on top. Items on either stack may be addresses or data items of various kinds.
Stacks are of indefinite size, and usually grow towards low memory.

Although the structure of both stacks is the same, they have very different uses. The user interacts most
directly with the Data Stack, which contains arguments passed between words. This function replaces the
calling sequences used by conventional languages. It is efficient internally, and makes routines
intrinsically re-entrant. The second stack is called the Return Stack, as its main function is to hold return
addresses for nested definitions, although other kinds of data are sometimes kept there temporarily.

The use of the Data Stack (often called just “the stack”) leads to a notation in which operands precede
operators. The word ACCEPT in the example above took an address and count from the stack and left
another address there. Similarly, a word called BLANK expects an address and count, and will place the
specified number of space characters (20H) in the region starting at that address. Thus,

PAD 25 BLANK

will fill the scratch region whose address is pushed on the stack by PAD with 25 spaces. Application words
are usually defined to work similarly. For example,

100 SAMPLES

might be defined to record 100 measurements in a data array.

Arithmetic operators also expect values and leave results on the stack. For example, + adds the top two
numbers on the stack, replacing them both by their sum. Since results of operations are left on the stack,
operations may be strung together without a need to define variables to use for temporary storage.

C.5.3 Interpreters
Forth is traditionally an interpretive system, in that program execution is controlled by data items rather
than machine code. Interpreters can be slow, but Forth maintains the high speed required of real-time
applications by having two levels of interpretation.

The first is the text interpreter, which parses strings from the terminal or mass storage and looks each word
up in the dictionary. When a word is found it is executed by invoking the second level, the address
interpreter.

The second is an “address interpreter”. Although not all Forth systems are implemented in this way, it was
the first and is still the primary implementation technology. For a small cost in performance, an address
interpreter can yield a very compact object program, which has been a major factor in Forth’s wide
acceptance in embedded systems and other applications where small object size is desirable.

The address interpreter processes strings of addresses or tokens compiled in definitions created by :
(colon), by executing the definition pointed to by each. The content of most definitions is a sequence of
addresses of previously defined words, which will be executed by the address interpreter in turn. Thus,
when the word RECEIVE (defined above) is executed, the word PAD, the word DUP, the literal 32, and the

184 Collating Sequence:

 ANSI X3.215-1994

word ACCEPT will be executed in sequence. The process is terminated by the semicolon. This execution
requires no dictionary searches, parsing, or other logic, because when RECEIVE was compiled the
dictionary was searched for each word, and its address (or other token) was placed in the next successive
cell of the entry. The text was not stored in memory, not even in condensed form.

The address interpreter has two important properties. First, it is fast. Although the actual speed depends
upon the specific implementation, professional implementations are highly optimized, often requiring only
one or two machine instructions per address. On most benchmarks, a good Forth implementation
substantially out-performs interpretive languages such as BASIC or LISP, and will compare favorably with
other compiled high-level languages.

Second, the address interpreter makes Forth definitions extremely compact, as each reference requires only
one cell. In comparison, a subroutine call constructed by most compilers involves instructions for handling
the calling sequence (unnecessary in Forth because of the stack) before and after a CALL or JSR
instruction and address.

Most of the words in a Forth dictionary will be defined by : (colon) and interpreted by the address
interpreter. Most of Forth itself is defined this way.

C.5.4 Assembler
Most implementations of Forth include a macro assembler for the CPU on which they run. By using the
defining word CODE the programmer can create a definition whose behavior will consist of executing
actual machine instructions. CODE definitions may be used to do I/O, implement arithmetic primitives, and
do other machine-dependent or time-critical processing. When using CODE the programmer has full
control over the CPU, as with any other assembler, and CODE definitions run at full machine speed.

This is an important feature of Forth. It permits explicit computer-dependent code in manageable pieces
with specific interfacing conventions that are machine-independent. To move an application to a different
processor requires re-coding only the CODE words, which will interact with other Forth words in exactly
the same manner.

Forth assemblers are so compact (typically a few Kbytes) that they can be resident in the system (as are the
compiler, editor, and other programming tools). This means that the programmer can type in short CODE
definitions and execute them immediately. This capability is especially valuable in testing custom
hardware.

C.5.5 Virtual memory
The final unique element of Forth is its way of using disk or other mass storage as a form of “virtual
memory” for data and program source. As in the case of the address interpreter, this approach is
historically characteristic of Forth, but is by no means universal. Disk is divided into 1024-byte blocks.
Two or more buffers are provided in memory, into which blocks are read automatically when referred to.
Each block has a fixed block number, which in native systems is a direct function of its physical location.
If a block is changed in memory, it will be automatically written out when its buffer must be reused.
Explicit reads and writes are not needed; the program will find the data in memory whenever it accesses it.

Block-oriented disk handling is efficient and easy for native Forth systems to implement. As a result,
blocks provide a completely transportable mechanism for handling program source and data across both
native and co-resident versions of Forth on different host operating systems.

Definitions in program source blocks are compiled into memory by the word LOAD. Most implementations
include an editor, which formats a block for display into 16 lines of 64 characters each, and provides
commands modifying the source. An example of a Forth source block is given in Fig. C.1 below.

Source blocks have historically been an important element in Forth style. Just as Forth definitions may be
considered the linguistic equivalent of sentences in natural languages, a block is analogous to a paragraph.
A block normally contains definitions related to a common theme, such as “vector arithmetic”. A comment
on the top line of the block identifies this theme. An application may selectively load the blocks it needs.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 185

ANSI X3.215-1994

Blocks are also used to store data. Small records can be combined into a block, or large records spread
over several blocks. The programmer may allocate blocks in whatever way suits the application, and on
native systems can increase performance by organizing data to minimize disk head motion. Several Forth
vendors have developed sophisticated file and data base systems based on Forth blocks.

Versions of Forth that run co-resident with a host OS often implement blocks in host OS files. Others use
the host files exclusively. The Standard requires that blocks be available on systems providing any disk
access method, as they are the only means of referencing disk that can be transportable across both native
and co-resident implementations.

C.5.6 Programming environment
Although this Standard does not require it, most Forth systems include a resident editor. This enables a
programmer to edit source and recompile it into executable form without leaving the Forth environment.
As it is easy to organize an application into layers, it is often possible to recompile only the topmost layer
(which is usually the one currently under development), a process which rarely takes more than a few
seconds.

Most Forth systems also provide resident interactive debugging aids, not only including words such as
those in 15. The optional Programming-Tools word set, but also having the ability to examine and
change the contents of VARIABLEs and other data items and to execute from the keyboard most of the
component words in both the underlying Forth system and the application under development.

The combination of resident editor, integrated debugging tools, and direct executability of most defined
words leads to a very interactive programming style, which has been shown to shorten development time.

C.5.7 Advanced programming features
One of the unusual characteristics of Forth is that the words the programmer defines in building an
application become integral elements of the language itself, adding more and more powerful application-
oriented features.

For example, Forth includes the words VARIABLE and 2VARIABLE to name locations in which data may
be stored, as well as CONSTANT and 2CONSTANT to name single and double-cell values. Suppose a
programmer finds that an application needs arrays that would be automatically indexed through a number
of two-cell items. Such an array might be called 2ARRAY. The prefix “2” in the name indicates that each
element in this array will occupy two cells (as would the contents of a 2VARIABLE or 2CONSTANT). The
prefix “2”, however, has significance only to a human and is no more significant to the text interpreter than
any other character that may be used in a definition name.

Such a definition has two parts, as there are two “behaviors” associated with this new word 2ARRAY, one
at compile time, and one at run or execute time. These are best understood if we look at how 2ARRAY is
used to define its arrays, and then how the array might be used in an application. In fact, this is how one
would design and implement this word.

Beginning the top-down design process, here’s how we would like to use 2ARRAY:

100 2ARRAY RAW 50 2ARRAY REFINED

In the first case, we are defining an array 100 elements long, whose name is RAW. In the second, the array
is 50 elements long, and is named REFINED. In each case, a size parameter is supplied to 2ARRAY on the
data stack (Forth’s text interpreter automatically puts numbers there when it encounters them), and the
name of the word immediately follows. This order is typical of Forth defining words.

When we use RAW or REFINED, we would like to supply on the stack the index of the element we want,
and get back the address of that element on the stack. Such a reference would characteristically take place
in a loop. Here’s a representative loop that accepts a two-cell value from a hypothetical application word
DATA and stores it in the next element of RAW:

: ACQUIRE 100 0 DO DATA I RAW 2! LOOP ;

186 Collating Sequence:

 ANSI X3.215-1994

The name of this definition is ACQUIRE. The loop begins with DO, ends with LOOP, and will execute with
index values running from 0 through 99. Within the loop, DATA gets a value. The word I returns the
current value of the loop index, which is the argument to RAW. The address of the selected element,
returned by RAW, and the value, which has remained on the stack since DATA, are passed to the word 2!
(pronounced “two-store”), which stores two stack items in the address.

Now that we have specified exactly what 2ARRAY does and how the words it defines are to behave, we are
ready to write the two parts of its definition:

: 2ARRAY (n --)
 CREATE 2* CELLS ALLOT
 DOES> (i a -- a') SWAP 2* CELLS + ;

The part of the definition before the word DOES> specifies the “compile-time” behavior, that is, what the
2ARRAY will do when it us used to define a word such as RAW. The comment indicates that this part
expects a number on the stack, which is the size parameter. The word CREATE constructs the definition
for the new word. The phrase 2* CELLS converts the size parameter from two-cell units to the internal
addressing units of the system (normally characters). ALLOT then allocates the specified amount of
memory to contain the data to be associated with the newly defined array.

The second line defines the “run-time” behavior that will be shared by all words defined by 2ARRAY, such
as RAW and REFINED. The word DOES> terminates the first part of the definition and begins the second
part. A second comment here indicates that this code expects an index and an address on the stack, and
will return a different address. The index is supplied on the stack by the caller (of RAW in the example),
while the address of the content of a word defined in this way (the ALLOTted region) is automatically
pushed on top of the stack before this section of the code is to be executed. This code works as follows:
SWAP reverses the order of the two stack items, to get the index on top. 2* CELLS converts the index to
the internal addressing units as in the compile-time section, to yield an offset from the beginning of the
array. The word + then adds the offset to the address of the start of the array to give the effective address,
which is the desired result.

Given this basic definition, one could easily modify it to do more sophisticated things. For example, the
compile-time code could be changed to initialize the array to zeros, spaces, or any other desired initial
value. The size of the array could be compiled at its beginning, so that the run-time code could compare
the index against it to ensure it is within range, or the entire array could be made to reside on disk instead
of main memory. None of these changes would affect the run-time usage we have specified in any way.
This illustrates a little of the flexibility available with these defining words.

C.5.8 A programming example
Figure C.1 contains a typical block of Forth source. It represents a portion of an application that controls a
bank of eight LEDs used as indicator lamps on an instrument, and indicates some of the ways in which
Forth definitions of various kinds combine in an application environment. This example was coded for a
STD-bus system with an 8088 processor and a millisecond clock, which is also used in the example.

The LEDs are interfaced through a single 8-bit port whose address is 40H. This location is defined as a
CONSTANT on Line 1, so that it may be referred to by name; should the address change, one need only
adjust the value of this constant. The word LIGHTS returns this address on the stack. The definition
LIGHT takes a value on the stack and sends it to the device. The nature of this value is a bit mask, whose
bits correspond directly to the individual lights.

Thus, the command 255 LIGHT will turn on all lights, while 0 LIGHT will turn them all off.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 187

ANSI X3.215-1994

Block 180
 0. (LED control)
 1. HEX 40 CONSTANT LIGHTS DECIMAL
 2. : LIGHT (n --) LIGHTS OUTPUT ;
 3.
 4. VARIABLE DELAY
 5. : SLOW 500 DELAY ! ;
 6. : FAST 100 DELAY ! ;
 7. : COUNTS 256 0 DO I LIGHT DELAY @ MS LOOP ;
 8.
 9. : LAMP (n -) CREATE , DOES> (a -- n) @ ;
10. 1 LAMP POWER 2 LAMP HV 4 LAMP TORCH
11. 8 LAMP SAMPLING 16 LAMP IDLING
12.
13. VARIABLE LAMPS
14. : TOGGLE (n --) LAMPS @ XOR DUP LAMPS ! LIGHT ;
15.

Figure C.1 – Forth source block containing words that control a set of LEDs.

Lines 4 - 7 contain a simple diagnostic of the sort one might type in from the terminal to confirm that
everything is working. The variable DELAY contains a delay time in milliseconds – execution of the word
DELAY returns the address of this variable. Two values of DELAY are set by the definitions SLOW and
FAST, using the Forth operator ! (pronounced “store”) which takes a value and an address, and stores the
value in the address. The definition COUNTS runs a loop from 0 through 255 (Forth loops of this type are
exclusive at the upper end of the range), sending each value to the lights and then waiting for the period
specified by DELAY. The word @ (pronounced “fetch”) fetches a value from an address, in this case the
address supplied by DELAY. This value is passed to MS, which waits the specified number of milliseconds.
The result of executing COUNTS is that the lights will count from 0 to 255 at the desired rate. To run this,
one would type:

SLOW COUNTS or FAST COUNTS
at the terminal.

Line 9 provides the capability of naming individual lamps. In this application they are being used as
indicator lights. The word LAMP is a defining word which takes as an argument a mask which represents a
particular lamp, and compiles it as a named entity. Lines 10 and 11 contain five uses of LAMP to name
particular indicators. When one of these words such as POWER is executed, the mask is returned on the
stack. In fact, the behavior of defining a value such that when the word is invoked the value is returned, is
identical to the behavior of a Forth CONSTANT. We created a new defining word here, however, to
illustrate how this would be done.

Finally, on lines 13 and 14, we have the words that will control the light panel. LAMPS is a variable that
contains the current state of the lamps. The word TOGGLE takes a mask (which might be supplied by one
of the LAMP words) and changes the state of that particular lamp, saving the result in LAMPS.

In the remainder of the application, the lamp names and TOGGLE are probably the only words that will be
executed directly. The usage there will be, for example:

POWER TOGGLE or SAMPLING TOGGLE
as appropriate, whenever the system indicators need to be changed.

The time to compile this block of code on that system was about half a second, including the time to fetch it
from disk. So it is quite practical (and normal practice) for a programmer to simply type in a definition and
try it immediately.

In addition, one always has the capability of communicating with external devices directly. The first thing
one would do when told about the lamps would be to type:

HEX FF 40 OUTPUT

188 Collating Sequence:

 ANSI X3.215-1994

and see if all the lamps come on. If not, the presumption is that something is amiss with the hardware,
since this phrase directly transmits the “all ones” mask to the device. This type of direct interaction is
useful in applications involving custom hardware, as it reduces hardware debugging time.

C.6 Multiprogrammed systems
Multiprogrammed Forth systems have existed since about 1970. The earliest public Forth systems
propagated the “hooks” for this capability despite the fact that many did not use them. Nevertheless the
underlying assumptions have been common knowledge in the community, and there exists considerable
common ground among these multiprogrammed systems. These systems are not just language processors,
but contain operating system characteristics as well. Many of these integrated systems run entirely stand-
alone, performing all necessary operating system functions.

Some Forth systems are very fast, and can support both multi-tasking and multi-user operation even on
computers whose hardware is usually thought incapable of such advanced operation. For example, one
producer of telephone switchboards is running over 50 tasks on a Z80. There are several multiprogrammed
products for PC’s, some of which even support multiple users. Even on computers that are commonly used
in multi-user operations, the number of users that can be supported may be much larger than expected.
One large data-base application running on a single 68000 has over 100 terminals updating and querying its
data-base, with no significant degradation.

Multi-user systems may also support multiple programmers, each of which has a private dictionary, stacks,
and a set of variables controlling that task. The private dictionary is linked to a shared, re-entrant
dictionary containing all the standard Forth functions. The private dictionary can be used to develop
application code which may later be integrated into the shared dictionary. It may also be used to perform
functions requiring text interpretation, including compilation and execution of source code.

C.7 Design and management considerations
Just as the choice of building materials has a strong effect on the design and construction of a building, the
choice of language and operating system will affect both application design and project management
decisions.

Conventionally, software projects progress through four stages: analysis, design, coding, and testing. A
Forth project necessarily incorporates these activities as well. Forth is optimized for a project-management
methodology featuring small teams of skilled professionals. Forth encourages an iterative process of
“successive prototyping” wherein high-level Forth is used as an executable design tool, with “stubs”
replacing lower-level routines as necessary (e.g., for hardware that isn’t built yet).

In many cases successive prototyping can produce a sounder, more useful product. As the project
progresses, implementors learn things that could lead to a better design. Wiser decisions can be made if
true relative costs are known, and often this isn’t possible until prototype code can be written and tried.

Using Forth can shorten the time required for software development, and reduce the level of effort required
for maintenance and modifications during the life of the product as well.

C.8 Conclusion
Forth has produced some remarkable achievements in a variety of application areas. In the last few years
its acceptance has grown rapidly, particularly among programmers looking for ways to improve their
productivity and managers looking for ways to simplify new software-development projects.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 189

ANSI X3.215-1994

D. Compatibility analysis of ANS Forth (informative annex)

Prior to ANS Forth, there were several industry standards for Forth. The most influential are listed here in
chronological order, along with the major differences between ANS Forth and the most recent, Forth 83.

D.1 FIG Forth (circa 1978)
FIG Forth was a “model” implementation of the Forth language developed by the Forth Interest Group
(FIG). In FIG Forth, a relatively small number of words were implemented in processor-dependent
machine language and the rest of the words were implemented in Forth. The FIG model was placed in the
public domain, and was ported to a wide variety of computer systems. Because the bulk of the FIG Forth
implementation was the same across all machines, programs written in FIG Forth enjoyed a substantial
degree of portability, even for “system-level” programs that directly manipulate the internals of the Forth
system implementation.

FIG Forth implementations were influential in increasing the number of people interested in using Forth.
Many people associate the implementation techniques embodied in the FIG Forth model with “the nature of
Forth”.

However, FIG Forth was not necessarily representative of commercial Forth implementations of the same
era. Some of the most successful commercial Forth systems used implementation techniques different from
the FIG Forth “model”.

D.2 Forth 79
The Forth-79 Standard resulted from a series of meetings from 1978 to 1980, by the Forth Standards Team,
an international group of Forth users and vendors (interim versions known as Forth 77 and Forth 78 were
also released by the group).

Forth 79 described a set of words defined on a 16-bit, twos-complement, unaligned, linear byte-addressing
virtual machine. It prescribed an implementation technique known as “indirect threaded code”, and used
the ASCII character set.

The Forth-79 Standard served as the basis for several public domain and commercial implementations,
some of which are still available and supported today.

D.3 Forth 83
The Forth-83 Standard, also by the Forth Standards Team, was released in 1983. Forth 83 attempted to fix
some of the deficiencies of Forth 79.

Forth 83 was similar to Forth 79 in most respects. However, Forth 83 changed the definition of several
well-defined features of Forth 79. For example, the rounding behavior of integer division, the base value
of the operands of PICK and ROLL, the meaning of the address returned by ', the compilation behavior of
', the value of a “true” flag, the meaning of NOT, and the “chaining” behavior of words defined by
VOCABULARY were all changed. Forth 83 relaxed the implementation restrictions of Forth 79 to allow any
kind of threaded code, but it did not fully allow compilation to native machine code (this was not
specifically prohibited, but rather was an indirect consequence of another provision).

Many new Forth implementations were based on the Forth-83 Standard, but few “strictly compliant”
Forth-83 implementations exist.

Although the incompatibilities resulting from the changes between Forth 79 and Forth 83 were usually
relatively easy to fix, a number of successful Forth vendors did not convert their implementations to be
Forth 83 compliant. For example, the most successful commercial Forth for Apple Macintosh computers is
based on Forth 79.

190 Collating Sequence:

 ANSI X3.215-1994

D.4 Recent developments
Since the Forth-83 Standard was published, the computer industry has undergone rapid and profound
changes. The speed, memory capacity, and disk capacity of affordable personal computers have increased
by factors of more than 100. 8-bit processors have given way to 16-bit processors, and now 32-bit
processors are commonplace.

The operating systems and programming-language environments of small systems are much more powerful
than they were in the early 80’s.

The personal-computer marketplace has changed from a predominantly “hobbyist” market to a mature
business and commercial market.

Improved technology for designing custom microprocessors has resulted in the design of numerous “Forth
chips”, computers optimized for the execution of the Forth language.

The market for ROM-based embedded control computers has grown substantially.

In order to take full advantage of this evolving technology, and to better compete with other programming
languages, many recent Forth implementations have ignored some of the “rules” of previous Forth
standards. In particular:

– 32-bit Forth implementations are now common.
– Some Forth systems adopt the address-alignment restrictions of the hardware on which they run.
– Some Forth systems use native-code generation, microcode generation, and optimization techniques,

rather than the traditional “threaded code”.
– Some Forth systems exploit segmented addressing architectures, placing portions of the Forth

“dictionary” in different segments.
– More and more Forth systems now run in the environment of another “standard” operating system,

using OS text files for source code, rather than the traditional Forth “blocks”.
– Some Forth systems allow external operating system software, windowing software, terminal

concentrators, or communications channels to handle or preprocess user input, resulting in deviations
from the input editing, character set availability, and screen management behavior prescribed by
Forth 83.

Competitive pressure from other programming languages (predominantly “C”) and from other Forth
vendors have led Forth vendors to optimizations that do not fit in well with the “virtual machine model”
implied by existing Forth standards.

D.5 ANS Forth approach
The ANS Forth committee addressed the serious fragmentation of the Forth community caused by the
differences between Forth 79 and Forth 83, and the divergence from either of these two industry standards
caused by marketplace pressures.

Consequently, the committee has chosen to base its compatibility decisions not upon a strict comparison
with the Forth-83 Standard, but instead upon consideration of the variety of existing implementations,
especially those with substantial user bases and/or considerable success in the marketplace.

The committee feels that, if ANS Forth prescribes stringent requirements upon the virtual machine model,
as did the previous standards, then many implementors will chose not to comply with ANS Forth. The
committee hopes that ANS Forth will serve to unify rather than to further divide the Forth community, and
thus has chosen to encompass rather than invalidate popular implementation techniques.

Many of the changes from Forth 83 are justified by this rationale. Most fall into the category that “an ANS
Forth Standard Program may not assume x”, where “x” is an entitlement resulting from the virtual machine
model prescribed by the Forth-83 Standard. The committee feels that these restrictions are reasonable,
especially considering that a substantial number of existing Forth implementations do not correctly
implement the Forth-83 virtual model, thus the Forth-83 entitlements exist “in theory” but not “in practice”.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 191

ANSI X3.215-1994

Another way of looking at this is that while ANS Forth acknowledges the diversity of current Forth
practice, it attempts to document the similarity therein. In some sense, ANS Forth is thus a “description of
reality” rather than a “prescription for a particular virtual machine”.

Since there is no previous American National Standard for Forth, the action requirements prescribed by
section 3.4 of X3/SD-9, “Policy and Guidelines”, regarding previous standards do not apply.

The following discussion describes differences between ANS Forth and Forth 83. In most cases, Forth 83
is representative of Forth 79 and FIG Forth for the purposes of this discussion. In many of these cases,
however, ANS Forth is more representative of the existing state of the Forth industry than the previously-
published standards.

D.6 Differences from Forth 83

D.6.1 Stack width
Forth 83 specifies that stack items occupy 16 bits. This includes addresses, flags, and numbers. ANS
Forth specifies that stack items are at least 16 bits; the actual size must be documented by the
implementation.

Words affected: all arithmetic, logical and addressing operators

Reason: 32-bit machines are becoming commonplace. A 16-bit Forth system on a 32-bit
machine is not competitive.

Impact: Programs that assume 16-bit stack width will continue to run on 16-bit
machines; ANS Forth does not require a different stack width, but simply allows it. Many programs will be
unaffected (but see “address unit”).

Transition/Conversion: Programs which use bit masks with the high bits set may have to be changed,
substituting either an implementation-defined bit-mask constant, or a procedure to calculate a bit mask in a
stack-width-independent way. Here are some procedures for constructing width-independent bit masks:

1 CONSTANT LO-BIT

TRUE 1 RSHIFT INVERT CONSTANT HI-BIT

: LO-BITS (n -- mask) 0 SWAP 0 ?DO 1 LSHIFT LO-BIT OR LOOP ;

: HI-BITS (n -- mask) 0 SWAP 0 ?DO 1 RSHIFT HI-BIT OR LOOP ;

Programs that depend upon the “modulo 65536” behavior implicit in 16-bit arithmetic operations will need
to be rewritten to explicitly perform the modulus operation in the appropriate places. The committee
believes that such assumptions occur infrequently. Examples: some checksum or CRC calculations, some
random number generators and most fixed-point fractional math.

D.6.2 Number representation
Forth 83 specifies two’s-complement number representation and arithmetic. ANS Forth also allows one’s-
complement and signed-magnitude.
Words affected: all arithmetic and logical operators, LOOP, +LOOP
Reason: Some computers use one’s-complement or signed-magnitude. The committee
did not wish to force Forth implementations for those machines to emulate two’s-complement arithmetic,
and thus incur severe performance penalties. The experience of some committee members with such
machines indicates that the usage restrictions necessary to support their number representations are not
overly burdensome.

192 Collating Sequence:

 ANSI X3.215-1994

Impact: An ANS Forth Standard Program may declare an “environmental dependency
on two’s-complement arithmetic”. This means that the otherwise-Standard Program is only guaranteed to
work on two’s-complement machines. Effectively, this is not a severe restriction, because the
overwhelming majority of current computers use two’s-complement. The committee knows of no Forth-83
compliant implementations for non-two’s-complement machines at present, so existing Forth-83 programs
will still work on the same class of machines on which they currently work.

Transition/Conversion: Existing programs wishing to take advantage of the possibility of ANS Forth
Standard Systems on non-two’s-complement machines may do so by eliminating the use of arithmetic
operators to perform logical functions, by deriving bit-mask constants from bit operations as described in
the section about stack width, by restricting the usage range of unsigned numbers to the range of positive
numbers, and by using the provided operators for conversion from single numbers to double numbers.

D.6.3 Address units
Forth 83 specifies that each unique address refers to an 8-bit byte in memory. ANS Forth specifies that the
size of the item referred to by each unique address is implementation-defined, but, by default, is the size of
one character. Forth 83 describes many memory operations in terms of a number of bytes. ANS Forth
describes those operations in terms of a number of either characters or address units.

Words affected: those with “address unit” arguments

Reason: Some machines, including the most popular Forth chip, address 16-bit memory
locations instead of 8-bit bytes.

Impact: Programs may choose to declare an environmental dependency on byte
addressing, and will continue to work on the class of machines for which they now work. In order for a
Forth implementation on a word-addressed machine to be Forth 83 compliant, it would have to simulate
byte addressing at considerable cost in speed and memory efficiency. The committee knows of no such
Forth-83 implementations for such machines, thus an environmental dependency on byte addressing does
not restrict a Standard Program beyond its current de facto restrictions.

Transition/Conversion: The new CHARS and CHAR+ address arithmetic operators should be used for
programs that require portability to non-byte-addressed machines. The places where such conversion is
necessary may be identified by searching for occurrences of words that accept a number of address units as
an argument (e.g., MOVE , ALLOT).

D.6.4 Address increment for a cell is no longer two
As a consequence of Forth-83’s simultaneous specification of 16-bit stack width and byte addressing, the
number two could reliably be used in address calculations involving memory arrays containing items from
the stack. Since ANS Forth requires neither 16-bit stack width nor byte addressing, the number two is no
longer necessarily appropriate for such calculations.

Words affected: @ ! +! 2+ 2* 2- +LOOP

Reason: See reasons for “Address Units” and “Stack Width”

Impact: In this respect, existing programs will continue to work on machines where a
stack cell occupies two address units when stored in memory. This includes most machines for which
Forth 83 compliant implementations currently exist. In principle, it would also include 16-bit-word-
addressed machines with 32-bit stack width, but the committee knows of no examples of such machines.

Transition/Conversion: The new CELLS and CELL+ address arithmetic operators should be used for
portable programs. The places where such conversion is necessary may be identified by searching for the
character “2” and determining whether or not it is used as part of an address calculation. The following
substitutions are appropriate within address calculations:

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 193

ANSI X3.215-1994

 Old New
2+ or 2 + CELL+
2* or 2 * CELLS
2- or 2 - 1 CELLS -
2/ or 2 / 1 CELLS /
2 1 CELLS

The number “2” by itself is sometimes used for address calculations as an argument to +LOOP, when the
loop index is an address. When converting the word 2/ which operates on negative dividends, one should
be cognizant of the rounding method used.

D.6.5 Address alignment
Forth 83 imposes no restriction upon the alignment of addresses to any boundary. ANS Forth specifies that
a Standard System may require alignment of addresses for use with various “@” and “!” operators.

Words Affected: ! +! 2! 2@ @ ? ,

Reason: Many computers have hardware restrictions that favor the use of aligned
addresses. On some machines, the native memory-access instructions will cause an exception trap if used
with an unaligned address. Even on machines where unaligned accesses do not cause exception traps,
aligned accesses are usually faster.

Impact: All of the ANS Forth words that return addresses suitable for use with aligned
“@” and “!” words must return aligned addresses. In most cases, there will be no problem. Problems can
arise from the use of user-defined data structures containing a mixture of character data and cell-sized data.

Many existing Forth systems, especially those currently in use on computers with strong alignment
requirements, already require alignment. Much existing Forth code that is currently in use on such
machines has already been converted for use in an aligned environment.

Transition/Conversion: There are two possible approaches to conversion of programs for use on a
system requiring address alignment.

The easiest approach is to redefine the system’s aligned “@” and “!” operators so that they do not require
alignment. For example, on a 16-bit little-endian byte-addressed machine, unaligned “@” and “!” could be
defined:

: @ (addr -- x) DUP C@ SWAP CHAR+ C@ 8 LSHIFT OR ;

: ! (x addr --) OVER 8 RSHIFT OVER CHAR+ C! C! ;

These definitions, and similar ones for “+!”, “2@”, “2!”, “,”, and “?” as needed, can be compiled before
an unaligned application, which will then work as expected.

This approach may conserve memory if the application uses substantial numbers of data structures
containing unaligned fields.

Another approach is to modify the application’s source code to eliminate unaligned data fields. The ANS
Forth words ALIGN and ALIGNED may be used to force alignment of data fields. The places where such
alignment is needed may be determined by inspecting the parts of the application where data structures
(other than simple variables) are defined, or by “smart compiler” techniques (see the “Smart Compiler”
discussion below).

This approach will probably result in faster application execution speed, at the possible expense of
increased memory utilization for data structures.

194 Collating Sequence:

 ANSI X3.215-1994

Finally, it is possible to combine the preceding techniques by identifying exactly those data fields that are
unaligned, and using “unaligned” versions of the memory access operators for only those fields. This
“hybrid” approach affects a compromise between execution speed and memory utilization.

D.6.6 Division/modulus rounding direction
Forth 79 specifies that division rounds toward 0 and the remainder carries the sign of the dividend.
Forth 83 specifies that division rounds toward negative infinity and the remainder carries the sign of the
divisor. ANS Forth allows either behavior for the division operators listed below, at the discretion of the
implementor, and provides a pair of division primitives to allow the user to synthesize either explicit
behavior.

Words Affected: / MOD /MOD */MOD */

Reason: The difference between the division behaviors in Forth 79 and Forth 83 was a
point of much contention, and many Forth implementations did not switch to the Forth 83 behavior. Both
variants have vocal proponents, citing both application requirements and execution efficiency arguments on
both sides. After extensive debate spanning many meetings, the committee was unable to reach a
consensus for choosing one behavior over the other, and chose to allow either behavior as the default,
while providing a means for the user to explicitly use both behaviors as needed. Since implementors are
allowed to choose either behavior, they are not required to change the behavior exhibited by their current
systems, thus preserving correct functioning of existing programs that run on those systems and depend on
a particular behavior. New implementations could choose to supply the behavior that is supported by the
native CPU instruction set, thus maximizing execution speed, or could choose the behavior that is most
appropriate for the intended application domain of the system.

Impact: The issue only affects programs that use a negative dividend with a positive
divisor, or a positive dividend with a negative divisor. The vast majority of uses of division occur with
both a positive dividend and a positive divisor; in that case, the results are the same for both allowed
division behaviors.

Transition/Conversion: For programs that require a specific rounding behavior with division operands
of mixed sign, the division operators used by the program may be redefined in terms of one of the new
ANS Forth division primitives SM/REM (symmetrical division, i.e., round toward zero) or FM/MOD
(floored division, i.e., round toward negative infinity). Then the program may be recompiled without
change. For example, the Forth 83 style division operators may be defined by:

: /MOD (n1 n2 -- n3 n4) >R S>D R> FM/MOD ;

: MOD (n1 n2 -- n3) /MOD DROP ;

: / (n1 n2 -- n3) /MOD SWAP DROP ;

: */MOD (n1 n2 n3 -- n4 n5) >R M* R> FM/MOD ;

: */ (n1 n2 n3 -- n4 n5) */MOD SWAP DROP ;

D.6.7 Immediacy
Forth 83 specified that a number of “compiling words” are “immediate”, meaning that they are executed
instead of compiled during compilation. ANS Forth is less specific about most of these words, stating that
their behavior is only defined during compilation, and specifying their results rather than their specific
compile-time actions.

To force the compilation of a word that would normally be executed, Forth 83 provided the words
COMPILE , used with non-immediate words, and [COMPILE] , used with immediate words. ANS Forth
provides the single word POSTPONE , which is used with both immediate and non-immediate words,
automatically selecting the appropriate behavior.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 195

ANSI X3.215-1994

Words Affected: COMPILE [COMPILE] ['] '

Reason: The designation of particular words as either immediate or not depends upon the
implementation technique chosen for the Forth system. With traditional “threaded code” implementations,
the choice was generally quite clear (with the single exception of the word LEAVE), and the standard could
specify which words should be immediate. However, some of the currently popular implementation
techniques, such as native-code generation with optimization, require the immediacy attribute on a different
set of words than the set of immediate words of a threaded code implementation. ANS Forth,
acknowledging the validity of these other implementation techniques, specifies the immediacy attribute in
as few cases as possible.

When the membership of the set of immediate words is unclear, the decision about whether to use
COMPILE or [COMPILE] becomes unclear. Consequently, ANS Forth provides a “general purpose”
replacement word POSTPONE that serves the purpose of the vast majority of uses of both COMPILE and
[COMPILE], without requiring that the user know whether or not the “postponed” word is immediate.

Similarly, the use of ' and ['] with compiling words is unclear if the precise compilation behavior of
those words is not specified, so ANS Forth does not permit a Standard Program to use ' or ['] with
compiling words.

The traditional (non-immediate) definition of the word COMPILE has an additional problem. Its traditional
definition assumes a threaded code implementation technique, and its behavior can only be properly
described in that context. In the context of ANS Forth, which permits other implementation techniques in
addition to threaded code, it is very difficult, if not impossible, to describe the behavior of the traditional
COMPILE. Rather than changing its behavior, and thus breaking existing code, ANS Forth does not
include the word COMPILE. This allows existing implementations to continue to supply the word
COMPILE with its traditional behavior, if that is appropriate for the implementation.

Impact: [COMPILE] remains in ANS Forth, since its proper use does not depend on
knowledge of whether or not a word is immediate (Use of [COMPILE] with a non-immediate word is and
has always been a no-op). Whether or not you need to use [COMPILE] requires knowledge of whether or
not its target word is immediate, but it is always safe to use [COMPILE]. [COMPILE] is no longer in the
(required) core word set, having been moved to the Core Extensions word set, but the committee
anticipates that most vendors will supply it anyway.

In nearly all cases, it is correct to replace both [COMPILE] and COMPILE with POSTPONE. Uses of
[COMPILE] and COMPILE that are not suitable for “mindless” replacement by POSTPONE are quite
infrequent, and fall into the following two categories:

a) Use of [COMPILE] with non-immediate words. This is sometimes done with the words ' (tick,
which was immediate in Forth 79 but not in Forth 83) and LEAVE (which was immediate in Forth 83
but not in Forth 79), in order to force the compilation of those words without regard to whether you are
using a Forth 79 or Forth 83 system.

b) Use of the phrase COMPILE [COMPILE] <immediate word> to “doubly postpone” an
immediate word.

Transition/Conversion: Many ANS Forth implementations will continue to implement both
[COMPILE] and COMPILE in forms compatible with existing usage. In those environments, no
conversion is necessary.

For complete portability, uses of COMPILE and [COMPILE] should be changed to POSTPONE , except in
the rare cases indicated above. Uses of [COMPILE] with non-immediate words may be left as-is, and the
program may declare a requirement for the word [COMPILE] from the Core Extensions word set, or the
[COMPILE] before the non-immediate word may be simply deleted if the target word is known to be non-
immediate.

196 Collating Sequence:

 ANSI X3.215-1994

Uses of the phrase COMPILE [COMPILE] <immediate-word> may be handled by introducing an
“intermediate word” (XX in the example below) and then postponing that word. For example:

: ABC COMPILE [COMPILE] IF ;

changes to:

: XX POSTPONE IF ;

: ABC POSTPONE XX ;

A non-standard case can occur with programs that “switch out of compilation state” to explicitly compile a
thread in the dictionary following a COMPILE . For example:

: XYZ COMPILE [' ABC ,] ;

This depends heavily on knowledge of exactly how COMPILE and the threaded-code implementation
works. Cases like this cannot be handled mechanically; they must be translated by understanding exactly
what the code is doing, and rewriting that section according to ANS Forth restrictions.

Use the phrase POSTPONE [COMPILE] to replace [COMPILE] [COMPILE].

D.6.8 Input character set
Forth 83 specifies that the full 7-bit ASCII character set is available through KEY . ANS Forth restricts it
to the graphic characters of the ASCII set, with codes from hex 20 to hex 7E inclusive.

Words Affected: KEY

Reason: Many system environments “consume” certain control characters for such
purposes as input editing, job control, or flow control. A Forth implementation cannot always control this
system behavior.

Impact: Standard Programs which require the ability to receive particular control
characters through KEY must declare an environmental dependency on the input character set.

Transition/Conversion: For maximum portability, programs should restrict their required input character
set to only the graphic characters. Control characters may be handled if available, but complete program
functionality should be accessible using only graphic characters.

As stated above, an environmental dependency on the input character set may be declared. Even so, it is
recommended that the program should avoid the requirement for particularly-troublesome control
characters, such as control-S and control-Q (often used for flow control, sometimes by communication
hardware whose presence may be difficult to detect), ASCII NUL (difficult to type on many keyboards),
and the distinction between carriage return and line feed (some systems translate carriage returns into line
feeds, or vice versa).

D.6.9 Shifting with UM/MOD
Given Forth-83’s two’s-complement nature, and its requirement for floored (round toward minus infinity)
division, shifting is equivalent to division. Also, two’s-complement representation implies that unsigned
division by a power of two is equivalent to logical right-shifting, so UM/MOD could be used to perform a
logical right-shift.

Words Affected: UM/MOD

Reason: The problem with UM/MOD is a result of allowing non-two’s-complement
number representations, as already described.

ANS Forth provides the words LSHIFT and RSHIFT to perform logical shifts. This is usually more
efficient, and certainly more descriptive, than the use of UM/MOD for logical shifting.

Impact: Programs running on ANS Forth systems with two’s-complement arithmetic (the
majority of machines), will not experience any incompatibility with UM/MOD . Existing Forth-83 Standard

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 197

ANSI X3.215-1994

programs intended to run on non-two’s-complement machines will not be able to use UM/MOD for shifting
on a non-two’s-complement ANS Forth system. This should not affect a significant number of existing
programs (perhaps none at all), since the committee knows of no existing Forth-83 implementations on
non-two’s-complement machines.

Transition/Conversion: A program that requires UM/MOD to behave as a shift operation may declare an
environmental dependency on two’s-complement arithmetic.

A program that cannot declare an environmental dependency on two’s-complement arithmetic may require
editing to replace incompatible uses of UM/MOD with other operators defined within the application.

D.6.10 Vocabularies / wordlists
ANS Forth does not define the words VOCABULARY, CONTEXT, and CURRENT , which were present in
Forth 83. Instead, ANS Forth defines a primitive word set for search order specification and control,
including words which have not existed in any previous standard.

Forth-83’s “ALSO/ONLY” experimental search order word set is specified for the most part as the extension
portion of the ANS Forth Search Order word set.

Words Affected: VOCABULARY CONTEXT CURRENT

Reason: Vocabularies are an area of much divergence among existing systems.
Considering major vendors’ systems and previous standards, there are at least 5 different and mutually
incompatible behaviors of words defined by VOCABULARY. Forth 83 took a step in the direction of “run-
time search-order specification” by declining to specify a specific relationship between the hierarchy of
compiled vocabularies and the run-time search order. Forth 83 also specified an experimental mechanism
for run-time search-order specification, the ALSO/ONLY scheme. ALSO/ONLY was implemented in
numerous systems, and has achieved some measure of popularity in the Forth community.

However, several vendors refuse to implement it, citing technical limitations. In an effort to address those
limitations and thus hopefully make ALSO/ONLY more palatable to its critics, the committee specified a
simple “primitive word set” that not only fixes some of the objections to ALSO/ONLY, but also provides
sufficient power to implement ALSO/ONLY and all of the other search-order word sets that are currently
popular.

The Forth 83 ALSO/ONLY word set is provided as an optional extension to the search-order word set. This
allows implementors that are so inclined to provide this word set, with well-defined standard behavior, but
does not compel implementors to do so. Some vendors have publicly stated that they will not implement
ALSO/ONLY, no matter what, and one major vendor stated an unwillingness to implement ANS Forth at all
if ALSO/ONLY is mandated. The committee feels that its actions are prudent, specifying ALSO/ONLY to the
extent possible without mandating its inclusion in all systems, and also providing a primitive search-order
word set that vendors may be more likely to implement, and which can be used to synthesize ALSO/ONLY.

Transition/Conversion: Since Forth 83 did not mandate precise semantics for VOCABULARY, existing
Forth-83 Standard programs cannot use it except in a trivial way. Programs can declare a dependency on
the existence of the Search Order word set, and can implement whatever semantics are required using that
word set’s primitives. Forth 83 programs that need ALSO/ONLY can declare a dependency on the Search
Order Extensions word set, or can implement the extensions in terms of the Search Order word set itself.

D.6.11 Multiprogramming impact
Forth 83 marked words with “multiprogramming impact” by the letter “M” in the first lines of their
descriptions. ANS Forth has removed the “M” designation from the word descriptions, moving the
discussion of multiprogramming impact to this non-normative annex.

Words affected: none

Reason: The meaning of “multiprogramming impact” is precise only in the context of a
specific model for multiprogramming. Although many Forth systems do provide multiprogramming

198 Collating Sequence:

 ANSI X3.215-1994

capabilities using a particular round-robin, cooperative, block-buffer sharing model, that model is not
universal. Even assuming the classical model, the “M” designations did not contain enough information to
enable writing of applications that interacted in a multiprogrammed system.

Practically speaking, the “M” designations in Forth 83 served to document usage rules for block buffer
addresses in multiprogrammed systems. These addresses often become meaningless after a task has
relinquished the CPU for any reason, most often for the purposes of performing I/O, awaiting an event, or
voluntarily sharing CPU resources using the word PAUSE. It was essential that portable applications
respect those usage rules to make it practical to run them on multiprogrammed systems; failure to adhere to
the rules could easily compromise the integrity of other applications running on those systems as well as
the applications actually in error. Thus, “M” appeared on all words that by design gave up the CPU, with
the understanding that other words NEVER gave it up.

These usage rules have been explicitly documented in the Block word set where they are relevant. The
“M” designations have been removed entirely.

Impact: In practice, none.

In the sense that any application that depends on multiprogramming must consist of at least two tasks that
share some resource(s) and communicate between themselves, Forth 83 did not contain enough information
to enable writing of a standard program that DEPENDED on multiprogramming. This is also true of ANS
Forth.

Non-multiprogrammed applications in Forth 83 were required to respect usage rules for BLOCK so that
they could be run properly on multiprogrammed systems. The same is true of ANS Forth.

The only difference is the documentation method used to define the BLOCK usage rules. The Technical
Committee believes that the current method is clearer than the concept of “multiprogramming impact”.

Transition/Conversion: none needed.

D.6.12 Words not provided in executable form
ANS Forth allows an implementation to supply some words in source code or “load as needed” form,
rather than requiring all supplied words to be available with no additional programmer action.

Words affected: all

Reason: Forth systems are often used in environments where memory space is at a
premium. Every word included in the system in executable form consumes memory space. The committee
believes that allowing standard words to be provided in source form will increase the probability that
implementors will provide complete ANS Forth implementations even in systems designed for use in
constrained environments.

Impact: In order to use a Standard Program with a given ANS Forth implementation, it
may be necessary to precede the program with an implementation-dependent “preface” to make “source
form” words executable. This is similar to the methods that other computer languages require for selecting
the library routines needed by a particular application.

In languages like C, the goal of eliminating unnecessary routines from the memory image of an application
is usually accomplished by providing libraries of routines, using a “linker” program to incorporate only the
necessary routines into an executable application. The method of invoking and controlling the linker is
outside the scope of the language definition.

Transition/Conversion: Before compiling a program, the programmer may need to perform some action
to make the words required by that program available for execution.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 199

ANSI X3.215-1994

E. ANS Forth portability guide (informative annex)

E.1 Introduction
The most popular architectures used to implement Forth have had byte-addressed memory, 16-bit
operations, and two’s-complement number representation. The Forth-83 Standard dictates that these
particular features must be present in a Forth-83 Standard system and that Forth-83 programs may exploit
these features freely.

However, there are many beasts in the architectural jungle that are bit addressed or cell addressed, or prefer
32-bit operations, or represent numbers in one’s complement. Since one of Forth’s strengths is its
usefulness in “strange” environments on “unusual” hardware with “peculiar” features, it is important that a
Standard Forth run on these machines too.

A primary goal of the ANS Forth Standard is to increase the types of machines that can support a Standard
Forth. This is accomplished by allowing some key Forth terms to be implementation-defined (e.g., how big
is a cell?) and by providing Forth operators (words) that conceal the implementation. This frees the
implementor to produce the Forth system that most effectively utilizes the native hardware. The machine
independent operators, together with some programmer discipline, enable a programmer to write Forth
programs that work on a wide variety of machines.

The remainder of this Annex provides guidelines for writing portable ANS Forth programs. The first
section describes ways to make a program hardware independent. It is difficult for someone familiar with
only one machine architecture to imagine the problems caused by transporting programs between dissimilar
machines. Consequently, examples of specific architectures with their respective problems are given. The
second section describes assumptions about Forth implementations that many programmers make, but can’t
be relied upon in a portable program.

E.2 Hardware peculiarities

E.2.1 Data/memory abstraction
Data and memory are the stones and mortar of program construction. Unfortunately, each computer treats
data and memory differently. The ANS Forth Systems Standard gives definitions of data and memory that
apply to a wide variety of computers. These definitions give us a way to talk about the common elements
of data and memory while ignoring the details of specific hardware. Similarly, ANS Forth programs that
use data and memory in ways that conform to these definitions can also ignore hardware details. The
following sections discuss the definitions and describe how to write programs that are independent of the
data/memory peculiarities of different computers.

E.2.2 Definitions
Three terms defined by ANS Forth are address unit, cell, and character. The address space of an ANS
Forth system is divided into an array of address units; an address unit is the smallest collection of bits that
can be addressed. In other words, an address unit is the number of bits spanned by the addresses addr and
addr+1. The most prevalent machines use 8-bit address units. Such “byte addressed” machines include the
Intel 8086 and Motorola 68000 families. However, other address unit sizes exist. There are machines that
are bit addressed and machines that are 4-bit nibble addressed. There are also machines with address units
larger than 8-bits. For example, several Forth-in-hardware computers are cell addressed.

The cell is the fundamental data type of a Forth system. A cell can be a single-cell integer or a memory
address. Forth’s parameter and return stacks are stacks of cells. Forth 83 specifies that a cell is 16-bits. In
ANS Forth the size of a cell is an implementation-defined number of address units. Thus, an ANS Forth
implemented on a 16-bit microprocessor could use a 16-bit cell and an implementation on a 32-bit machine
could use a 32-bit cell. Also 18-bit machines, 36-bit machines, etc., could support ANS Forth systems with
18 or 36-bit cells respectively. In all of these systems, DUP does the same thing: it duplicates the top of

200 Collating Sequence:

 ANSI X3.215-1994

the data stack. ! (store) behaves consistently too: given two cells on the data stack it stores the second cell
in the memory location designated by the top cell.

Similarly, the definition of a character has been generalized to be an implementation-defined number of
address units (but at least eight bits). This removes the need for a Forth implementor to provide 8-bit
characters on processors where it is inappropriate. For example, on an 18-bit machine with a 9-bit address
unit, a 9-bit character would be most convenient. Since, by definition, you can’t address anything smaller
than an address unit, a character must be at least as big as an address unit. This will result in big characters
on machines with large address units. An example is a 16-bit cell addressed machine where a 16-bit
character makes the most sense.

E.2.3 Addressing memory
ANS Forth eliminates many portability problems by using the above definitions. One of the most common
portability problems is addressing successive cells in memory. Given the memory address of a cell, how do
you find the address of the next cell? In Forth 83 this is easy: 2 + . This code assumes that memory is
addressed in 8-bit units (bytes) and a cell is 16-bits wide. On a byte-addressed machine with 32-bit cells
the code to find the next cell would be 4 + . The code would be 1+ on a cell-addressed processor and 16
+ on a bit-addressed processor with 16-bit cells. ANS Forth provides a next-cell operator named CELL+
that can be used in all of these cases. Given an address, CELL+ adjusts the address by the size of a cell
(measured in address units). A related problem is that of addressing an array of cells in an arbitrary order.
A defining word to create an array of cells using Forth 83 would be:

: ARRAY CREATE 2* ALLOT DOES> SWAP 2* + ;

Use of 2* to scale the array index assumes byte addressing and 16-bit cells again. As in the example
above, different versions of the code would be needed for different machines. ANS Forth provides a
portable scaling operator named CELLS. Given a number n, CELLS returns the number of address units
needed to hold n cells. A portable definition of array is:

: ARRAY CREATE CELLS ALLOT
 DOES> SWAP CELLS + ;

There are also portability problems with addressing arrays of characters. In Forth 83 (and in the most
common ANS Forth implementations), the size of a character will equal the size of an address unit.
Consequently addresses of successive characters in memory can be found using 1+ and scaling indices into
a character array is a no-op (i.e., 1 *). However, there are cases where a character is larger than an
address unit. Examples include (1) systems with small address units (e.g., bit- and nibble-addressed
systems), and (2) systems with large character sets (e.g., 16-bit characters on a byte-addressed machine).
CHAR+ and CHARS operators, analogous to CELL+ and CELLS are available to allow maximum
portability.

ANS Forth generalizes the definition of some Forth words that operate on chunks of memory to use
address units. One example is ALLOT. By prefixing ALLOT with the appropriate scaling operator
(CELLS, CHARS, etc.), space for any desired data structure can be allocated (see definition of array above).
For example:

CREATE ABUFFER 5 CHARS ALLOT (allot 5 character buffer)

The memory-block-move word also uses address units:

source destination 8 CELLS MOVE (move 8 cells)

E.2.4 Alignment problems
Not all addresses are created equal. Many processors have restrictions on the addresses that can be used by
memory access instructions. This Standard does not require an implementor of an ANS Forth to make
alignment transparent; on the contrary, it requires (in Section 3.3.3.1 Address alignment) that an ANS
Forth program assume that character and cell alignment may be required.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 201

ANSI X3.215-1994

One of the most common problems caused by alignment restrictions is in creating tables containing both
characters and cells. When , (comma) or C, is used to initialize a table, data is stored at the data-space
pointer. Consequently, it must be suitably aligned. For example, a non-portable table definition would be:

CREATE ATABLE 1 C, X , 2 C, Y ,

On a machine that restricts 16-bit fetches to even addresses, CREATE would leave the data space pointer at
an even address, the 1 C, would make the data space pointer odd, and , (comma) would violate the
address restriction by storing X at an odd address. A portable way to create the table is:

CREATE ATABLE 1 C, ALIGN X , 2 C, ALIGN Y ,

ALIGN adjusts the data space pointer to the first aligned address greater than or equal to its current address.
An aligned address is suitable for storing or fetching characters, cells, cell pairs, or double-cell numbers.

After initializing the table, we would also like to read values from the table. For example, assume we want
to fetch the first cell, X, from the table. ATABLE CHAR+ gives the address of the first thing after the
character. However this may not be the address of X since we aligned the dictionary pointer between the
C, and the ,. The portable way to get the address of X is:

ATABLE CHAR+ ALIGNED

ALIGNED adjusts the address on top of the stack to the first aligned address greater than or equal to its
current value.

E.3 Number representation
Different computers represent numbers in different ways. An awareness of these differences can help a
programmer avoid writing a program that depends on a particular representation.

E.3.1 Big endian vs. little endian
The constituent bits of a number in memory are kept in different orders on different machines. Some
machines place the most-significant part of a number at an address in memory with less-significant parts
following it at higher addresses. Other machines do the opposite — the least-significant part is stored at
the lowest address. For example, the following code for a 16-bit 8086 “little endian” Forth would produce
the answer 34 (hex):

VARIABLE FOO HEX 1234 FOO ! FOO C@

The same code on a 16-bit 68000 “big endian” Forth would produce the answer 12 (hex). A portable
program cannot exploit the representation of a number in memory.

A related issue is the representation of cell pairs and double-cell numbers in memory. When a cell pair is
moved from the stack to memory with 2!, the cell that was on top of the stack is placed at the lower
memory address. It is useful and reasonable to manipulate the individual cells when they are in memory.

E.3.2 ALU organization
Different computers use different bit patterns to represent integers. Possibilities include binary
representations (two’s complement, one’s complement, sign magnitude, etc.) and decimal representations
(BCD, etc.). Each of these formats creates advantages and disadvantages in the design of a computer’s
arithmetic logic unit (ALU). The most commonly used representation, two’s complement, is popular
because of the simplicity of its addition and subtraction algorithms.

Programmers who have grown up on two’s complement machines tend to become intimate with their
representation of numbers and take some properties of that representation for granted. For example, a trick
to find the remainder of a number divided by a power of two is to mask off some bits with AND. A
common application of this trick is to test a number for oddness using 1 AND. However, this will not
work on a one’s complement machine if the number is negative (a portable technique is 2 MOD).

202 Collating Sequence:

 ANSI X3.215-1994

The remainder of this section is a (non-exhaustive) list of things to watch for when portability between
machines with binary representations other than two’s complement is desired.

To convert a single-cell number to a double-cell number, ANS Forth provides the operator S>D. To
convert a double-cell number to single-cell, Forth programmers have traditionally used DROP. However,
this trick doesn’t work on sign-magnitude machines. For portability a D>S operator is available.
Converting an unsigned single-cell number to a double-cell number can be done portably by pushing a zero
on the stack.

E.4 Forth system implementation
During Forth’s history, an amazing variety of implementation techniques have been developed. The ANS
Forth Standard encourages this diversity and consequently restricts the assumptions a user can make about
the underlying implementation of an ANS Forth system. Users of a particular Forth implementation
frequently become accustomed to aspects of the implementation and assume they are common to all Forths.
This section points out many of these incorrect assumptions.

E.4.1 Definitions
Traditionally, Forth definitions have consisted of the name of the Forth word, a dictionary search link, data
describing how to execute the definition, and parameters describing the definition itself. These
components are called the name, link, code, and parameter fields3. No method for accessing these fields
has been found that works across all of the Forth implementations currently in use. Therefore, ANS Forth
severely restricts how the fields may be used. Specifically, a portable ANS Forth program may not use the
name, link, or code field in any way. Use of the parameter field (renamed to data field for clarity) is
limited to the operations described below.

Only words defined with CREATE or with other defining words that call CREATE have data fields. The
other defining words in the Standard (VARIABLE, CONSTANT, :, etc.) might not be implemented with
CREATE. Consequently, a Standard Program must assume that words defined by VARIABLE,
CONSTANT, : , etc., may have no data fields. There is no way for a Standard Program to modify the value
of a constant or to change the meaning of a colon definition. The DOES> part of a defining word operates
on a data field. Since only CREATEd words have data fields, DOES> can only be paired with CREATE or
words that call CREATE.

In ANS Forth, FIND, ['] and ' (tick) return an unspecified entity called an “execution token”. There are
only a few things that may be done with an execution token. The token may be passed to EXECUTE to
execute the word ticked or compiled into the current definition with COMPILE,. The token can also be
stored in a variable and used later. Finally, if the word ticked was defined via CREATE, >BODY converts
the execution token into the word’s data-field address.

One thing that definitely cannot be done with an execution token is use ! or , to store it into the object
code of a Forth definition. This technique is sometimes used in implementations where the object code is a
list of addresses (threaded code) and an execution token is also an address. However, ANS Forth permits
native code implementations where this will not work.

E.4.2 Stacks
In some Forth implementations, it is possible to find the address of a stack in memory and manipulate the
stack as an array of cells. This technique is not portable, however. On some systems, especially Forth-in-
hardware systems, the stacks might be in a part of memory that can’t be addressed by the program or might
not be in memory at all. Forth’s parameter and return stacks must be treated as stacks.

A Standard Program may use the return stack directly only for temporarily storing values. Every value
examined or removed from the return stack using R@, R>, or 2R> must have been put on the stack

3These terms are not defined in the Standard. They are mentioned here for historical continuity.

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 203

ANSI X3.215-1994

explicitly using >R or 2>R. Even this must be done carefully since the system may use the return stack to
hold return addresses and loop-control parameters. Section 3.2.3.3 Return stack of the Standard has a list
of restrictions.

E.5 ROMed application disciplines and conventions
When a Standard System provides a data space which is uniformly readable and writeable we may term
this environment “RAM-only”.

Programs designed for ROMed application must divide data space into at least two parts: a writeable and
readable uninitialized part, called “RAM”, and a read-only initialized part, called “ROM”. A third
possibility, a writeable and readable initialized part, normally called “initialized RAM”, is not addressed by
this discipline. A Standard Program must explicitly initialize the RAM data space as needed.

The separation of data space into RAM and ROM is meaningful only during the generation of the ROMed
program. If the ROMed program is itself a standard development system, it has the same taxonomy as an
ordinary RAM-only system.

The words affected by conversion from a RAM-only to a mixed RAM and ROM environment are:

, (comma) ALIGN ALIGNED ALLOT C, CREATE HERE UNUSED
(VARIABLE always accesses the RAM data space.)

With the exception of , (comma) and C, these words are meaningful in both RAM and ROM data space.

To select the data space, these words could be preceded by selectors RAM and ROM. For example:

ROM CREATE ONES 32 ALLOT ONES 32 1 FILL RAM

would create a table of ones in the ROM data space. The storage of data into RAM data space when
generating a program for ROM would be an ambiguous condition.

A straightforward implementation of these selectors would maintain separate address counters for each
space. A counter value would be returned by HERE and altered by , (comma), C,, ALIGN, and ALLOT,
with RAM and ROM simply selecting the appropriate address counter. This technique could be extended to
additional partitions of the data space.

E.6 Summary
The ANS Forth Standard cannot and should not force anyone to write a portable program. In situations
where performance is paramount, the programmer is encouraged to use every trick in the book. On the
other hand, if portability to a wide variety of systems is needed, ANS Forth provides the tools to
accomplish this. There is probably no such thing as a completely portable program. A programmer, using
this guide, should intelligently weigh the tradeoffs of providing portability to specific machines. For
example, machines that use sign-magnitude numbers are rare and probably don’t deserve much thought.
But, systems with different cell sizes will certainly be encountered and should be provided for. In general,
making a program portable clarifies both the programmer’s thinking process and the final program.

204 Collating Sequence:

 ANSI X3.215-1994

F. Alphabetic list of words (informative annex)

In the following list, the last, four-digit, part of the reference number establishes a sequence corresponding
to the alphabetic ordering of all standard words. The first two or three parts indicate the word set and
glossary section in which the word is defined.

 .6.1.0010 ! ... “store”... CORE........ 25
 .6.1.0030 # ... “number-sign” .. CORE........ 25
 .6.1.0040 #> .. “number-sign-greater” .. CORE........ 25
 .6.1.0050 #S .. “number-sign-s”.. CORE........ 25
 .6.2.0060 #TIB .. “number-t-i-b” ..CORE EXT........ 49
 .6.1.0070 ' ... “tick”... CORE........ 25
 .6.1.0080 (... “paren”.. CORE........ 26
 11.6.1.0080 (... “paren”...FILE........ 80
 13.6.1.0086 (LOCAL) “paren-local-paren” ..LOCAL...... 105
 .6.1.0090 * ... “star”... CORE........ 26
 .6.1.0100 */ .. “star-slash” ... CORE........ 26
 .6.1.0110 */MOD “star-slash-mod” ... CORE........ 26
 .6.1.0120 + ... “plus”.. CORE........ 26
 .6.1.0130 +! .. “plus-store”... CORE........ 27
 .6.1.0140 +LOOP “plus-loop” ... CORE........ 27
 .6.1.0150 , ... “comma”... CORE........ 27
 .6.1.0160 - ... “minus”... CORE........ 27
 17.6.1.0170 -TRAILING “dash-trailing” ...STRING...... 122
 .6.1.0180 . .. “dot” ... CORE........ 27
 .6.1.0190 ." .. “dot-quote” ... CORE........ 28
 .6.2.0200 .(.. “dot-paren” ...CORE EXT........ 49
 .6.2.0210 .R .. “dot-r”...CORE EXT........ 49
 15.6.1.0220 .S .. “dot-s”... TOOLS...... 112
 .6.1.0230 / ... “slash”... CORE........ 28
 .6.1.0240 /MOD .. “slash-mod” .. CORE........ 28
 17.6.1.0245 /STRING “slash-string” ...STRING...... 123
 .6.1.0250 0< .. “zero-less” .. CORE........ 28
 .6.2.0260 0<> .. “zero-not-equals”..CORE EXT........ 49
 .6.1.0270 0= .. “zero-equals” .. CORE........ 28
 .6.2.0280 0> .. “zero-greater” ...CORE EXT........ 50
 .6.1.0290 1+ .. “one-plus”... CORE........ 28
 .6.1.0300 1- .. “one-minus”.. CORE........ 29
 .6.1.0310 2! .. “two-store” ... CORE........ 29
 .6.1.0320 2* .. “two-star” ... CORE........ 29
 .6.1.0330 2/ .. “two-slash” ... CORE........ 29
 .6.2.0340 2>R .. “two-to-r” ...CORE EXT........ 50
 .6.1.0350 2@ .. “two-fetch” ... CORE........ 29
 8.6.1.0360 2CONSTANT “two-constant” ...DOUBLE........ 66
 .6.1.0370 2DROP “two-drop”.. CORE........ 29
 .6.1.0380 2DUP .. “two-dupe” ... CORE........ 29
 8.6.1.0390 2LITERAL “two-literal” ...DOUBLE........ 66
 .6.1.0400 2OVER “two-over” .. CORE........ 29
 .6.2.0410 2R> .. “two-r-from”...CORE EXT........ 50
 .6.2.0415 2R@ .. “two-r-fetch”...CORE EXT........ 50
 8.6.2.0420 2ROT .. “two-rote” ... DOUBLE EXT........ 69
 .6.1.0430 2SWAP “two-swap” ... CORE........ 30
 8.6.1.0440 2VARIABLE “two-variable” ...DOUBLE........ 67

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 205

ANSI X3.215-1994

 .6.1.0450 : ...“colon” .. CORE 30
 .6.2.0455 :NONAME “colon-no-name”.. CORE EXT 51
 .6.1.0460 ; ...“semicolon”... CORE 30
 15.6.2.0470 ;CODE “semicolon-code”..................................... TOOLS EXT 113
 .6.1.0480 < ...“less-than”... CORE 30
 .6.1.0490 <# ...“less-number-sign”.. CORE 31
 .6.2.0500 <> ...“not-equals” ... CORE EXT 50
 .6.1.0530 = ...“equals”... CORE 31
 .6.1.0540 > ...“greater-than”.. CORE 31
 .6.1.0550 >BODY “to-body”... CORE 31
 12.6.1.0558 >FLOAT “to-float” ..FLOATING 91
 .6.1.0560 >IN ..“to-in” ... CORE 31
 .6.1.0570 >NUMBER “to-number” ... CORE 31
 .6.1.0580 >R ...“to-r” ... CORE 32
 15.6.1.0600 ? ...“question” ...TOOLS 112
 .6.2.0620 ?DO ..“question-do” ... CORE EXT 51
 .6.1.0630 ?DUP ..“question-dupe” .. CORE 32
 .6.1.0650 @ ...“fetch” ... CORE 32
 .6.1.0670 ABORT CORE 32
 9.6.2.0670 ABORT EXCEPTION EXT 73
 .6.1.0680 ABORT" “abort-quote”... CORE 32
 9.6.2.0680 ABORT" “abort-quote”...................................EXCEPTION EXT 73
 .6.1.0690 ABS ..“abs”.. CORE 32
 .6.1.0695 ACCEPT CORE 33
 .6.2.0700 AGAIN CORE EXT 51
 15.6.2.0702 AHEAD TOOLS EXT 113
 .6.1.0705 ALIGN CORE 33
 .6.1.0706 ALIGNED CORE 33
 14.6.1.0707 ALLOCATE MEMORY 109
 .6.1.0710 ALLOT CORE 33
 16.6.2.0715 ALSO SEARCH EXT 120
 .6.1.0720 AND CORE 33
 15.6.2.0740 ASSEMBLER TOOLS EXT 114
 10.6.1.0742 AT-XY “at-x-y” ..FACILITY 75
 .6.1.0750 BASE CORE 34
 .6.1.0760 BEGIN CORE 34
 11.6.1.0765 BIN FILE 80
 .6.1.0770 BL ...“b-l”... CORE 34
 17.6.1.0780 BLANK STRING 123
 7.6.1.0790 BLK ..“b-l-k” .. BLOCK 62
 7.6.1.0800 BLOCK BLOCK 62
 7.6.1.0820 BUFFER BLOCK 62
 15.6.2.0830 BYE TOOLS EXT 114
 .6.1.0850 C! ...“c-store” .. CORE 34
 .6.2.0855 C" ...“c-quote” .. CORE EXT 52
 .6.1.0860 C, ...“c-comma” .. CORE 34
 .6.1.0870 C@ ...“c-fetch”.. CORE 34
 .6.2.0873 CASE CORE EXT 52
 9.6.1.0875 CATCH EXCEPTION 72
 .6.1.0880 CELL+ “cell-plus” ... CORE 35
 .6.1.0890 CELLS CORE 35
 .6.1.0895 CHAR ..“char” .. CORE 35
 .6.1.0897 CHAR+ “char-plus” .. CORE 35
 .6.1.0898 CHARS “chars”... CORE 35

206 Collating Sequence:

 ANSI X3.215-1994

 11.6.1.0900 CLOSE-FILE FILE........ 80
 17.6.1.0910 CMOVE “c-move”..STRING...... 123
 17.6.1.0920 CMOVE> “c-move-up” ..STRING...... 123
 15.6.2.0930 CODE TOOLS EXT...... 114
 17.6.1.0935 COMPARE STRING...... 124
 .6.2.0945 COMPILE, “compile-comma”.......................................CORE EXT........ 52
 .6.1.0950 CONSTANT CORE........ 35
 .6.2.0970 CONVERT CORE EXT........ 52
 .6.1.0980 COUNT CORE........ 36
 .6.1.0990 CR .. “c-r” .. CORE........ 36
 .6.1.1000 CREATE CORE........ 36
 11.6.1.1010 CREATE-FILE FILE........ 81
 15.6.2.1015 CS-PICK “c-s-pick”..TOOLS EXT...... 114
 15.6.2.1020 CS-ROLL “c-s-roll” ...TOOLS EXT...... 115
 8.6.1.1040 D+ .. “d-plus”..DOUBLE........ 67
 8.6.1.1050 D- .. “d-minus” ..DOUBLE........ 67
 8.6.1.1060 D. .. “d-dot” ...DOUBLE........ 67
 8.6.1.1070 D.R .. “d-dot-r” ..DOUBLE........ 67
 8.6.1.1075 D0< .. “d-zero-less” ..DOUBLE........ 67
 8.6.1.1080 D0= .. “d-zero-equals”..DOUBLE........ 67
 8.6.1.1090 D2* .. “d-two-star” ...DOUBLE........ 68
 8.6.1.1100 D2/ .. “d-two-slash”...DOUBLE........ 68
 8.6.1.1110 D< .. “d-less-than” ..DOUBLE........ 68
 8.6.1.1120 D= .. “d-equals” ..DOUBLE........ 68
 12.6.1.1130 D>F .. “d-to-f” .. FLOATING........ 91
 8.6.1.1140 D>S .. “d-to-s” ..DOUBLE........ 68
 8.6.1.1160 DABS .. “d-abs”...DOUBLE........ 68
 .6.1.1170 DECIMAL CORE........ 36
 16.6.1.1180 DEFINITIONS SEARCH...... 119
 11.6.1.1190 DELETE-FILE FILE........ 81
 .6.1.1200 DEPTH CORE........ 36
 12.6.2.1203 DF! .. “d-f-store”... FLOATING EXT........ 95
 12.6.2.1204 DF@ .. “d-f-fetch”... FLOATING EXT........ 96
 12.6.2.1205 DFALIGN “d-f-align”... FLOATING EXT........ 96
 12.6.2.1207 DFALIGNED “d-f-aligned”..................................... FLOATING EXT........ 96
 12.6.2.1208 DFLOAT+ “d-float-plus” FLOATING EXT........ 96
 12.6.2.1209 DFLOATS “d-floats” .. FLOATING EXT........ 96
 8.6.1.1210 DMAX .. “d-max” ...DOUBLE........ 68
 8.6.1.1220 DMIN .. “d-min” ..DOUBLE........ 69
 8.6.1.1230 DNEGATE “d-negate”..DOUBLE........ 69
 .6.1.1240 DO CORE........ 36
 .6.1.1250 DOES> “does” ... CORE........ 37
 .6.1.1260 DROP CORE........ 37
 8.6.2.1270 DU< .. “d-u-less”.. DOUBLE EXT........ 69
 15.6.1.1280 DUMP TOOLS...... 112
 .6.1.1290 DUP .. “dupe”... CORE........ 37
 15.6.2.1300 EDITOR TOOLS EXT...... 115
 10.6.2.1305 EKEY .. “e-key”.. FACILITY EXT........ 76
 10.6.2.1306 EKEY>CHAR “e-key-to-char” FACILITY EXT........ 76
 10.6.2.1307 EKEY? “e-key-question”................................. FACILITY EXT........ 76
 .6.1.1310 ELSE CORE........ 37
 .6.1.1320 EMIT CORE........ 38
 10.6.2.1325 EMIT? “emit-question”................................... FACILITY EXT........ 76
 7.6.2.1330 EMPTY-BUFFERS BLOCK EXT........ 63

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 207

ANSI X3.215-1994

 .6.2.1342 ENDCASE “end-case” .. CORE EXT 53
 .6.2.1343 ENDOF “end-of”.. CORE EXT 53
 .6.1.1345 ENVIRONMENT? “environment-query” .. CORE 38
 .6.2.1350 ERASE CORE EXT 53
 .6.1.1360 EVALUATE CORE 38
 7.6.1.1360 EVALUATE BLOCK 63
 .6.1.1370 EXECUTE CORE 38
 .6.1.1380 EXIT CORE 38
 .6.2.1390 EXPECT CORE EXT 53
 12.6.1.1400 F! ...“f-store”..FLOATING 91
 12.6.1.1410 F* ...“f-star”..FLOATING 91
 12.6.2.1415 F** ..“f-star-star” FLOATING EXT 96
 12.6.1.1420 F+ ...“f-plus”...FLOATING 91
 12.6.1.1425 F- ...“f-minus”..FLOATING 91
 12.6.2.1427 F. ...“f-dot” ... FLOATING EXT 97
 12.6.1.1430 F/ ...“f-slash” ...FLOATING 92
 12.6.1.1440 F0< ..“f-zero-less-than”FLOATING 92
 12.6.1.1450 F0= ..“f-zero-equals” ...FLOATING 92
 12.6.1.1460 F< ...“f-less-than” ...FLOATING 92
 12.6.1.1470 F>D ..“f-to-d”...FLOATING 92
 12.6.1.1472 F@ ...“f-fetch” ...FLOATING 92
 12.6.2.1474 FABS ..“f-abs” ... FLOATING EXT 97
 12.6.2.1476 FACOS “f-a-cos”.. FLOATING EXT 97
 12.6.2.1477 FACOSH “f-a-cosh”.. FLOATING EXT 97
 12.6.1.1479 FALIGN “f-align” ...FLOATING 92
 12.6.1.1483 FALIGNED “f-aligned”..FLOATING 92
 12.6.2.1484 FALOG “f-a-log” .. FLOATING EXT 97
 .6.2.1485 FALSE CORE EXT 54
 12.6.2.1486 FASIN “f-a-sine”... FLOATING EXT 97
 12.6.2.1487 FASINH “f-a-cinch”... FLOATING EXT 97
 12.6.2.1488 FATAN “f-a-tan” .. FLOATING EXT 98
 12.6.2.1489 FATAN2 “f-a-tan-two” FLOATING EXT 98
 12.6.2.1491 FATANH “f-a-tan-h” ... FLOATING EXT 98
 12.6.1.1492 FCONSTANT “f-constant” ..FLOATING 93
 12.6.2.1493 FCOS ..“f-cos” ... FLOATING EXT 98
 12.6.2.1494 FCOSH “f-cosh” ... FLOATING EXT 98
 12.6.1.1497 FDEPTH “f-depth” ..FLOATING 93
 12.6.1.1500 FDROP “f-drop” ..FLOATING 93
 12.6.1.1510 FDUP ..“f-dupe”..FLOATING 93
 12.6.2.1513 FE. ..“f-e-dot” .. FLOATING EXT 98
 12.6.2.1515 FEXP ..“f-e-x-p”.. FLOATING EXT 98
 12.6.2.1516 FEXPM1 “f-e-x-p-m-one” FLOATING EXT 99
 11.6.1.1520 FILE-POSITION FILE 81
 11.6.1.1522 FILE-SIZE FILE 81
 11.6.2.1524 FILE-STATUS FILE EXT 85
 .6.1.1540 FILL CORE 39
 .6.1.1550 FIND CORE 39
 16.6.1.1550 FIND SEARCH 119
 12.6.1.1552 FLITERAL “f-literal” ..FLOATING 93
 12.6.2.1553 FLN ..“f-l-n”.. FLOATING EXT 99
 12.6.2.1554 FLNP1 “f-l-n-p-one” FLOATING EXT 99
 12.6.1.1555 FLOAT+ “float-plus”...FLOATING 93
 12.6.1.1556 FLOATS FLOATING 94
 12.6.2.1557 FLOG ..“f-log” ... FLOATING EXT 99

208 Collating Sequence:

 ANSI X3.215-1994

 12.6.1.1558 FLOOR FLOATING........ 94
 7.6.1.1559 FLUSH BLOCK........ 63
 11.6.2.1560 FLUSH-FILE FILE EXT........ 85
 .6.1.1561 FM/MOD “f-m-slash-mod” ... CORE........ 39
 12.6.1.1562 FMAX .. “f-max” .. FLOATING........ 94
 12.6.1.1565 FMIN .. “f-min”... FLOATING........ 94
 12.6.1.1567 FNEGATE “f-negate” .. FLOATING........ 94
 15.6.2.1580 FORGET TOOLS EXT...... 115
 16.6.2.1590 FORTH SEARCH EXT...... 120
 16.6.1.1595 FORTH-WORDLIST SEARCH...... 119
 12.6.1.1600 FOVER “f-over”.. FLOATING........ 94
 14.6.1.1605 FREE MEMORY...... 109
 12.6.1.1610 FROT .. “f-rote”... FLOATING........ 94
 12.6.1.1612 FROUND “f-round”.. FLOATING........ 94
 12.6.2.1613 FS. .. “f-s-dot”.. FLOATING EXT........ 99
 12.6.2.1614 FSIN .. “f-sine” ... FLOATING EXT........ 99
 12.6.2.1616 FSINCOS “f-sine-cos”....................................... FLOATING EXT...... 100
 12.6.2.1617 FSINH “f-cinch” ... FLOATING EXT...... 100
 12.6.2.1618 FSQRT “f-square-root”.................................. FLOATING EXT...... 100
 12.6.1.1620 FSWAP “f-swap”... FLOATING........ 94
 12.6.2.1625 FTAN .. “f-tan” ... FLOATING EXT...... 100
 12.6.2.1626 FTANH “f-tan-h”.. FLOATING EXT...... 100
 12.6.1.1630 FVARIABLE “f-variable” .. FLOATING........ 95
 12.6.2.1640 F~ .. “f-proximate”.................................... FLOATING EXT...... 100
 16.6.1.1643 GET-CURRENT SEARCH...... 119
 16.6.1.1647 GET-ORDER SEARCH...... 119
 .6.1.1650 HERE CORE........ 39
 .6.2.1660 HEX CORE EXT........ 54
 .6.1.1670 HOLD CORE........ 39
 .6.1.1680 I CORE........ 39
 .6.1.1700 IF CORE........ 40
 .6.1.1710 IMMEDIATE CORE........ 40
 11.6.1.1717 INCLUDE-FILE FILE........ 81
 11.6.1.1718 INCLUDED FILE........ 82
 .6.1.1720 INVERT CORE........ 40
 .6.1.1730 J CORE........ 40
 .6.1.1750 KEY CORE........ 40
 10.6.1.1755 KEY? .. “key-question” ...FACILITY........ 75
 .6.1.1760 LEAVE CORE........ 41
 7.6.2.1770 LIST BLOCK EXT........ 64
 .6.1.1780 LITERAL CORE........ 41
 7.6.1.1790 LOAD BLOCK........ 63
 13.6.2.1795 LOCALS| “locals-bar”.. LOCAL EXT...... 106
 .6.1.1800 LOOP CORE........ 41
 .6.1.1805 LSHIFT “l-shift” ... CORE........ 41
 .6.1.1810 M* .. “m-star” .. CORE........ 41
 8.6.1.1820 M*/ .. “m-star-slash” ..DOUBLE........ 69
 8.6.1.1830 M+ .. “m-plus” ..DOUBLE........ 69
 .6.2.1850 MARKER CORE EXT........ 54
 .6.1.1870 MAX CORE........ 42
 .6.1.1880 MIN CORE........ 42
 .6.1.1890 MOD CORE........ 42
 .6.1.1900 MOVE CORE........ 42
 10.6.2.1905 MS FACILITY EXT........ 76

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 209

ANSI X3.215-1994

 .6.1.1910 NEGATE CORE 42
 .6.2.1930 NIP CORE EXT 54
 .6.2.1950 OF CORE EXT 54
 16.6.2.1965 ONLY SEARCH EXT 121
 11.6.1.1970 OPEN-FILE FILE 82
 .6.1.1980 OR CORE 42
 16.6.2.1985 ORDER SEARCH EXT 121
 .6.1.1990 OVER CORE 42
 .6.2.2000 PAD CORE EXT 55
 10.6.1.2005 PAGE FACILITY 75
 .6.2.2008 PARSE CORE EXT 55
 .6.2.2030 PICK CORE EXT 55
 .6.1.2033 POSTPONE CORE 43
 12.6.2.2035 PRECISION FLOATING EXT 100
 16.6.2.2037 PREVIOUS SEARCH EXT 121
 .6.2.2040 QUERY CORE EXT 55
 .6.1.2050 QUIT CORE 43
 11.6.1.2054 R/O ..“r-o” .. FILE 82
 11.6.1.2056 R/W ..“r-w” ... FILE 83
 .6.1.2060 R> ...“r-from”... CORE 43
 .6.1.2070 R@ ...“r-fetch” .. CORE 43
 11.6.1.2080 READ-FILE FILE 83
 11.6.1.2090 READ-LINE FILE 83
 .6.1.2120 RECURSE CORE 43
 .6.2.2125 REFILL CORE EXT 55
 7.6.2.2125 REFILL BLOCK EXT 64
 11.6.2.2125 REFILL FILE EXT 86
 11.6.2.2130 RENAME-FILE FILE EXT 86
 .6.1.2140 REPEAT CORE 44
 11.6.1.2142 REPOSITION-FILE FILE 84
 12.6.1.2143 REPRESENT FLOATING 95
 14.6.1.2145 RESIZE MEMORY 109
 11.6.1.2147 RESIZE-FILE FILE 84
 .6.2.2148 RESTORE-INPUT CORE EXT 56
 .6.2.2150 ROLL CORE EXT 56
 .6.1.2160 ROT ..“rote”... CORE 44
 .6.1.2162 RSHIFT “r-shift” ... CORE 44
 .6.1.2165 S" ...“s-quote” ... CORE 44
 11.6.1.2165 S" ...“s-quote” ... FILE 84
 .6.1.2170 S>D ..“s-to-d”.. CORE 44
 7.6.1.2180 SAVE-BUFFERS BLOCK 63
 .6.2.2182 SAVE-INPUT CORE EXT 56
 7.6.2.2190 SCR ..“s-c-r”.. BLOCK EXT 64
 17.6.1.2191 SEARCH STRING 124
 16.6.1.2192 SEARCH-WORDLIST SEARCH 120
 15.6.1.2194 SEE TOOLS 112
 16.6.1.2195 SET-CURRENT SEARCH 120
 16.6.1.2197 SET-ORDER SEARCH 120
 12.6.2.2200 SET-PRECISION FLOATING EXT 100
 12.6.2.2202 SF! ..“s-f-store”.. FLOATING EXT 101
 12.6.2.2203 SF@ ..“s-f-fetch” ... FLOATING EXT 101
 12.6.2.2204 SFALIGN “s-f-align” ... FLOATING EXT 101
 12.6.2.2206 SFALIGNED “s-f-aligned”...................................... FLOATING EXT 101
 12.6.2.2207 SFLOAT+ “s-float-plus”..................................... FLOATING EXT 101

210 Collating Sequence:

 ANSI X3.215-1994

 12.6.2.2208 SFLOATS “s-floats”... FLOATING EXT...... 101
 .6.1.2210 SIGN CORE........ 45
 17.6.1.2212 SLITERAL STRING...... 124
 .6.1.2214 SM/REM “s-m-slash-rem”.. CORE........ 45
 .6.1.2216 SOURCE CORE........ 45
 .6.2.2218 SOURCE-ID “source-i-d” ..CORE EXT........ 56
 11.6.1.2218 SOURCE-ID “source-i-d” ...FILE........ 84
 .6.1.2220 SPACE CORE........ 45
 .6.1.2230 SPACES CORE........ 45
 .6.2.2240 SPAN CORE EXT........ 56
 .6.1.2250 STATE CORE........ 45
 15.6.2.2250 STATE TOOLS EXT...... 115
 .6.1.2260 SWAP CORE........ 45
 .6.1.2270 THEN CORE........ 46
 9.6.1.2275 THROW EXCEPTION........ 73
 7.6.2.2280 THRU BLOCK EXT........ 64
 .6.2.2290 TIB .. “t-i-b”..CORE EXT........ 56
 10.6.2.2292 TIME&DATE “time-and-date” FACILITY EXT........ 76
 .6.2.2295 TO CORE EXT........ 57
 13.6.1.2295 TO LOCAL...... 106
 .6.2.2298 TRUE CORE EXT........ 57
 .6.2.2300 TUCK CORE EXT........ 57
 .6.1.2310 TYPE CORE........ 46
 .6.1.2320 U. .. “u-dot” .. CORE........ 46
 .6.2.2330 U.R .. “u-dot-r” ...CORE EXT........ 57
 .6.1.2340 U< .. “u-less-than” ... CORE........ 46
 .6.2.2350 U> .. “u-greater-than” ..CORE EXT........ 57
 .6.1.2360 UM* .. “u-m-star” ... CORE........ 46
 .6.1.2370 UM/MOD “u-m-slash-mod” .. CORE........ 46
 .6.1.2380 UNLOOP CORE........ 47
 .6.1.2390 UNTIL CORE........ 47
 .6.2.2395 UNUSED CORE EXT........ 57
 7.6.1.2400 UPDATE BLOCK........ 63
 .6.2.2405 VALUE CORE EXT........ 58
 .6.1.2410 VARIABLE CORE........ 47
 11.6.1.2425 W/O .. “w-o” ...FILE........ 85
 .6.1.2430 WHILE CORE........ 47
 .6.2.2440 WITHIN CORE EXT........ 58
 .6.1.2450 WORD CORE........ 48
 16.6.1.2460 WORDLIST SEARCH...... 120
 15.6.1.2465 WORDS TOOLS...... 113
 11.6.1.2480 WRITE-FILE FILE........ 85
 11.6.1.2485 WRITE-LINE FILE........ 85
 .6.1.2490 XOR .. “x-or”.. CORE........ 48
 .6.1.2500 [... “left-bracket” .. CORE........ 48
 .6.1.2510 ['] .. “bracket-tick”.. CORE........ 48
 .6.1.2520 [CHAR] “bracket-char”... CORE........ 49
 .6.2.2530 [COMPILE] “bracket-compile”.......................................CORE EXT........ 58
 15.6.2.2531 [ELSE] “bracket-else” ...TOOLS EXT...... 116
 15.6.2.2532 [IF] .. “bracket-if” ...TOOLS EXT...... 116
 15.6.2.2533 [THEN] “bracket-then”...TOOLS EXT...... 116
 .6.2.2535 \ ... “backslash” ...CORE EXT........ 58
 7.6.2.2535 \ ... “backslash” ..BLOCK EXT........ 64
 .6.1.2540] ... “right-bracket” .. CORE........ 49

! " # $ % & ' () * + , - . / digits : ; < = > ? @ ALPHA [\] ^ _ ` alpha { | } ~ 211

ANSI X3.215-1994

212 Collating Sequence:

	Contents
	American National Standard for Information Systems —
	Programming Language — Forth

	1. Introduction
	1.1 Purpose
	1.2 Scope
	1.2.1 Inclusions
	1.2.2 Exclusions

	1.3 Document organization
	1.3.1 Word sets
	1.3.2 Annexes

	1.4 Future directions
	1.4.1 New technology
	1.4.2 Obsolescent features

	2. Terms, notation, and references
	2.1 Definitions of terms
	2.2 Notation
	2.2.1 Numeric notation
	2.2.2 Stack notation
	2.2.3 Parsed-text notation
	2.2.4 Glossary notation

	2.3 References

	3. Usage requirements
	3.1 Data types
	3.1.1 Data-type relationships
	3.1.2 Character types
	3.1.3 Single-cell types
	3.1.4 Cell-pair types
	3.1.5 System types

	3.2 The implementation environment
	3.2.1 Numbers
	3.2.2 Arithmetic
	3.2.3 Stacks
	3.2.4 Operator terminal
	3.2.5 Mass storage
	3.2.6 Environmental queries

	3.3 The Forth dictionary
	3.3.1 Name space
	3.3.2 Code space
	3.3.3 Data space

	3.4 The Forth text interpreter
	3.4.1 Parsing
	3.4.2 Finding definition names
	3.4.3 Semantics
	3.4.4 Possible actions on an ambiguous condition
	3.4.5 Compilation

	4. Documentation requirements
	4.1 System documentation
	4.1.1 Implementation-defined options
	 4.1.2 Ambiguous conditions
	 4.1.3 Other system documentation

	4.2 Program documentation
	4.2.1 Environmental dependencies
	4.2.2 Other program documentation

	5. Compliance and labeling
	5.1 ANS Forth systems
	5.1.1 System compliance
	5.1.2 System labeling

	5.2 ANS Forth programs
	5.2.1 Program compliance
	5.2.2 Program labeling

	6. Glossary
	6.1 Core words
	6.2 Core extension words

	7. The optional Block word set
	7.1 Introduction
	7.2 Additional terms
	7.3 Additional usage requirements
	7.3.1 Environmental queries
	7.3.2 Data space
	7.3.3 Block buffer regions
	 7.3.4 Parsing
	7.3.5 Possible action on an ambiguous condition

	7.4 Additional documentation requirements
	7.4.1 System documentation
	7.4.2 Program documentation

	7.5 Compliance and labeling
	7.5.1 ANS Forth systems
	7.5.2 ANS Forth programs

	7.6 Glossary
	7.6.1 Block words
	7.6.2 Block extension words

	8. The optional Double-Number word set
	8.1 Introduction
	8.2 Additional terms and notation
	8.3 Additional usage requirements
	8.3.1 Environmental queries
	8.3.2 Text interpreter input number conversion

	8.4 Additional documentation requirements
	8.4.1 System documentation
	8.4.2 Program documentation

	8.5 Compliance and labeling
	8.5.1 ANS Forth systems
	8.5.2 ANS Forth programs

	8.6 Glossary
	8.6.1 Double-Number words
	8.6.2 Double-Number extension words

	9. The optional Exception word set
	9.1 Introduction
	9.2 Additional terms and notation
	9.3 Additional usage requirements
	9.3.1 THROW values
	9.3.2 Exception frame
	9.3.3 Exception stack
	9.3.4 Environmental queries
	9.3.5 Possible actions on an ambiguous condition
	9.3.6 Exception handling

	9.4 Additional documentation requirements
	9.4.1 System documentation
	9.4.2 Program documentation

	9.5 Compliance and labeling
	9.5.1 ANS Forth systems
	9.5.2 ANS Forth programs

	9.6 Glossary
	9.6.1 Exception words
	9.6.2 Exception extension words

	10. The optional Facility word set
	10.1 Introduction
	10.2 Additional terms and notation
	10.3 Additional usage requirements
	10.3.1 Character types
	10.3.2 Environmental queries

	10.4 Additional documentation requirements
	10.4.1 System documentation
	10.4.2 Program documentation

	10.5 Compliance and labeling
	10.5.1 ANS Forth systems
	10.5.2 ANS Forth programs

	10.6 Glossary
	10.6.1 Facility words
	10.6.2 Facility extension words

	11. The optional File-Access word set
	11.1 Introduction
	11.2 Additional terms
	11.3 Additional usage requirements
	11.3.1 Data types
	11.3.2 Blocks in files
	11.3.3 Environmental queries
	11.3.4 Input source
	11.3.5 Other transient regions
	11.3.6 Parsing

	11.4 Additional documentation requirements
	11.4.1 System documentation
	11.4.2 Program documentation

	11.5 Compliance and labeling
	11.5.1 ANS Forth systems
	11.5.2 ANS Forth programs

	11.6 Glossary
	11.6.1 File Access words
	11.6.2 File-Access extension words

	12. The optional Floating-Point word set
	12.1 Introduction
	12.2 Additional terms and notation
	12.2.1 Definition of terms
	12.2.2 Notation

	12.3 Additional usage requirements
	12.3.1 Data types
	12.3.2 Floating-point operations
	12.3.3 Floating-point stack
	12.3.4 Environmental queries
	12.3.5 Address alignment
	12.3.6 Variables
	12.3.7 Text interpreter input number conversion

	12.4 Additional documentation requirements
	12.4.1 System documentation
	12.4.2 Program documentation

	12.5 Compliance and labeling
	12.5.1 ANS Forth systems
	12.5.2 ANS Forth programs

	12.6 Glossary
	12.6.1 Floating-Point words
	12.6.2 Floating-Point extension words

	13. The optional Locals word set
	13.1 Introduction
	13.2 Additional terms and notation
	13.3 Additional usage requirements
	13.3.1 Locals
	13.3.2 Environmental queries
	13.3.3 Processing locals

	13.4 Additional documentation requirements
	13.4.1 System documentation
	13.4.2 Program documentation

	13.5 Compliance and labeling
	13.5.1 ANS Forth systems
	13.5.2 ANS Forth programs

	13.6 Glossary
	13.6.1 Locals words
	13.6.2 Locals extension words

	14. The optional Memory-Allocation word set
	14.1 Introduction
	14.2 Additional terms and notation
	14.3 Additional usage requirements
	14.3.1 I/O Results data type
	14.3.2 Environmental queries
	14.3.3 Allocated regions

	14.4 Additional documentation requirements
	14.4.1 System documentation
	14.4.2 Program documentation

	14.5 Compliance and labeling
	14.5.1 ANS Forth systems
	14.5.2 ANS Forth programs

	14.6 Glossary
	14.6.1 Memory-Allocation words
	14.6.2 Memory-Allocation extension words

	15. The optional Programming-Tools word set
	15.1 Introduction
	15.2 Additional terms and notation
	15.3 Additional usage requirements
	15.3.1 Environmental queries
	15.3.2 The Forth dictionary

	15.4 Additional documentation requirements
	15.4.1 System documentation
	15.4.2 Program documentation

	15.5 Compliance and labeling
	15.5.1 ANS Forth systems
	15.5.2 ANS Forth programs

	15.6 Glossary
	15.6.1 Programming-Tools words
	15.6.2 Programming-Tools extension words

	16. The optional Search-Order word set
	16.1 Introduction
	16.2 Additional terms and notation
	16.3 Additional usage requirements
	16.3.1 Data types
	16.3.2 Environmental queries
	16.3.3 Finding definition names
	 16.3.4 Contiguous regions

	16.4 Additional documentation requirements
	16.4.1 System documentation
	16.4.2 Program documentation

	16.5 Compliance and labeling
	16.5.1 ANS Forth systems
	16.5.2 ANS Forth programs

	16.6 Glossary
	16.6.1 Search-Order words
	16.6.2 Search-Order extension words

	17. The optional String word set
	17.1 Introduction
	17.2 Additional terms and notation
	17.3 Additional usage requirements
	17.4 Additional documentation requirements
	17.5 Compliance and labeling
	17.5.1 ANS Forth systems
	17.5.2 ANS Forth programs

	17.6 Glossary
	17.6.1 String words
	17.6.2 String extension words

	A. Rationale (informative annex)
	A.1 Introduction
	A.1.1 Purpose
	A.1.2 Scope
	A.1.3 Document organization

	A.2 Terms and notation
	A.2.1 Definitions of terms
	A.2.2 Notation

	A.3 Usage requirements
	A.3.1 Data-types
	A.3.2 The Implementation environment
	A.3.3 The Forth dictionary
	A.3.4 The Forth text interpreter

	A.4 Documentation requirements
	A.4.1 System documentation
	A.4.2 Program documentation

	A.5 Compliance and labeling
	A.5.1 ANS Forth systems
	A.5.2 ANS Forth programs

	A.6 Glossary
	A.6.1 Core words
	A.6.2 Core extension words

	A.7 The optional Block word set
	A.7.2 Additional terms
	A.7.6 Glossary

	A.8 The optional Double-Number word set
	A.8.6 Glossary

	A.9 The optional Exception word set
	A.9.3 Additional usage requirements
	A.9.3.6 Exception handling
	A.9.6 Glossary

	A.10 The optional Facility word set
	A.10.6 Glossary

	A.11 The optional File-Access word set
	A.11.3 Additional usage requirements
	A.11.6 Glossary

	A.12 The optional Floating-Point word set
	A.12.3 Additional usage requirements
	A.12.6 Glossary

	A.13 The optional Locals word set
	A.13.3 Additional usage requirements
	A.13.6 Glossary

	A.14 The optional Memory-Allocation word set
	A.15 The optional Programming-Tools word set
	A.15.6 Glossary

	A.16 The optional Search-Order word set
	A.16.2 Additional terms
	A.16.6 Glossary

	A.17 The optional String word set
	A.17.6 Glossary

	B. Bibliography (informative annex)
	C. Perspective (informative annex)
	C.1 Features of Forth
	 C.2 History of Forth
	C.3 Hardware implementations of Forth
	C.4 Standardization efforts
	C.5 Programming in Forth
	C.5.1 The Forth dictionary
	C.5.2 Push-down stacks
	C.5.3 Interpreters
	C.5.4 Assembler
	C.5.5 Virtual memory
	C.5.6 Programming environment
	C.5.7 Advanced programming features
	C.5.8 A programming example

	C.6 Multiprogrammed systems
	C.7 Design and management considerations
	C.8 Conclusion

	D. Compatibility analysis of ANS Forth (informative annex)
	D.1 FIG Forth (circa 1978)
	D.2 Forth 79
	D.3 Forth 83
	D.4 Recent developments
	D.5 ANS Forth approach
	D.6 Differences from Forth 83
	D.6.1 Stack width
	D.6.2 Number representation
	D.6.3 Address units
	D.6.4 Address increment for a cell is no longer two
	D.6.5 Address alignment
	D.6.6 Division/modulus rounding direction
	D.6.7 Immediacy
	D.6.8 Input character set
	D.6.9 Shifting with UM/MOD
	D.6.10 Vocabularies / wordlists
	D.6.11 Multiprogramming impact
	D.6.12 Words not provided in executable form

	E. ANS Forth portability guide (informative annex)
	E.1 Introduction
	E.2 Hardware peculiarities
	E.2.1 Data/memory abstraction
	E.2.2 Definitions
	E.2.3 Addressing memory
	E.2.4 Alignment problems

	E.3 Number representation
	E.3.1 Big endian vs. little endian
	E.3.2 ALU organization

	E.4 Forth system implementation
	E.4.1 Definitions
	E.4.2 Stacks

	E.5 ROMed application disciplines and conventions
	E.6 Summary

	F. Alphabetic list of words (informative annex)

