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Foreword (This foreword is not a part of American National Standard X3.215-1994) 

 Forth is a language for direct communication between human beings and machines.  
Using natural-language diction and machine-oriented syntax, Forth provides an 
economical, productive environment for interactive compilation and execution of 
programs.  Forth also provides low-level access to computer-controlled hardware, and 
the ability to extend the language itself.  This extensibility allows the language to be 
quickly expanded and adapted to special needs and different hardware systems. 

Forth was invented by Mr. Charles Moore to increase programmer productivity without 
sacrificing machine efficiency.  Forth is a layered environment containing the elements 
of a computer language as well as those of an operating system and a machine monitor.  
This extensible, layered environment provides for highly interactive program 
development and testing. 

In the interests of transportability of application software written in Forth, 
standardization efforts began in the mid-1970s by an international group of users and 
implementors who adopted the name “Forth Standards Team”.  This effort resulted in 
the Forth-77 Standard.  As the language continued to evolve, an interim Forth-78 
Standard was published by the Forth Standards Team.  Following Forth Standards 
Team meetings in 1979, the Forth-79 Standard was published in 1980. Major changes 
were made by the Forth Standards Team in the Forth-83 Standard, which was 
published in 1983. 

The first meeting of the Technical Committee on Forth Programming Systems was 
convened by the Organizing Committee of the X3J14 Forth Technical Committee on 
August 3, 1987, and has met subsequently on November 11-12, 1987, February 10-12, 
1988, May 25-28, 1988, August 10-13, 1988, October 26-29, 1988, January 25-28, 
1989, May 3-6, 1989, July 26-29, 1989, October 25-28, 1989, January 24-27, 1990, 
May 22-26, 1990, August 21-25, 1990, November 6-10,1990, January 29-February 2, 
1991, May 3-4, 1991, June 16-19, 1991, July 30-August 3, 1991, March 17-21, 1992, 
October 13-17, 1992, January 26-30, 1993, June 28-30, 1993, and June 21, 1994. 

This project has operated under joint sponsorship of IEEE as IEEE Project P1141.  The 
TC gratefully acknowledges the support of IEEE in this effort and the participation of 
the IEEE members who contributed to our work as sponsored members and observers. 

 

Requests for interpretation, suggestions for improvement or addenda, or defect reports 
are welcome.  They should be sent to the X3 Secretariat, Computer and Business 
Equipment Manufacturers Association, 1250 Eye Street, NW, Suite 200, Washington, 
DC 20005. 
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AMERICAN NATIONAL STANDARD ANSI X3.215-1994 

American National Standard 
for Information Systems — 

Programming Language — 
Forth 

1.   Introduction   

1.1   Purpose   
The purpose of this Standard is to promote the portability of Forth programs for use on a wide variety of 
computing systems, to facilitate the communication of programs, programming techniques, and ideas 
among Forth programmers, and to serve as a basis for the future evolution of the Forth language.  

1.2   Scope   
This Standard specifies an interface between a Forth System and a Forth Program by defining the words 
provided by a Standard System. 

1.2.1   Inclusions   
This Standard specifies: 

– the forms that a program written in the Forth language may take; 
– the rules for interpreting the meaning of a program and its data. 

1.2.2   Exclusions   
This Standard does not specify: 

– the mechanism by which programs are transformed for use on computing systems; 
– the operations required for setup and control of the use of programs on computing systems; 
– the method of transcription of programs or their input or output data to or from a storage medium; 
– the program and Forth system behavior when the rules of this Standard fail to establish an 

interpretation; 
– the size or complexity of a program and its data that will exceed the capacity of any specific computing 

system or the capability of a particular Forth system; 
– the physical properties of input/output records, files, and units; 
– the physical properties and implementation of storage. 
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1.3   Document organization   

1.3.1   Word sets   
This Standard groups Forth words and capabilities into word sets under a name indicating some shared 
aspect, typically their common functional area. Each word set may have an extension, containing words 
that offer additional functionality.  These words are not required in an implementation of the word set. 

The “Core” word set, defined in sections 1 through 6, contains the required words and capabilities of a 
Standard System.  The other word sets, defined in sections 7 through 17, are optional, making it possible to 
provide Standard Systems with tailored levels of functionality. 

1.3.1.1   Text sections   

Within each word set, section 1 contains introductory and explanatory material and section 2 introduces 
terms and notation used throughout the Standard.  There are no requirements in these sections. 

Sections 3 and 4 contain the usage and documentation requirements, respectively, for Standard Systems 
and Programs, while section 5 specifies their labeling. 

1.3.1.2   Glossary sections   

Section 6 of each word set specifies the required behavior of the definitions in the word set and the 
extensions word set. 

1.3.2   Annexes   
The annexes do not contain any required material. 

Annex A provides some of the rationale behind the committee’s decisions in creating this Standard, as well 
as implementation examples.  It has the same section numbering as the body of the Standard to make it 
easy to relate each requirements section to its rationale section.   

Annex B is a short bibliography on Forth. 

Annex C provides an introduction to Forth. 

Annex D discusses the compatibility of ANS Forth with earlier Forths, emphasizing the differences from 
Forth 83.  

Annex E presents some techniques for writing portable programs in ANS Forth. 

Annex F includes the words from all word sets in a single list, and serves as an index of ANS Forth words. 

1.4   Future directions   

1.4.1   New technology   
This Standard adopts certain words and practices that are increasingly found in common practice.  New 
words have also been adopted to ease creation of portable programs. 

1.4.2   Obsolescent features   
This Standard adopts certain words and practices that cause some previously used words to become 
obsolescent.  Although retained here because of their widespread use, their use in new implementations or 
new programs is discouraged, because they may be withdrawn from future revisions of the Standard. 

This Standard designates the following words as obsolescent: 

 6.2.0060 #TIB 15.6.2.1580 FORGET 6.2.2240 SPAN 
 6.2.0970 CONVERT 6.2.2040 QUERY 6.2.2290 TIB 
 6.2.1390 EXPECT 

2 
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2.   Terms, notation, and references   

The phrase “See:” is used throughout this Standard to direct the reader to other sections of the Standard that 
have a direct bearing on the current section. 

In this Standard, “shall” states a requirement on a system or program; conversely, “shall not” is a 
prohibition; “need not” means “is not required to”; “should” describes a recommendation of the Standard; 
and “may”, depending on context, means “is allowed to” or “might happen”. 

Throughout the Standard, typefaces are used in the following manner: 

– This proportional serif typeface is used for text, with italic used for symbols and the first appearance of 
new terms; 

– A bold proportional sans-serif typeface is used for headings; 
– A bold monospaced serif typeface is used for Forth-language text. 

2.1   Definitions of terms   
Terms defined in this section are used generally throughout this Standard.  Additional terms specific to 
individual word sets are defined in those word sets.  Other terms are defined at their first appearance, 
indicated by italic type.  Terms not defined in this Standard are to be construed according to the Dictionary 
for Information Systems, ANSI X3.172-1990. 

address unit:  Depending on context, either 1) the units into which a Forth address space is divided for the 
purposes of locating data objects such as characters and variables; 2) the physical memory storage elements 
corresponding to those units; 3) the contents of such a memory storage element; or 4) the units in which the 
length of a region of memory is expressed. 

aligned address:  The address of a memory location at which a character, cell, cell pair, or double-cell 
integer can be accessed. 

ambiguous condition:  A circumstance for which this Standard does not prescribe a specific behavior for 
Forth systems and programs.   

Ambiguous conditions include such things as the absence of a needed delimiter while parsing, attempted 
access to a nonexistent file, or attempted use of a nonexistent word.  An ambiguous condition also exists 
when a Standard word is passed values that are improper or out of range. 

cell:  The primary unit of information in the architecture of a Forth system. 

cell pair:  Two cells that are treated as a single unit. 

character:  Depending on context, either 1) a storage unit capable of holding a character; or 2) a member 
of a character set. 

character-aligned address:  The address of a memory location at which a character can be accessed. 

character string:  Data space that is associated with a sequence of consecutive character-aligned 
addresses.  Character strings usually contain text.  Unless otherwise indicated, the term “string” means 
“character string”. 

code space:  The logical area of the dictionary in which word semantics are implemented. 

compile:  To transform source code into dictionary definitions. 

compilation semantics:  The behavior of a Forth definition when its name is encountered by the text 
interpreter in compilation state. 

counted string:  A data structure consisting of one character containing a length followed by zero or more 
contiguous data characters.  Normally, counted strings contain text. 

  3 
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cross compiler:  A system that compiles a program for later execution in an environment that may be 
physically and logically different from the compiling environment.  In a cross compiler, the term “host” 
applies to the compiling environment, and the term “target” applies to the run-time environment. 

current definition:  The definition whose compilation has been started but not yet ended. 

data field:  The data space associated with a word defined via CREATE. 

data space:  The logical area of the dictionary that can be accessed. 

data-space pointer:  The address of the next available data space location, i.e., the value returned by 
HERE. 

data stack:  A stack that may be used for passing parameters between definitions.  When there is no 
possibility of confusion, the data stack is referred to as “the stack”.  Contrast with return stack. 

data type:  Tn identifier for the set of values that a data object may have.  

defining word:  A Forth word that creates a new definition when executed. 

definition:  A Forth execution procedure compiled into the dictionary. 

dictionary:  An extensible structure that contains definitions and associated data space. 

display:  To send one or more characters to the user output device. 

environmental dependencies:  A program’s implicit assumptions about a Forth system’s implementation 
options or underlying hardware.  For example, a program that assumes a cell size greater than 16 bits is 
said to have an environmental dependency. 

execution semantics:  The behavior of a Forth definition when it is executed. 

execution token:  A value that identifies the execution semantics of a definition. 

find:  To search the dictionary for a definition name matching a given string.   

immediate word:  A Forth word whose compilation semantics are to perform its execution semantics. 

implementation defined:  Denotes system behaviors or features that must be provided and documented by 
a system but whose further details are not prescribed by this Standard. 

implementation dependent:  Denotes system behaviors or features that must be provided by a system but 
whose further details are not prescribed by this Standard. 

input buffer:  A region of memory containing the sequence of characters from the input source that is 
currently accessible to a program. 

input source:  The device, file, block, or other entity that supplies characters to refill the input buffer. 

input source specification:  A set of information describing a particular state of the input source, input 
buffer, and parse area. This information is sufficient, when saved and restored properly, to enable the 
nesting of parsing operations on the same or different input sources. 

interpretation semantics:  The behavior of a Forth definition when its name is encountered by the text 
interpreter in interpretation state. 

keyboard event:  A value received by the system denoting a user action at the user input device.  The term 
“keyboard” in this document does not exclude other types of user input devices. 

line:  A sequence of characters followed by an actual or implied line terminator. 

name space:  The logical area of the dictionary in which definition names are stored. 

number:  In this Standard, “number” used without other qualification means “integer”.  Similarly, “double 
number” means “double-cell integer”. 

4 
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parse:  To select and exclude a character string from the parse area using a specified set of delimiting 
characters, called delimiters. 

parse area:  The portion of the input buffer that has not yet been parsed, and is thus available to the system 
for subsequent processing by the text interpreter and other parsing operations. 

pictured-numeric output:  A number display format in which the number is converted using Forth words 
that resemble a symbolic “picture” of the desired output. 

program:  A complete specification of execution to achieve a specific function (application task) 
expressed in Forth source code form. 

receive:  To obtain characters from the user input device. 

return stack:  A stack that may be used for program execution nesting, do-loop execution, temporary 
storage, and other purposes. 

standard word:  A named Forth procedure, formally specified in this Standard. 

user input device:  The input device currently selected as the source of received data, typically a keyboard. 

user output device:  The output device currently selected as the destination of display data. 

variable:  A named region of data space located and accessed by its memory address. 

word:  Depending on context, either 1) the name of a Forth definition; or 2) a parsed sequence of non-
space characters, which could be the name of a Forth definition. 

word list:  A list of associated Forth definition names that may be examined during a dictionary search. 

word set:  A set of Forth definitions grouped together in this Standard under a name indicating some 
shared aspect, typically their common functional area. 

2.2   Notation   

2.2.1   Numeric notation   
Unless otherwise stated, all references to numbers apply to signed single-cell integers.  The inclusive range 
of values is shown as {from...to}.  The allowable range for the contents of an address is shown in double 
braces, particularly for the contents of variables, e.g., BASE {{2...36}}. 

2.2.2   Stack notation   
Stack parameters input to and output from a definition are described using the notation: 

( stack-id  before -- after ) 
where stack-id specifies which stack is being described, before represents the stack-parameter data types 
before execution of the definition and after represents them after execution.  The symbols used in before 
and after are shown in table 3.1. 

The control-flow-stack stack-id is “C:”, the data-stack stack-id is “S:”, and the return-stack stack-id is “R:”.  
When there is no confusion, the data-stack stack-id may be omitted. 

When there are alternate after representations, they are described by “after1 | after2”.  The top of the stack 
is to the right.  Only those stack items required for or provided by execution of the definition are shown. 

2.2.3    Parsed-text notation   
If, in addition to using stack parameters, a definition parses text, that text is specified by an abbreviation 
from table 2.1, shown surrounded by double-quotes and placed between the before parameters and the “--” 
separator in the first stack described, e.g., 

( S: before “parsed-text-abbreviation” -- after ). 

  5 



ANSI X3.215-1994 

Table 2.1 – Parsed text abbreviations   
Abbreviation Description 
<char> the delimiting character marking the end of the string being 

parsed 
<chars> zero or more consecutive occurrences of the character char 
<space> a delimiting space character 
<spaces> zero or more consecutive occurrences of the character space 
<quote> a delimiting double quote 
<paren> a delimiting right parenthesis 
<eol> an implied delimiter marking the end of a line 
ccc a parsed sequence of arbitrary characters, excluding the 

delimiter character 
name a token delimited by space, equivalent to ccc<space> or 

ccc<eol> 
 

2.2.4   Glossary notation   
The glossary entries for each word set are listed in the standard ASCII collating sequence.  Each glossary 
entry specifies an ANS Forth word and consists of two parts: an index line and the semantic description of 
the definition. 

2.2.4.1   Glossary index line   

The index line is a single-line entry containing, from left to right: 

– Section number, the last four digits of which assign a unique sequential number to all words included 
in this Standard; 

– DEFINITION-NAME in upper-case, mono-spaced, bold-face letters; 
– Natural-language pronunciation in quotes if it differs from English; 
– Word-set designator from table 2.2.  The designation for extensions word sets includes “EXT”. 

Table 2.2 – Word set designators   
Word set Designator 
Core word set CORE 
Block word set BLOCK 
Double-Number word set DOUBLE 
Exception word set EXCEPTION 
Facility word set FACILITY 
File-Access word set FILE 
Floating-Point word set FLOATING 
Locals word set LOCALS 
Memory-Allocation word set MEMORY 
Programming-Tools word set TOOLS 
Search-Order word set SEARCH 
String-Handling word set STRING 

 

2.2.4.2   Glossary semantic description   

The first paragraph of the semantic description contains a stack notation for each stack affected by 
execution of the word.  The remaining paragraphs contain a text description of the semantics.  See 3.4.3 
Semantics. 
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2.3   References   
The following national and international standards are referenced in this Standard: 

– ANSI X3.172-1990 Dictionary for Information Systems, (2.1 Definition of terms); 
– ANSI X3.4-1974 American Standard Code for Information Interchange (ASCII), (3.1.2.1 Graphic 

characters); 
– ISO 646-1983 ISO 7-bit coded characterset for information interchange, International Reference 

Version (IRV) 3.1.2.1 Graphic characters)1; 
– ANSI/IEEE 754-1985 Floating-point Standard, (12.2.1 Definition of terms). 

                                                           
1Available from the American National Standards Institute, 11 West 42nd Street, New York, NY  10036. 
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3.   Usage requirements   

A system shall provide all of the words defined in 6.1 Core Words.  It may also provide any words defined 
in the optional word sets and extensions word sets.  No standard word provided by a system shall alter the 
system state in a way that changes the effect of execution of any other standard word except as provided in 
this Standard.  A system may contain non-standard extensions, provided that they are consistent with the 
requirements of this Standard. 

The implementation of a system may use words and techniques outside the scope of this Standard. 

A system need not provide all words in executable form.  The implementation may provide definitions, 
including definitions of words in the Core word set, in source form only.  If so, the mechanism for adding 
the definitions to the dictionary is implementation defined. 

A program that requires a system to provide words or techniques not defined in this Standard has an 
environmental dependency. 

3.1   Data types   
A data type identifies the set of permissible values for a data object.  It is not a property of a particular 
storage location or position on a stack.  Moving a data object shall not affect its type. 

No data-type checking is required of a system.  An ambiguous condition exists if an incorrectly typed data 
object is encountered. 

Table 3.1 summarizes the data types used throughout this Standard.  Multiple instances of the same type in 
the description of a definition are suffixed with a sequence digit subscript to distinguish them. 

3.1.1   Data-type relationships   
Some of the data types are subtypes of other data types.  A data type i is a subtype of type j if and only if 
the members of i are a subset of the members of j.  The following list represents the subtype relationships 
using the phrase “i => j” to denote “i is a subtype of j”.  The subtype relationship is transitive; if i => j and j 
=> k then i => k: 

+n => u => x; 
+n => n => x; 
char => +n; 
a-addr => c-addr => addr => u; 
flag => x; 
xt => x; 
+d => d => xd; 
+d => ud => xd. 

Any Forth definition that accepts an argument of type i shall also accept an argument that is a subtype of i. 

3.1.2   Character types   
Characters shall be at least one address unit wide, contain at least eight bits, and have a size less than or 
equal to cell size. 

The characters provided by a system shall include the graphic characters {32..126}, which represent 
graphic forms as shown in table 3.2. 

3.1.2.1   Graphic characters   

A graphic character is one that is normally displayed (e.g., A, #, &, 6).  These values and graphics, shown 
in table 3.2, are taken directly from ANS X3.4-1974 (ASCII) and ISO 646-1983, International Reference 
Version (IRV).  The graphic forms of characters outside the hex range {20..7E} are implementation-
defined.  Programs that use the graphic hex 24 (the currency sign) have an environmental dependency. 
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The graphic representation of characters is not restricted to particular type fonts or styles.  The graphics 
here are examples. 

3.1.2.2   Control characters   

All non-graphic characters included in the implementation-defined character set are defined in this 
Standard as control characters.  In particular, the characters {0..31}, which could be included in the 
implementation-defined character set, are control characters. 

Programs that require the ability to send or receive control characters have an environmental dependency. 

 

Table 3.1 – Data types   
Symbol Data type Size on stack 
flag flag 1 cell 
true true flag 1 cell 
false false flag 1 cell 
char character 1 cell 
n signed number 1 cell 
+n non-negative number 1 cell 
u unsigned number 1 cell 
n|u 1 number 1 cell 
x unspecified cell 1 cell 
xt execution token 1 cell 
addr address 1 cell 
a-addr aligned address 1 cell 
c-addr character-aligned address 1 cell 
d double-cell signed number 2 cells 
+d double-cell non-negative number 2 cells 
ud double-cell unsigned number 2 cells 
d|ud 2 double-cell number 2 cells 
xd unspecified cell pair 2 cells 
colon-sys definition compilation implementation dependent 
do-sys do-loop structures implementation dependent 
case-sys CASE structures implementation dependent 
of-sys OF structures implementation dependent 
orig control-flow origins implementation dependent 
dest control-flow destinations implementation dependent 
loop-sys loop-control parameters implementation dependent 
nest-sys definition calls implementation dependent 
i*x, j*x, k*x 3 any data type 0 or more cells 
1 May be either a signed number or an unsigned number depending on 

context. 
2 May be either a double-cell signed number or a double-cell unsigned 

number depending on context. 
3 May be an undetermined number of stack entries of unspecified type.  For 

examples of use, see 6.1.1370 EXECUTE, 6.1.2050 QUIT. 
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Table 3.2 – Standard graphic characters   
Hex IRV
ASCII 
 20   
 21 ! ! 
 22 " " 
 23 # # 
 24 € $ 
 25 % % 
 26 & & 
 27 ' ' 
 28 ( ( 
 29 ) ) 
 2A * * 
 2B + + 
 2C , , 
 2D - - 
 2E . . 
 2F / / 

Hex IRV
ASCII 
 30 0 0 
 31 1 1 
 32 2 2 
 33 3 3 
 34 4 4 
 35 5 5 
 36 6 6 
 37 7 7 
 38 8 8 
 39 9 9 
 3A : : 
 3B ; ; 
 3C < < 
 3D = = 
 3E > > 
 3F ? ? 

Hex IRV
ASCII 
 40 @ @ 
 41 A A 
 42 B B 
 43 C C 
 44 D D 
 45 E E 
 46 F F 
 47 G G 
 48 H H 
 49 I I 
 4A J J 
 4B K K 
 4C L L 
 4D M M 
 4E N N 
 4F O O 

Hex IRV
ASCII 
 50 P P 
 51 Q Q 
 52 R R 
 53 S S 
 54 T T 
 55 U U 
 56 V V 
 57 W W 
 58 X X 
 59 Y Y 
 5A Z Z 
 5B [ [ 
 5C \ \ 
 5D ] ] 
 5E ^ ^ 
 5F _ _ 

Hex IRV
ASCII 
 60 ` ` 
 61 a a 
 62 b b 
 63 c c 
 64 d d 
 65 e e 
 66 f f 
 67 g g 
 68 h h 

Hex IRV
ASCII 
 70 p p 
 71 q q 
 72 r r 
 73 s s 
 74 t t 
 75 u u 
 76 v v 
 77 w w 

 69 i i 
 78 x x 

 6A j j 
 79 y y 

 6B k k 
 7A z z 

 6C l l 
 7B { { 

 6D m m 
 7C | | 

 6E n n 
 7D } } 

 6F o o 
 7E ~ ~ 
 

 

3.1.3   Single-cell types   
The implementation-defined fixed size of a cell is specified in address units and the corresponding number 
of bits.  See E.2 Hardware peculiarities. 

Cells shall be at least one address unit wide and contain at least sixteen bits.  The size of a cell shall be an 
integral multiple of the size of a character.  Data-stack elements, return-stack elements, addresses, 
execution tokens, flags, and integers are one cell wide. 

3.1.3.1   Flags   
Flags may have one of two logical states, true or false.  Programs that use flags as arithmetic operands have 
an environmental dependency. 

A true flag returned by a standard word shall be a single-cell value with all bits set.  A false flag returned 
by a standard word shall be a single-cell value with all bits clear. 

3.1.3.2   Integers   
The implementation-defined range of signed integers shall include {-32767..+32767}. 

The implementation-defined range of non-negative integers shall include {0..32767}. 

The implementation-defined range of unsigned integers shall include {0..65535}. 

3.1.3.3   Addresses   
An address identifies a location in data space with a size of one address unit, which a program may fetch 
from or store into except for the restrictions established in this Standard.  The size of an address unit is 
specified in bits.  Each distinct address value identifies exactly one such storage element.  See 3.3.3 Data 
space. 

The set of character-aligned addresses, addresses at which a character can be accessed, is an 
implementation-defined subset of all addresses.  Adding the size of a character to a character-aligned 
address shall produce another character-aligned address. 

The set of aligned addresses is an implementation-defined subset of character-aligned addresses.  Adding 
the size of a cell to an aligned address shall produce another aligned address. 

3.1.3.4   Counted strings   
A counted string in memory is identified by the address (c-addr) of its length character. 
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The length character of a counted string shall contain a binary representation of the number of data 
characters, between zero and the implementation-defined maximum length for a counted string.  The 
maximum length of a counted string shall be at least 255. 

3.1.3.5   Execution tokens   
Different definitions may have the same execution token if the definitions are equivalent. 

3.1.4   Cell-pair types   
A cell pair in memory consists of a sequence of two contiguous cells.  The cell at the lower address is the 
first cell, and its address is used to identify the cell pair.  Unless otherwise specified, a cell pair on a stack 
consists of the first cell immediately above the second cell. 

3.1.4.1   Double-cell integers   
On the stack, the cell containing the most significant part of a double-cell integer shall be above the cell 
containing the least significant part. 

The implementation-defined range of double-cell signed integers shall include 
{-2147483647..+2147483647}. 

The implementation-defined range of double-cell non-negative integers shall include {0..2147483647}. 

The implementation-defined range of double-cell unsigned integers shall include {0..4294967295}.  
Placing the single-cell integer zero on the stack above a single-cell unsigned integer produces a double-cell 
unsigned integer with the same value.  See 3.2.1.1  Internal number representation. 

3.1.4.2   Character strings   
A string is specified by a cell pair (c-addr u) representing its starting address and length in characters. 

3.1.5   System types   
The system data types specify permitted word combinations during compilation and execution. 

3.1.5.1   System-compilation types   

These data types denote zero or more items on the control-flow stack (see 3.2.3.2).  The possible presence 
of such items on the data stack means that any items already there shall be unavailable to a program until 
the control-flow-stack items are consumed. 

The implementation-dependent data generated upon beginning to compile a definition and consumed at its 
close is represented by the symbol colon-sys throughout this Standard. 

The implementation-dependent data generated upon beginning to compile a do-loop structure such as 
DO ... LOOP and consumed at its close is represented by the symbol do-sys throughout this Standard. 

The implementation-dependent data generated upon beginning to compile a CASE ... ENDCASE 
structure and consumed at its close is represented by the symbol case-sys throughout this Standard. 

The implementation-dependent data generated upon beginning to compile an OF ... ENDOF structure 
and consumed at its close is represented by the symbol of-sys throughout this Standard. 

The implementation-dependent data generated and consumed by executing the other standard control-flow 
words is represented by the symbols orig and dest throughout this Standard. 

3.1.5.2   System-execution types   
These data types denote zero or more items on the return stack.  Their possible presence means that any 
items already on the return stack shall be unavailable to a program until the system-execution items are 
consumed. 

The implementation-dependent data generated upon beginning to execute a definition and consumed upon 
exiting it is represented by the symbol nest-sys throughout this Standard. 
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The implementation-dependent loop-control parameters used to control the execution of do-loops are 
represented by the symbol loop-sys throughout this Standard.  Loop-control parameters shall be available 
inside the do-loop for words that use or change these parameters, words such as I, J, LEAVE and 
UNLOOP. 

3.2   The implementation environment   

3.2.1   Numbers   

3.2.1.1   Internal number representation   

This Standard allows one’s complement, two’s complement, or sign-magnitude number representations and 
arithmetic.  Arithmetic zero is represented as the value of a single cell with all bits clear. 

The representation of a number as a compiled literal or in memory is implementation dependent. 

3.2.1.2   Digit conversion   

Numbers shall be represented externally by using characters from the standard character set. 

Conversion between the internal and external forms of a digit shall behave as follows: 

The value in BASE is the radix for number conversion.   A digit has a value ranging from zero to one less 
than the contents of BASE.  The digit with the value zero corresponds to the character “0”.  This 
representation of digits proceeds through the character set to the decimal value nine corresponding to the 
character “9”.  For digits beginning with the decimal value ten the graphic characters beginning with the 
character “A” are used.  This correspondence continues up to and including the digit with the decimal value 
thirty-five which is represented by the character “Z”.  The conversion of digits outside this range is 
implementation defined. 

3.2.1.3   Free-field number display   

Free-field number display uses the characters described in digit conversion, without leading zeros, in a field 
the exact size of the converted string plus a trailing space.  If a number is zero, the least significant digit is 
not considered a leading zero.  If the number is negative, a leading minus sign is displayed. 

Number display may use the pictured numeric output string buffer to hold partially converted strings (see 
3.3.3.6  Other transient regions). 

3.2.2   Arithmetic   

3.2.2.1   Integer division   

Division produces a quotient q and a remainder r by dividing operand a by operand b.  Division operations 
return q, r, or both.  The identity b*q + r = a shall hold for all a and b. 

When unsigned integers are divided and the remainder is not zero, q is the largest integer less than the true 
quotient. 

When signed integers are divided, the remainder is not zero, and a and b have the same sign, q is the largest 
integer less than the true quotient.  If only one operand is negative, whether q is rounded toward negative 
infinity (floored division) or rounded towards zero (symmetric division) is implementation defined. 

Floored division is integer division in which the remainder carries the sign of the divisor or is zero, and the 
quotient is rounded to its arithmetic floor.  Symmetric division is integer division in which the remainder 
carries the sign of the dividend or is zero and the quotient is the mathematical quotient “rounded towards 
zero” or “truncated”.  Examples of each are shown in tables 3.3 and 3.4. 
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In cases where the operands differ in sign and the rounding direction matters, a program shall either include 
code generating the desired form of division, not relying on the implementation-defined default result, or 
have an environmental dependency on the desired rounding direction. 

Table 3.3 – Floored Division Example   Table 3.4 – Symmetric Division Example 

3.2.2.2   Other integer operations   

In all integer arithmetic operations, both overflow and underflow shall be ignored.  The value returned 
when either overflow or underflow occurs is implementation defined. 

3.2.3   Stacks   

3.2.3.1   Data stack   

Objects on the data stack shall be one cell wide. 

3.2.3.2   Control-flow stack   

The control-flow stack is a last-in, first out list whose elements define the permissible matchings of control-
flow words and the restrictions imposed on data-stack usage during the compilation of control structures. 

The elements of the control-flow stack are system-compilation data types. 

The control-flow stack may, but need not, physically exist in an implementation.  If it does exist, it may be, 
but need not be, implemented using the data stack.  The format of the control-flow stack is implementation 
defined.  Since the control-flow stack may be implemented using the data stack, items placed on the data 
stack are unavailable to a program after items are placed on the control-flow stack and remain unavailable 
until the control-flow stack items are removed. 

3.2.3.3   Return stack   

Items on the return stack shall consist of one or more cells.  A system may use the return stack in an 
implementation-dependent manner during the compilation of definitions, during the execution of do-loops, 
and for storing run-time nesting information. 

A program may use the return stack for temporary storage during the execution of a definition subject to 
the following restrictions: 

– A program shall not access values on the return stack (using R@, R>, 2R@ or 2R>) that it did not place 
there using >R or 2>R; 

– A program shall not access from within a do-loop values placed on the return stack before the loop was 
entered; 

– All values placed on the return stack within a do-loop shall be removed before I, J, LOOP, +LOOP, 
UNLOOP, or LEAVE is executed; 

– All values placed on the return stack within a definition shall be removed before the definition is 
terminated or before EXIT is executed. 

3.2.4   Operator terminal   
See 1.2.2 Exclusions. 

 Dividend Divisor Remainder Quotient  Dividend Divisor Remainder Quotient 
 10 7 3 1  10 7 3 1 
 -10 7 4 -2  -10 7 -3 -1 
 10 -7 -4 -2  10 -7 3 -1 
 -10 -7 -3 1  -10 -7 -3 1 
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3.2.4.1   User input device   

The method of selecting the user input device is implementation defined. 

The method of indicating the end of an input line of text is implementation defined. 

3.2.4.2   User output device   

The method of selecting the user output device is implementation defined. 

3.2.5   Mass storage   
A system need not provide any standard words for accessing mass storage.  If a system provides any 
standard word for accessing mass storage, it shall also implement the Block word set. 

3.2.6   Environmental queries   
The name spaces for ENVIRONMENT? and definitions are disjoint.  Names of definitions that are the same 
as ENVIRONMENT? strings shall not impair the operation of ENVIRONMENT?.  Table 3.5 contains the 
valid input strings and corresponding returned value for inquiring about the programming environment 
with ENVIRONMENT?. 

Table 3.5 – Environmental Query Strings   

String Value data type Constant? Meaning 
/COUNTED-STRING n yes maximum size of a counted string, in 

characters 
/HOLD n yes size of the pictured numeric output string 

buffer, in characters 
/PAD n yes size of the scratch area pointed to by PAD, 

in characters 
ADDRESS-UNIT-BITS n yes size of one address unit, in bits 
CORE flag no true if complete core word set present 

(i.e., not a subset as defined in 5.1.1) 
CORE-EXT flag no true if core extensions word set present 
FLOORED flag yes true if floored division is the default 
MAX-CHAR u yes maximum value of any character in the 

implementation-defined character set 
MAX-D d yes largest usable signed double number 
MAX-N n yes largest usable signed integer 
MAX-U u yes largest usable unsigned integer 
MAX-UD ud yes largest usable unsigned double number 
RETURN-STACK-CELLS n yes maximum size of the return stack, in cells 
STACK-CELLS n yes maximum size of the data stack, in cells 

 
If an environmental query (using ENVIRONMENT?) returns false (i.e., unknown) in response to a string, 
subsequent queries using the same string may return true.  If a query returns true (i.e., known) in response 
to a string, subsequent queries with the same string shall also return true.  If a query designated as constant 
in the above table returns true and a value in response to a string, subsequent queries with the same string 
shall return true and the same value. 

3.3   The Forth dictionary   
Forth words are organized into a structure called the dictionary.  While the form of this structure is not 
specified by the Standard, it can be described as consisting of three logical parts:  a name space, a code 
space, and a data space.  The logical separation of these parts does not require their physical separation. 
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A program shall not fetch from or store into locations outside data space.  An ambiguous condition exists if 
a program addresses name space or code space. 

3.3.1   Name space   
The relationship between name space and data space is implementation dependent. 

3.3.1.1   Word lists   

The structure of a word list is implementation dependent.  When duplicate names exist in a word list, the 
latest-defined duplicate shall be the one found during a search for the name. 

3.3.1.2   Definition names   

Definition names shall contain {1..31} characters.  A system may allow or prohibit the creation of 
definition names containing non-standard characters. 

Programs that use lower case for standard definition names or depend on the case-sensitivity properties of a 
system have an environmental dependency.   

A program shall not create definition names containing non-graphic characters.   

3.3.2   Code space   
The relationship between code space and data space is implementation dependent. 

3.3.3   Data space   
Data space is the only logical area of the dictionary for which standard words are provided to allocate and 
access regions of memory.  These regions are: contiguous regions, variables, text-literal regions, input 
buffers, and other transient regions, each of which is described in the following sections.  A program may 
read from or write into these regions unless otherwise specified. 

3.3.3.1   Address alignment   

Most addresses used in ANS Forth are aligned addresses (indicated by a-addr) or character-aligned 
(indicated by c-addr).  ALIGNED, CHAR+, and arithmetic operations can alter the alignment state of an 
address on the stack.  CHAR+ applied to an aligned address returns a character-aligned address that can 
only be used to access characters.  Applying CHAR+ to a character-aligned address produces the 
succeeding character-aligned address.  Adding or subtracting an arbitrary number to an address can 
produce an unaligned address that shall not be used to fetch or store anything.  The only way to find the 
next aligned address is with ALIGNED.  An ambiguous condition exists when @, !, , (comma), +!, 2@, or 
2! is used with an address that is not aligned, or when C@, C!, or C, is used with an address that is not 
character-aligned. 

The definitions of 6.1.1000 CREATE and 6.1.2410 VARIABLE require that the definitions created by them 
return aligned addresses. 

After definitions are compiled or the word ALIGN is executed the data-space pointer is guaranteed to be 
aligned. 
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3.3.3.2   Contiguous regions   

A system guarantees that a region of data space allocated using ALLOT, , (comma), C, (c-comma), and 
ALIGN shall be contiguous with the last region allocated with one of the above words, unless the 
restrictions in the following paragraphs apply.  The data-space pointer HERE always identifies the 
beginning of the next data-space region to be allocated.  As successive allocations are made, the data-space 
pointer increases.  A program may perform address arithmetic within contiguously allocated regions.  The 
last region of data space allocated using the above operators may be released by allocating a corresponding 
negatively-sized region using ALLOT, subject to the restrictions of the following paragraphs. 

CREATE establishes the beginning of a contiguous region of data space, whose starting address is returned 
by the CREATEd definition.  This region is terminated by compiling the next definition. 

Since an implementation is free to allocate data space for use by code, the above operators need not 
produce contiguous regions of data space if definitions are added to or removed from the dictionary 
between allocations.  An ambiguous condition exists if deallocated memory contains definitions. 

3.3.3.3   Variables   

The region allocated for a variable may be non-contiguous with regions subsequently allocated with 
, (comma) or ALLOT.  For example, in: 

VARIABLE X  1 CELLS ALLOT 

the region X and the region ALLOTted could be non-contiguous. 

Some system-provided variables, such as STATE, are restricted to read-only access. 

3.3.3.4   Text-literal regions   

The text-literal regions, specified by strings compiled with S" and C", may be read-only.   

A program shall not store into the text-literal regions created by S" and C" nor into any read-only system 
variable or read-only transient regions.  An ambiguous condition exists when a program attempts to store 
into read-only regions. 

3.3.3.5   Input buffers   

The address, length, and content of the input buffer may be transient.  A program shall not write into the 
input buffer.  In the absence of any optional word sets providing alternative input sources, the input buffer 
is either the terminal-input buffer, used by QUIT to hold one line from the user input device, or a buffer 
specified by EVALUATE.  In all cases, SOURCE returns the beginning address and length in characters of 
the current input buffer.   

The minimum size of the terminal-input buffer shall be 80 characters. 

The address and length returned by SOURCE, the string returned by PARSE, and directly computed input-
buffer addresses are valid only until the text interpreter does I/O to refill the input buffer or the input source 
is changed.   

A program may modify the size of the parse area by changing the contents of >IN within the limits 
imposed by this Standard.  For example, if the contents of >IN are saved before a parsing operation and 
restored afterwards, the text that was parsed will be available again for subsequent parsing operations.  The 
extent of permissible repositioning using this method depends on the input source (see 7.3.3 Block buffer 
regions and 11.3.4 Input source). 

A program may directly examine the input buffer using its address and length as returned by SOURCE; the 
beginning of the parse area within the input buffer is indexed by the number in >IN.  The values are valid 
for a limited time.  An ambiguous condition exists if a program modifies the contents of the input buffer. 
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3.3.3.6   Other transient regions   

The data space regions identified by PAD, WORD, and #> (the pictured numeric output string buffer) may 
be transient.  Their addresses and contents may become invalid after: 

– a definition is created via a defining word; 
– definitions are compiled with : or :NONAME; 
– data space is allocated using ALLOT, , (comma), C, (c-comma), or ALIGN. 

The previous contents of the regions identified by WORD and #> may be invalid after each use of these 
words.  Further, the regions returned by WORD and #> may overlap in memory.  Consequently, use of one 
of these words can corrupt a region returned earlier by a different word.  The other words that construct 
pictured numeric output strings (<#, #, #S, and HOLD) may also modify the contents of these regions.  
Words that display numbers may be implemented using pictured numeric output words.  Consequently, . 
(dot), .R, .S, ?, D., D.R, U., and U.R could also corrupt the regions. 

The size of the scratch area whose address is returned by PAD shall be at least 84 characters.  The contents 
of the region addressed by PAD are intended to be under the complete control of the user:  no words 
defined in this Standard place anything in the region, although changing data-space allocations as described 
in 3.3.3.2 Contiguous regions may change the address returned by PAD.  Non-standard words provided by 
an implementation may use PAD, but such use shall be documented. 

The size of the region identified by WORD shall be at least 33 characters. 

The size of the pictured numeric output string buffer shall be at least (2*n) + 2 characters, where n is the 
number of bits in a cell.  Programs that consider it a fixed area with unchanging access parameters have an 
environmental dependency. 

3.4   The Forth text interpreter   
Upon start-up, a system shall be able to interpret, as described by 6.1.2050 QUIT, Forth source code 
received interactively from a user input device. 

Such interactive systems usually furnish a “prompt” indicating that they have accepted a user request and 
acted on it.  The implementation-defined Forth prompt should contain the word “OK” in some combination 
of upper or lower case. 

Text interpretation (see 6.1.1360 EVALUATE and 6.1.2050 QUIT) shall repeat the following steps until 
either the parse area is empty or an ambiguous condition exists: 

a) Skip leading spaces and parse a name (see 3.4.1); 
b) Search the dictionary name space (see 3.4.2).  If a definition name matching the string is found: 

1) if interpreting, perform the interpretation semantics of the definition (see 3.4.3.2), and continue at 
a); 

2) if compiling, perform the compilation semantics of the definition (see 3.4.3.3), and continue at a). 
c) If a definition name matching the string is not found, attempt to convert the string to a number 

(see 3.4.1.3).  If successful: 
1) if interpreting, place the number on the data stack, and continue at a); 
2) if compiling, compile code that when executed will place the number on the stack (see 6.1.1780 

LITERAL), and continue at a); 
d) If unsuccessful, an ambiguous condition exists (see 3.4.4). 
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3.4.1   Parsing   
Unless otherwise noted, the number of characters parsed may be from zero to the implementation-defined 
maximum length of a counted string. 

If the parse area is empty, i.e., when the number in >IN is equal to the length of the input buffer, or 
contains no characters other than delimiters, the selected string is empty.  Otherwise, the selected string 
begins with the next character in the parse area, which is the character indexed by the contents of >IN.  An 
ambiguous condition exists if the number in >IN is greater than the size of the input buffer. 

If delimiter characters are present in the parse area after the beginning of the selected string, the string 
continues up to and including the character just before the first such delimiter, and the number in >IN is 
changed to index immediately past that delimiter, thus removing the parsed characters and the delimiter 
from the parse area.  Otherwise, the string continues up to and including the last character in the parse area, 
and the number in >IN is changed to the length of the input buffer, thus emptying the parse area. 

Parsing may change the contents of >IN, but shall not affect the contents of the input buffer.  Specifically, 
if the value in >IN is saved before starting the parse, resetting >IN to that value immediately after the 
parse shall restore the parse area without loss of data. 

3.4.1.1   Delimiters   

If the delimiter is the space character, hex 20 (BL), control characters may be treated as delimiters.  The set 
of conditions, if any, under which a “space” delimiter matches control characters is implementation 
defined. 

To skip leading delimiters is to pass by zero or more contiguous delimiters in the parse area before parsing.   

3.4.1.2   Syntax   

Forth has a simple, operator-ordered syntax.  The phrase A B C returns values as if A were executed first, 
then B and finally C.  Words that cause deviations from this linear flow of control are called control-flow 
words.  Combinations of control-flow words whose stack effects are compatible form control-flow 
structures.  Examples of typical use are given for each control-flow word in Annex A. 

Forth syntax is extensible; for example, new control-flow words can be defined in terms of existing ones. 

This Standard does not require a syntax or program-construct checker. 

3.4.1.3   Text interpreter input number conversion   

When converting input numbers, the text interpreter shall recognize both positive and negative numbers, 
with a negative number represented by a single minus sign, the character “-”, preceding the digits.  The 
value in BASE is the radix for number conversion. 

3.4.2   Finding definition names   
A string matches a definition name if each character in the string matches the corresponding character in 
the string used as the definition name when the definition was created.  The case sensitivity (whether or not 
the upper-case letters match the lower-case letters) is implementation defined.  A system may be either case 
sensitive, treating upper- and lower-case letters as different and not matching, or case insensitive, ignoring 
differences in case while searching. 

The matching of upper- and lower-case letters with alphabetic characters in character set extensions such as 
accented international characters is implementation defined. 

A system shall be capable of finding the definition names defined by this Standard when they are spelled 
with upper-case letters. 
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3.4.3   Semantics   
The semantics of a Forth definition are implemented by machine code or a sequence of execution tokens or 
other representations.  They are largely specified by the stack notation in the glossary entries, which shows 
what values shall be consumed and produced.  The prose in each glossary entry further specifies the 
definition’s behavior. 

Each Forth definition may have several behaviors, described in the following sections.  The terms 
“initiation semantics” and “run-time semantics” refer to definition fragments, and have meaning only 
within the individual glossary entries where they appear. 

3.4.3.1   Execution semantics   

The execution semantics of each Forth definition are specified in an “Execution:” section of its glossary 
entry.  When a definition has only one specified behavior, the label is omitted. 

Execution may occur implicitly, when the definition into which it has been compiled is executed, or 
explicitly, when its execution token is passed to EXECUTE.  The execution semantics of a syntactically 
correct definition under conditions other than those specified in this Standard are implementation 
dependent. 

Glossary entries for defining words include the execution semantics for the new definition in a “name 
Execution:” section. 

3.4.3.2   Interpretation semantics   

Unless otherwise specified in an “Interpretation:” section of the glossary entry, the interpretation 
semantics of a Forth definition are its execution semantics. 

A system shall be capable of executing, in interpretation state, all of the definitions from the Core word set 
and any definitions included from the optional word sets or word set extensions whose interpretation 
semantics are defined by this Standard. 

A system shall be capable of executing, in interpretation state, any new definitions created in accordance 
with 3. Usage requirements. 

3.4.3.3   Compilation semantics   

Unless otherwise specified in a “Compilation:” section of the glossary entry, the compilation semantics of 
a Forth definition shall be to append its execution semantics to the execution semantics of the current 
definition. 

3.4.4   Possible actions on an ambiguous condition   
When an ambiguous condition exists, a system may take one or more of the following actions: 

– ignore and continue; 
– display a message; 
– execute a particular word; 
– set interpretation state and begin text interpretation; 
– take other implementation-defined actions; 
– take implementation-dependent actions. 

The response to a particular ambiguous condition need not be the same under all circumstances.   
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3.4.5   Compilation   
A program shall not attempt to nest compilation of definitions. 

During the compilation of the current definition, a program shall not execute any defining word, 
:NONAME, or any definition that allocates dictionary data space.  The compilation of the current definition 
may be suspended using [ (left-bracket) and resumed using ] (right-bracket). While the compilation of the 
current definition is suspended, a program shall not execute any defining word, :NONAME, or any 
definition that allocates dictionary data space. 
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4.   Documentation requirements   
When it is impossible or infeasible for a system or program to define a particular behavior itself, it is 
permissible to state that the behavior is unspecifiable and to explain the circumstances and reasons why this 
is so. 

4.1   System documentation   

4.1.1   Implementation-defined options   
The implementation-defined items in the following list represent characteristics and choices left to the 
discretion of the implementor, provided that the requirements of this Standard are met.  A system shall 
document the values for, or behaviors of, each item. 
– aligned address requirements (3.1.3.3 Addresses); 
– behavior of 6.1.1320 EMIT for non-graphic characters; 
– character editing of 6.1.0695 ACCEPT and 6.2.1390 EXPECT; 
– character set (3.1.2 Character types, 6.1.1320 EMIT, 6.1.1750 KEY); 
– character-aligned address requirements (3.1.3.3 Addresses); 
– character-set-extensions matching characteristics (3.4.2 Finding definition names); 
– conditions under which control characters match a space delimiter (3.4.1.1 Delimiters); 
– format of the control-flow stack (3.2.3.2 Control-flow stack); 
– conversion of digits larger than thirty-five (3.2.1.2 Digit conversion); 
– display after input terminates in 6.1.0695 ACCEPT and 6.2.1390 EXPECT; 
– exception abort sequence (as in 6.1.0680 ABORT"); 
– input line terminator (3.2.4.1 User input device); 
– maximum size of a counted string, in characters (3.1.3.4 Counted strings, 6.1.2450 WORD); 
– maximum size of a parsed string (3.4.1 Parsing); 
– maximum size of a definition name, in characters (3.3.1.2 Definition names); 
– maximum string length for 6.1.1345 ENVIRONMENT?, in characters; 
– method of selecting 3.2.4.1 User input device; 
– method of selecting 3.2.4.2 User output device; 
– methods of dictionary compilation (3.3 The Forth dictionary); 
– number of bits in one address unit (3.1.3.3 Addresses); 
– number representation and arithmetic (3.2.1.1 Internal number representation); 
– ranges for n, +n, u, d, +d, and ud (3.1.3 Single-cell types, 3.1.4 Cell-pair types); 
– read-only data-space regions (3.3.3 Data space); 
– size of buffer at 6.1.2450 WORD (3.3.3.6 Other transient regions); 
– size of one cell in address units (3.1.3 Single-cell types); 
– size of one character in address units (3.1.2 Character types); 
– size of the keyboard terminal input buffer (3.3.3.5 Input buffers); 
– size of the pictured numeric output string buffer (3.3.3.6 Other transient regions); 
– size of the scratch area whose address is returned by 6.2.2000 PAD (3.3.3.6 Other transient regions); 
– system case-sensitivity characteristics (3.4.2 Finding definition names); 
– system prompt (3.4 The Forth text interpreter, 6.1.2050 QUIT); 
– type of division rounding (3.2.2.1 Integer division, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /, 

6.1.0240 /MOD, 6.1.1890 MOD); 
– values of 6.1.2250 STATE when true; 
– values returned after arithmetic overflow (3.2.2.2 Other integer operations); 
– whether the current definition can be found after 6.1.1250 DOES> (6.1.0450 :). 
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4.1.2   Ambiguous conditions   
A system shall document the system action taken upon each of the general or specific ambiguous 
conditions identified in this Standard.  See 3.4.4 Possible actions on an ambiguous condition. 
The following general ambiguous conditions could occur because of a combination of factors: 
– a name is neither a valid definition name nor a valid number during text interpretation (3.4 The Forth 

text interpreter); 
– a definition name exceeded the maximum length allowed (3.3.1.2 Definition names); 
– addressing a region not listed in 3.3.3 Data Space; 
– argument type incompatible with specified input parameter, e.g., passing a flag to a word expecting an 

n (3.1 Data types); 
– attempting to obtain the execution token, (e.g., with 6.1.0070 ', 6.1.1550 FIND, etc.) of a definition 

with undefined interpretation semantics; 
– dividing by zero (6.1.0100 */, 6.1.0110 */MOD, 6.1.0230 /, 6.1.0240 /MOD, 6.1.1561 FM/MOD, 

6.1.1890 MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M*/); 
– insufficient data-stack space or return-stack space (stack overflow); 
– insufficient space for loop-control parameters; 
– insufficient space in the dictionary; 
– interpretating a word with undefined interpretation semantics; 
– modifying the contents of the input buffer or a string literal (3.3.3.4 Text-literal regions, 3.3.3.5 

Input buffers); 
– overflow of a pictured numeric output string; 
– parsed string overflow; 
– producing a result out of range, e.g., multiplication (using *) results in a value too big to be 

represented by a single-cell integer (6.1.0090 *, 6.1.0100 */, 6.1.0110 */MOD, 6.1.0570 >NUMBER, 
6.1.1561 FM/MOD, 6.1.2214 SM/REM, 6.1.2370 UM/MOD, 6.2.0970 CONVERT, 8.6.1.1820 M*/); 

– reading from an empty data stack or return stack (stack underflow); 
– unexpected end of input buffer, resulting in an attempt to use a zero-length string as a name; 

The following specific ambiguous conditions are noted in the glossary entries of the relevant words: 
– >IN greater than size of input buffer (3.4.1 Parsing); 
– 6.1.2120 RECURSE appears after 6.1.1250 DOES>; 
– argument input source different than current input source for 6.2.2148 RESTORE-INPUT; 
– data space containing definitions is de-allocated (3.3.3.2 Contiguous regions); 
– data space read/write with incorrect alignment (3.3.3.1 Address alignment); 
– data-space pointer not properly aligned (6.1.0150 ,, 6.1.0860 C,); 
– less than u+2 stack items (6.2.2030 PICK, 6.2.2150 ROLL); 
– loop-control parameters not available (6.1.0140 +LOOP, 6.1.1680 I, 6.1.1730 J, 6.1.1760 LEAVE, 

6.1.1800 LOOP, 6.1.2380 UNLOOP); 
– most recent definition does not have a name (6.1.1710 IMMEDIATE); 
– name not defined by 6.2.2405 VALUE used by 6.2.2295 TO; 
– name not found (6.1.0070 ', 6.1.2033 POSTPONE, 6.1.2510 ['], 6.2.2530 [COMPILE]); 
– parameters are not of the same type (6.1.1240 DO, 6.2.0620 ?DO, 6.2.2440 WITHIN); 
– 6.1.2033 POSTPONE or 6.2.2530 [COMPILE] applied to 6.2.2295 TO; 
– string longer than a counted string returned by 6.1.2450 WORD; 
– u greater than or equal to the number of bits in a cell ( 6.1.1805 LSHIFT, 6.1.2162 RSHIFT); 
– word not defined via 6.1.1000 CREATE (6.1.0550 >BODY, 6.1.1250 DOES>); 
– words improperly used outside 6.1.0490 <# and 6.1.0040 #> (6.1.0030 #, 6.1.0050 #S, 

6.1.1670 HOLD, 6.1.2210 SIGN). 
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4.1.3   Other system documentation   
A system shall provide the following information: 

– list of non-standard words using 6.2.2000 PAD (3.3.3.6 Other transient regions); 
– operator’s terminal facilities available; 
– program data space available, in address units; 
– return stack space available, in cells; 
– stack space available, in cells; 
– system dictionary space required, in address units. 

4.2   Program documentation   

4.2.1   Environmental dependencies   
A program shall document the following environmental dependencies, where they apply, and should 
document other known environmental dependencies: 

– considering the pictured numeric output string buffer a fixed area with unchanging access parameters 
(3.3.3.6 Other transient regions); 

– depending on the presence or absence of non-graphic characters in a received string 
(6.1.0695 ACCEPT, 6.2.1390 EXPECT); 

– relying on a particular rounding direction (3.2.2.1 Integer division); 
– requiring a particular number representation and arithmetic  (3.2.1.1 Internal number 

representation); 
– requiring non-standard words or techniques (3. Usage requirements); 
– requiring the ability to send or receive control characters (3.1.2.2 Control characters, 6.1.1750 KEY); 
– using control characters to perform specific functions (6.1.1320 EMIT, 6.1.2310 TYPE); 
– using flags as arithmetic operands (3.1.3.1 Flags); 
– using lower case for standard definition names or depending on the case sensitivity of a system 

(3.3.1.2 Definition names); 
– using the graphic character with a value of hex 24 (3.1.2.1 Graphic characters). 

4.2.2   Other program documentation   
A program shall also document: 

– minimum operator’s terminal facilities required; 
– whether a Standard System exists after the program is loaded. 
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5.   Compliance and labeling   

5.1   ANS Forth systems   

5.1.1   System compliance   
A system that complies with all the system requirements given in sections 3. Usage requirements and 
4.1 System documentation and their sub-sections is a Standard System.  An otherwise Standard System 
that provides only a portion of the Core words is a Standard System Subset.  An otherwise Standard System 
(Subset) that fails to comply with one or more of the minimum values or ranges specified in 3. Usage 
requirements and its sub-sections has environmental restrictions. 

5.1.2   System labeling   
A Standard System (Subset) shall be labeled an “ANS Forth System (Subset)”.  That label, by itself, shall 
not be applied to Standard Systems or Standard System Subsets that have environmental restrictions. 

The phrase “with Environmental Restrictions” shall be appended to the label of a Standard System (Subset) 
that has environmental restrictions. 

The phrase “Providing name(s) from the Core Extensions word set” shall be appended to the label of any 
Standard System that provides portions of the Core Extensions word set. 

The phrase “Providing the Core Extensions word set” shall be appended to the label of any Standard 
System that provides all of the Core Extensions word set. 

5.2   ANS Forth programs   

5.2.1   Program compliance   
A program that complies with all the program requirements given in sections 3. Usage requirements and 
4.2 Program documentation and their sub-sections is a Standard Program. 

5.2.2   Program labeling   
A Standard Program shall be labeled an “ANS Forth Program”.  That label, by itself, shall not be applied to 
Standard Programs that require the system to provide standard words outside the Core word set or that have 
environmental dependencies. 

The phrase “with Environmental Dependencies” shall be appended to the label of Standard Programs that 
have environmental dependencies. 

The phrase “Requiring name(s) from the Core Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the Core Extensions word set. 

The phrase “Requiring the Core Extensions word set” shall be appended to the label of Standard Programs 
that require the system to provide all of the Core Extensions word set. 
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6.   Glossary   

6.1   Core words   
 
6.1.0010   !   “store” CORE 

( x a-addr -- ) 

Store x at a-addr. 

 See: 3.3.3.1 Address alignment. 

 
6.1.0030   #   “number-sign” CORE 

( ud1 -- ud2 ) 

Divide ud1 by the number in BASE giving the quotient ud2 and the remainder n.  (n is the least-
significant digit of ud1.)  Convert n to external form and add the resulting character to the 
beginning of the pictured numeric output string.  An ambiguous condition exists if # executes 
outside of a <# #> delimited number conversion. 

 See: 6.1.0040 #>, 6.1.0050 #S, 6.1.0490 <#. 

 
6.1.0040   #>   “number-sign-greater” CORE 

( xd -- c-addr u ) 

Drop xd.  Make the pictured numeric output string available as a character string.  c-addr and u 
specify the resulting character string.  A program may replace characters within the string. 

 See: 6.1.0030 #, 6.1.0050 #S, 6.1.0490 <#. 

 
6.1.0050   #S   “number-sign-s” CORE 

( ud1 -- ud2 ) 

Convert one digit of ud1 according to the rule for #.  Continue conversion until the quotient is 
zero.  ud2 is zero.  An ambiguous condition exists if #S executes outside of a <# #> delimited 
number conversion. 

 See: 6.1.0030 #, 6.1.0040 #>, 6.1.0490 <#. 

 
6.1.0070   '   “tick” CORE 

( “<spaces>name” -- xt ) 

Skip leading space delimiters.  Parse name delimited by a space.  Find name and return xt, the 
execution token for name.  An ambiguous condition exists if name is not found. 

When interpreting, ' xyz EXECUTE is equivalent to xyz. 

 See: 3.4 The Forth text interpreter, 3.4.1 Parsing, A.6.1.2033 POSTPONE, A.6.1.2510 ['], 
D.6.7 Immediacy. 

 

! " # $ % & ' ( ) * + , - . / digits : ; < = > ? @ ALPHA [ \ ] ^ _ ` alpha { | } ~ 25 



ANSI X3.215-1994 

6.1.0080   (   “paren” CORE 

 Compilation: Perform the execution semantics given below. 

 Execution: ( “ccc<paren>” -- ) 

Parse ccc delimited by ) (right parenthesis).  ( is an immediate word. 

The number of characters in ccc may be zero to the number of characters in the parse area. 

 See: 3.4.1 Parsing, 11.6.1.0080 (. 

 
 
6.1.0090   *   “star” CORE 

( n1|u1 n2|u2 -- n3|u3 ) 

Multiply n1|u1 by n2|u2 giving the product n3|u3. 

 
 
6.1.0100   */   “star-slash” CORE 

( n1 n2 n3 -- n4 ) 

Multiply n1 by n2 producing the intermediate double-cell result d.  Divide d by n3 giving the 
single-cell quotient n4.  An ambiguous condition exists if n3 is zero or if the quotient n4 lies 
outside the range of a signed number.  If d and n3 differ in sign, the implementation-defined 
result returned will be the same as that returned by either the phrase >R M* R> FM/MOD 
SWAP DROP or the phrase >R M* R> SM/REM SWAP DROP. 

 See: 3.2.2.1 Integer division. 

 
 
6.1.0110   */MOD   “star-slash-mod” CORE 

( n1 n2 n3 -- n4 n5 ) 

Multiply n1 by n2 producing the intermediate double-cell result d.  Divide d by n3 producing 
the single-cell remainder n4 and the single-cell quotient n5.  An ambiguous condition exists if 
n3 is zero, or if the quotient n5 lies outside the range of a single-cell signed integer.  If d and n3 
differ in sign, the implementation-defined result returned will be the same as that returned by 
either the phrase >R M* R> FM/MOD or the phrase >R M* R> SM/REM.  

 See: 3.2.2.1 Integer division. 

 
 
6.1.0120   +   “plus” CORE 

 ( n1|u1 n2|u2 -- n3|u3 ) 

Add n2|u2 to n1|u1, giving the sum n3|u3. 

 See: 3.3.3.1 Address alignment. 
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6.1.0130   +!   “plus-store” CORE 

( n|u a-addr -- ) 

Add n|u to the single-cell number at a-addr. 

 See: 3.3.3.1 Address alignment. 

 
6.1.0140   +LOOP   “plus-loop” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: do-sys -- ) 

Append the run-time semantics given below to the current definition.  Resolve the destination 
of all unresolved occurrences of LEAVE between the location given by do-sys and the next 
location for a transfer of control, to execute the words following +LOOP.   

 Run-time: ( n -- ) ( R: loop-sys1 -- | loop-sys2 ) 

An ambiguous condition exists if the loop control parameters are unavailable.  Add n to the 
loop index.  If the loop index did not cross the boundary between the loop limit minus one and 
the loop limit, continue execution at the beginning of the loop.  Otherwise, discard the current 
loop control parameters and continue execution immediately following the loop.   

 See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE. 

 
 
6.1.0150   ,   “comma” CORE 

( x -- ) 

Reserve one cell of data space and store x in the cell.  If the data-space pointer is aligned when 
, begins execution, it will remain aligned when , finishes execution.  An ambiguous condition 
exists if the data-space pointer is not aligned prior to execution of ,. 

 See: 3.3.3 Data space, 3.3.3.1 Address alignment. 

 
 
6.1.0160   -   “minus” CORE 

 ( n1|u1 n2|u2 -- n3|u3 ) 

Subtract n2|u2 from n1|u1, giving the difference n3|u3. 

 See: 3.3.3.1 Address alignment. 

 
 
6.1.0180   .   “dot” CORE 

( n -- ) 

Display n in free field format. 

 See: 3.2.1.2 Digit conversion, 3.2.1.3 Free-field number display. 
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6.1.0190   ."   “dot-quote” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by " (double-quote).  Append the run-time semantics given below to the 
current definition. 

 Run-time: ( -- ) 

Display ccc. 

 See: 3.4.1 Parsing, 6.2.0200 .(. 

 
6.1.0230   /   “slash” CORE 

( n1 n2 -- n3 ) 

Divide n1 by n2, giving the single-cell quotient n3.  An ambiguous condition exists if n2 is zero.  
If n1 and n2 differ in sign, the implementation-defined result returned will be the same as that 
returned by either the phrase >R S>D R> FM/MOD SWAP DROP or the phrase >R S>D R> 
SM/REM SWAP DROP. 

 See: 3.2.2.1 Integer division. 

 
6.1.0240   /MOD   “slash-mod” CORE 

( n1 n2 -- n3 n4 ) 

Divide n1 by n2, giving the single-cell remainder n3 and the single-cell quotient n4.  An 
ambiguous condition exists if n2 is zero. If n1 and n2 differ in sign, the implementation-defined 
result returned will be the same as that returned by either the phrase >R S>D R> FM/MOD or 
the phrase >R S>D R> SM/REM. 

 See: 3.2.2.1 Integer division. 

 
6.1.0250   0<   “zero-less” CORE 

( n -- flag ) 

flag is true if and only if n is less than zero. 

 
6.1.0270   0=   “zero-equals” CORE 

( x -- flag ) 

flag is true if and only if x is equal to zero. 

 
6.1.0290   1+   “one-plus” CORE 

 ( n1|u1 -- n2|u2 ) 

Add one (1) to n1|u1 giving the sum n2|u2. 
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6.1.0300   1-   “one-minus” CORE 

 ( n1|u1 -- n2|u2 ) 

Subtract one (1) from n1|u1 giving the difference n2|u2. 

 
6.1.0310   2!   “two-store” CORE 

( x1 x2 a-addr -- ) 

Store the cell pair x1 x2 at a-addr, with x2 at a-addr and x1 at the next consecutive cell.  It is 
equivalent to the sequence SWAP OVER ! CELL+ !. 

 See: 3.3.3.1 Address alignment. 

 
6.1.0320   2*   “two-star” CORE 

( x1 -- x2 ) 

x2 is the result of shifting x1 one bit toward the most-significant bit, filling the vacated least-
significant bit with zero. 

 
6.1.0330   2/   “two-slash” CORE 

( x1 -- x2 ) 

x2 is the result of shifting x1 one bit toward the least-significant bit, leaving the most-significant 
bit unchanged. 

 
6.1.0350   2@   “two-fetch” CORE 

( a-addr -- x1 x2 ) 

Fetch the cell pair x1 x2 stored at a-addr.  x2 is stored at a-addr and x1 at the next consecutive 
cell.  It is equivalent to the sequence DUP CELL+ @ SWAP @. 

 See: 3.3.3.1 Address alignment, 6.1.0310 2!. 

 
6.1.0370   2DROP   “two-drop” CORE 

( x1 x2 -- ) 

Drop cell pair x1 x2 from the stack. 

 
6.1.0380   2DUP   “two-dupe” CORE 

( x1 x2 -- x1 x2 x1 x2 ) 

Duplicate cell pair x1 x2. 

 
6.1.0400   2OVER   “two-over” CORE 

( x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 ) 

Copy cell pair x1 x2 to the top of the stack. 
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6.1.0430   2SWAP   “two-swap” CORE 

( x1 x2 x3 x4 -- x3 x4 x1 x2 ) 

Exchange the top two cell pairs. 

 
 
6.1.0450   :   “colon” CORE 

( C: “<spaces>name” -- colon-sys ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name, 
called a “colon definition”.  Enter compilation state and start the current definition, producing 
colon-sys.  Append the initiation semantics given below to the current definition. 

The execution semantics of name will be determined by the words compiled into the body of 
the definition.  The current definition shall not be findable in the dictionary until it is ended (or 
until the execution of DOES> in some systems). 

 Initiation: ( i*x -- i*x )  ( R:  -- nest-sys ) 

Save implementation-dependent information nest-sys about the calling definition.  The stack 
effects i*x represent arguments to name. 

 name Execution: ( i*x -- j*x ) 

Execute the definition name.  The stack effects i*x and j*x represent arguments to and results 
from name, respectively. 

 See: 3.4 The Forth text interpreter, 3.4.1 Parsing, 3.4.5 Compilation, 6.1.1250 DOES>, 6.1.2500 
[, 6.1.2540 ], 15.6.2.0470 ;CODE. 

 
 
6.1.0460   ;   “semicolon” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: colon-sys -- ) 

Append the run-time semantics below to the current definition.  End the current definition, 
allow it to be found in the dictionary and enter interpretation state, consuming colon-sys.  If the 
data-space pointer is not aligned, reserve enough data space to align it. 

 Run-time: ( -- )  ( R:  nest-sys -- ) 

Return to the calling definition specified by nest-sys. 

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation. 

 
6.1.0480   <   “less-than” CORE 

( n1 n2 -- flag ) 

flag is true if and only if n1 is less than n2. 

 See: 6.1.2340 U<. 
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6.1.0490   <#   “less-number-sign” CORE 

( -- ) 

Initialize the pictured numeric output conversion process. 

 See: 6.1.0030 #, 6.1.0040 #>, 6.1.0050 #S. 

 
 
6.1.0530   =   “equals” CORE 

( x1 x2 -- flag ) 

flag is true if and only if x1 is bit-for-bit the same as x2. 

 
 
6.1.0540   >   “greater-than” CORE 

( n1 n2 -- flag ) 

flag is true if and only if n1 is greater than n2. 

 See: 6.2.2350 U>. 

 
 
6.1.0550   >BODY   “to-body” CORE 

( xt -- a-addr ) 

a-addr is the data-field address corresponding to xt.  An ambiguous condition exists if xt is not 
for a word defined via CREATE.   

 See: 3.3.3 Data space. 

 
 
6.1.0560   >IN   “to-in” CORE 

( -- a-addr ) 

a-addr is the address of a cell containing the offset in characters from the start of the input 
buffer to the start of the parse area. 

 
6.1.0570   >NUMBER   “to-number”  CORE 

( ud1 c-addr1 u1 -- ud2 c-addr2 u2 ) 

ud2 is the unsigned result of converting the characters within the string specified by c-addr1 u1 
into digits, using the number in BASE, and adding each into ud1 after multiplying ud1 by the 
number in BASE.  Conversion continues left-to-right until a character that is not convertible, 
including any “+” or “-”, is encountered or the string is entirely converted.  c-addr2 is the 
location of the first unconverted character or the first character past the end of the string if the 
string was entirely converted.  u2 is the number of unconverted characters in the string.  An 
ambiguous condition exists if ud2 overflows during the conversion.   

 See: 3.2.1.2 Digit conversion. 
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6.1.0580   >R   “to-r” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( x -- )  ( R:  -- x ) 

Move x to the return stack. 

 See: 3.2.3.3 Return stack, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@. 

 
6.1.0630   ?DUP   “question-dupe” CORE 

( x -- 0 | x x ) 

Duplicate x if it is non-zero. 

 
6.1.0650   @   “fetch” CORE 

( a-addr -- x ) 

x is the value stored at a-addr. 

 See: 3.3.3.1 Address alignment. 

 
6.1.0670   ABORT    CORE 

( i*x -- ) ( R: j*x -- ) 

Empty the data stack and perform the function of QUIT, which includes emptying the return 
stack, without displaying a message. 

 See: 9.6.2.0670 ABORT. 

 
6.1.0680   ABORT"   “abort-quote” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by a " (double-quote).  Append the run-time semantics given below to the 
current definition.   

 Run-time: ( i*x x1 --  | i*x ) ( R: j*x --  | j*x ) 

Remove x1 from the stack.  If any bit of x1 is not zero, display ccc and perform an 
implementation-defined abort sequence that includes the function of ABORT. 

 See: 3.4.1 Parsing, 9.6.2.0680 ABORT". 

 
6.1.0690   ABS   “abs” CORE 

( n -- u ) 

u is the absolute value of n. 
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6.1.0695   ACCEPT    CORE 

( c-addr +n1 -- +n2 ) 

Receive a string of at most +n1 characters.  An ambiguous condition exists if +n1 is zero or 
greater than 32,767.  Display graphic characters as they are received.  A program that depends 
on the presence or absence of non-graphic characters in the string has an environmental 
dependency.  The editing functions, if any, that the system performs in order to construct the 
string are implementation-defined. 

Input terminates when an implementation-defined line terminator is received.  When input 
terminates, nothing is appended to the string, and the display is maintained in an 
implementation-defined way. 

+n2 is the length of the string stored at c-addr. 

 
 
6.1.0705   ALIGN    CORE 

( -- ) 

If the data-space pointer is not aligned, reserve enough space to align it. 

 See: 3.3.3 Data space, 3.3.3.1 Address alignment. 

 
 
6.1.0706   ALIGNED    CORE 

( addr -- a-addr ) 

a-addr is the first aligned address greater than or equal to addr. 

 See: 3.3.3.1 Address alignment. 

 
 
6.1.0710   ALLOT    CORE 

( n -- ) 

If n is greater than zero, reserve n address units of data space.  If n is less than zero, release |n| 
address units of data space.  If n is zero, leave the data-space pointer unchanged. 

If the data-space pointer is aligned and n is a multiple of the size of a cell when ALLOT begins 
execution, it will remain aligned when ALLOT finishes execution. 

If the data-space pointer is character aligned and n is a multiple of the size of a character when 
ALLOT begins execution, it will remain character aligned when ALLOT finishes execution. 

 See: 3.3.3 Data space. 

 
6.1.0720   AND    CORE 

( x1 x2 -- x3 ) 

x3 is the bit-by-bit logical “and” of x1 with x2. 

 

! " # $ % & ' ( ) * + , - . / digits : ; < = > ? @ ALPHA [ \ ] ^ _ ` alpha { | } ~ 33 



ANSI X3.215-1994 

6.1.0750   BASE    CORE 

( -- a-addr ) 

a-addr is the address of a cell containing the current number-conversion radix {{2...36}}. 

 
6.1.0760   BEGIN    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- dest ) 

Put the next location for a transfer of control, dest, onto the control flow stack.  Append the 
run-time semantics given below to the current definition. 

 Run-time: ( -- ) 

Continue execution. 

 See: 3.2.3.2 Control-flow stack, 6.1.2140 REPEAT, 6.1.2390 UNTIL, 6.1.2430 WHILE. 

 
6.1.0770   BL   “b-l” CORE 

( -- char ) 

char is the character value for a space. 

 
6.1.0850   C!   “c-store” CORE 

( char c-addr -- ) 

Store char at c-addr.  When character size is smaller than cell size, only the number of low-
order bits corresponding to character size are transferred. 

 See: 3.3.3.1 Address alignment 

 
6.1.0860   C,   “c-comma” CORE 

( char -- ) 

Reserve space for one character in the data space and store char in the space.  If the data-space 
pointer is character aligned when C, begins execution, it will remain character aligned when 
C, finishes execution.  An ambiguous condition exists if the data-space pointer is not 
character-aligned prior to execution of C,. 

 See: 3.3.3 Data space, 3.3.3.1 Address alignment. 

 
6.1.0870   C@   “c-fetch” CORE 

( c-addr -- char ) 

Fetch the character stored at c-addr.  When the cell size is greater than character size, the 
unused high-order bits are all zeroes. 

 See: 3.3.3.1 Address alignment. 
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6.1.0880   CELL+   “cell-plus” CORE 

( a-addr1 -- a-addr2 ) 

Add the size in address units of a cell to a-addr1, giving a-addr2. 

 See: 3.3.3.1 Address alignment. 

 
 
6.1.0890   CELLS    CORE 

( n1 -- n2 ) 

n2 is the size in address units of n1 cells. 

 
 
6.1.0895   CHAR   “char” CORE 

( “<spaces>name” -- char ) 

Skip leading space delimiters.  Parse name delimited by a space.  Put the value of its first 
character onto the stack. 

 See: 3.4.1 Parsing, 6.1.2520 [CHAR]. 

 
 
6.1.0897   CHAR+   “char-plus” CORE 

( c-addr1 -- c-addr2 ) 

Add the size in address units of a character to c-addr1, giving c-addr2. 

 See: 3.3.3.1 Address alignment. 

 
 
6.1.0898   CHARS   “chars” CORE 

( n1 -- n2 ) 

n2 is the size in address units of n1 characters. 

 
 
6.1.0950   CONSTANT    CORE 

( x “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below. 

name is referred to as a “constant”. 

 name Execution: ( -- x ) 

Place x on the stack. 

 See: 3.4.1 Parsing. 
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6.1.0980   COUNT    CORE 
( c-addr1 -- c-addr2 u ) 

Return the character string specification for the counted string stored at c-addr1.  c-addr2 is the 
address of the first character after c-addr1.  u is the contents of the character at c-addr1, which 
is the length in characters of the string at c-addr2. 

 
6.1.0990   CR   “c-r” CORE 

( -- ) 

Cause subsequent output to appear at the beginning of the next line. 

 
6.1.1000   CREATE    CORE 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below.  If the data-space pointer is not aligned, reserve 
enough data space to align it.  The new data-space pointer defines name’s data field.  CREATE 
does not allocate data space in name’s data field. 

 name Execution: ( -- a-addr ) 

a-addr is the address of name’s data field.  The execution semantics of name may be extended 
by using DOES>. 

 See: 3.3.3 Data space, 6.1.1250 DOES>. 

 
6.1.1170   DECIMAL    CORE 

( -- ) 

Set the numeric conversion radix to ten (decimal). 

 
6.1.1200   DEPTH    CORE 

( -- +n ) 

+n is the number of single-cell values contained in the data stack before +n was placed on the 
stack. 

 
6.1.1240   DO    CORE 
 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- do-sys ) 

Place do-sys onto the control-flow stack.  Append the run-time semantics given below to the 
current definition.  The semantics are incomplete until resolved by a consumer of do-sys such 
as LOOP. 

 Run-time: ( n1|u1 n2|u2 -- ) ( R: -- loop-sys ) 

Set up loop control parameters with index n2|u2 and limit n1|u1. An ambiguous condition exists 
if n1|u1 and n2|u2 are not both the same type.  Anything already on the return stack becomes 
unavailable until the loop-control parameters are discarded. 

 See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1800 LOOP. 
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6.1.1250   DOES>   “does” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: colon-sys1 -- colon-sys2 ) 

Append the run-time semantics below to the current definition.  Whether or not the current 
definition is rendered findable in the dictionary by the compilation of DOES> is 
implementation defined.  Consume colon-sys1 and produce colon-sys2.  Append the initiation 
semantics given below to the current definition. 

 Run-time: ( -- ) ( R: nest-sys1 -- ) 

Replace the execution semantics of the most recent definition, referred to as name, with the 
name execution semantics given below.  Return control to the calling definition specified by 
nest-sys1.  An ambiguous condition exists if name was not defined with CREATE or a user-
defined word that calls CREATE. 

 Initiation: ( i*x -- i*x a-addr )  ( R:  -- nest-sys2 ) 

Save implementation-dependent information nest-sys2 about the calling definition.  Place 
name’s data field address on the stack.  The stack effects i*x represent arguments to name. 

 name Execution: ( i*x -- j*x ) 

Execute the portion of the definition that begins with the initiation semantics appended by the 
DOES> which modified name.  The stack effects i*x and j*x represent arguments to and results 
from name, respectively. 

 See: 6.1.1000 CREATE. 

 
6.1.1260   DROP    CORE 

( x -- ) 

Remove x from the stack. 

 
6.1.1290   DUP   “dupe” CORE 

( x -- x x ) 

Duplicate x. 

 
6.1.1310   ELSE    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: orig1 -- orig2 ) 

Put the location of a new unresolved forward reference orig2 onto the control flow stack.  
Append the run-time semantics given below to the current definition.  The semantics will be 
incomplete until orig2 is resolved (e.g., by THEN).  Resolve the forward reference orig1 using 
the location following the appended  run-time semantics. 

 Run-time: ( -- ) 

Continue execution at the location given by the resolution of orig2. 

 See: 6.1.1700 IF, 6.1.2270 THEN. 
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6.1.1320   EMIT    CORE 

( x -- ) 

If x is a graphic character in the implementation-defined character set, display x.  The effect of 
EMIT for all other values of x is implementation-defined. 

When passed a character whose character-defining bits have a value between hex 20 and 7E 
inclusive, the corresponding standard character, specified by 3.1.2.1 Graphic characters, is 
displayed.  Because different output devices can respond differently to control characters, 
programs that use control characters to perform specific functions have an environmental 
dependency.  Each EMIT deals with only one character. 

 See: 6.1.2310 TYPE. 

 
6.1.1345   ENVIRONMENT?   “environment-query” CORE 

( c-addr u -- false | i*x true ) 

c-addr is the address of a character string and u is the string’s character count.  u may have a 
value in the range from zero to an implementation-defined maximum which shall not be less 
than 31.  The character string should contain a keyword from 3.2.6 Environmental queries or 
the optional word sets to be checked for correspondence with an attribute of the present 
environment.  If the system treats the attribute as unknown, the returned flag is false;  
otherwise, the flag is true and the i*x returned is of the type specified in the table for the 
attribute queried. 

 
6.1.1360   EVALUATE    CORE 

( i*x c-addr u -- j*x ) 

Save the current input source specification.  Store minus-one (-1) in SOURCE-ID if it is 
present.  Make the string described by c-addr and u both the input source and input buffer, set 
>IN to zero, and interpret.  When the parse area is empty, restore the prior input source 
specification.  Other stack effects are due to the words EVALUATEd. 

 
6.1.1370   EXECUTE    CORE 

( i*x xt -- j*x ) 

Remove xt from the stack and perform the semantics identified by it.  Other stack effects are 
due to the word EXECUTEd. 

 See: 6.1.0070 ', 6.1.2510 [']. 

 
6.1.1380   EXIT    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- ) ( R: nest-sys -- ) 

Return control to the calling definition specified by nest-sys.  Before executing EXIT within a 
do-loop, a program shall discard the loop-control parameters by executing UNLOOP. 

 See: 3.2.3.3 Return stack, 6.1.2380 UNLOOP. 
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6.1.1540   FILL    CORE 

( c-addr u char -- ) 

If u is greater than zero, store char in each of u consecutive characters of memory beginning at 
c-addr. 

 

6.1.1550   FIND    CORE 

( c-addr -- c-addr 0  |  xt 1  |  xt -1 )  

Find the definition named in the counted string at c-addr.  If the definition is not found, return 
c-addr and zero.  If the definition is found, return its execution token xt.  If the definition is 
immediate, also return one (1), otherwise also return minus-one (-1).  For a given string, the 
values returned by FIND while compiling may differ from those returned while not compiling. 

 See: 3.4.2 Finding definition names, A.6.1.0070 ', A.6.1.2510 ['], A.6.1.2033 POSTPONE, 
D.6.7 Immediacy. 

 

6.1.1561   FM/MOD   “f-m-slash-mod” CORE 

( d1 n1 -- n2 n3 ) 

Divide d1 by n1, giving the floored quotient n3 and the remainder n2.  Input and output stack 
arguments are signed.  An ambiguous condition exists if n1 is zero or if the quotient lies outside 
the range of a single-cell signed integer.  

 See: 3.2.2.1 Integer division, 6.1.2214 SM/REM, 6.1.2370 UM/MOD. 

 

6.1.1650   HERE    CORE 

( -- addr ) 

addr is the data-space pointer. 

 See: 3.3.3.2 Contiguous regions. 

 

6.1.1670   HOLD    CORE 

( char -- ) 

Add char to the beginning of the pictured numeric output string.  An ambiguous condition 
exists if HOLD executes outside of a <# #> delimited number conversion. 

 

6.1.1680   I    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- n|u )  ( R:  loop-sys -- loop-sys ) 

n|u is a copy of the current (innermost) loop index.  An ambiguous condition exists if the loop 
control parameters are unavailable. 
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6.1.1700   IF    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- orig ) 

Put the location of a new unresolved forward reference orig onto the control flow stack. 
Append the run-time semantics given below to the current definition.  The semantics are 
incomplete until orig is resolved, e.g., by THEN or ELSE. 

 Run-time: ( x -- ) 

If all bits of x are zero, continue execution at the location specified by the resolution of orig. 

 See: 3.2.3.2 Control flow stack, 6.1.1310 ELSE, 6.1.2270 THEN. 

 
6.1.1710   IMMEDIATE    CORE 

( -- ) 

Make the most recent definition an immediate word.  An ambiguous condition exists if the 
most recent definition does not have a name. 

 See: D.6.7 Immediacy. 

 
6.1.1720   INVERT    CORE 

( x1 -- x2 ) 

Invert all bits of x1, giving its logical inverse x2. 

 See: 6.1.1910 NEGATE, 6.1.0270 0=. 

 
6.1.1730   J    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- n|u ) ( R: loop-sys1 loop-sys2 -- loop-sys1 loop-sys2 ) 

n|u is a copy of the next-outer loop index.  An ambiguous condition exists if the loop control 
parameters of the next-outer loop, loop-sys1, are unavailable. 

 
6.1.1750   KEY    CORE 

( -- char ) 

Receive one character char, a member of the implementation-defined character set.  Keyboard 
events that do not correspond to such characters are discarded until a valid character is 
received, and those events are subsequently unavailable. 

All standard characters can be received.  Characters received by KEY are not displayed. 

Any standard character returned by KEY has the numeric value specified in 3.1.2.1 Graphic 
characters.  Programs that require the ability to receive control characters have an 
environmental dependency. 

 See: 10.6.2.1307 EKEY, 10.6.1.1755 KEY?. 
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6.1.1760   LEAVE    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- ) ( R: loop-sys -- ) 

Discard the current loop control parameters.  An ambiguous condition exists if they are 
unavailable.  Continue execution immediately following the innermost syntactically enclosing 
DO ... LOOP or DO ... +LOOP. 

 See: 3.2.3.3 Return stack, 6.1.0140 +LOOP, 6.1.1800 LOOP. 

 
6.1.1780   LITERAL    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( x -- ) 

Append the run-time semantics given below to the current definition. 

 Run-time: ( -- x ) 

Place x on the stack. 

 
6.1.1800   LOOP    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: do-sys -- ) 

Append the run-time semantics given below to the current definition.  Resolve the destination 
of all unresolved occurrences of LEAVE between the location given by do-sys and the next 
location for a transfer of control, to execute the words following the LOOP. 

 Run-time: ( -- ) ( R:  loop-sys1 --  | loop-sys2 ) 

An ambiguous condition exists if the loop control parameters are unavailable.  Add one to the 
loop index.  If the loop index is then equal to the loop limit, discard the loop parameters and 
continue execution immediately following the loop.  Otherwise continue execution at the 
beginning of the loop. 

 See: 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE. 

 
6.1.1805   LSHIFT   “l-shift” CORE 

( x1 u -- x2 ) 

Perform a logical left shift of u bit-places on x1, giving x2.  Put zeroes into the least significant 
bits vacated by the shift.  An ambiguous condition exists if u is greater than or equal to the 
number of bits in a cell. 

 
6.1.1810   M*   “m-star” CORE 

( n1 n2 -- d ) 

d is the signed product of n1 times n2. 

 

! " # $ % & ' ( ) * + , - . / digits : ; < = > ? @ ALPHA [ \ ] ^ _ ` alpha { | } ~ 41 



ANSI X3.215-1994 

6.1.1870   MAX    CORE 

( n1 n2 -- n3 ) 

n3 is the greater of n1 and n2. 

 
6.1.1880   MIN    CORE 

( n1 n2 -- n3 ) 

n3 is the lesser of n1 and n2. 

 
6.1.1890   MOD    CORE 

( n1 n2 -- n3 ) 

Divide n1 by n2, giving the single-cell remainder n3.  An ambiguous condition exists if n2 is 
zero.  If n1 and n2 differ in sign, the implementation-defined result returned will be the same as 
that returned by either the phrase >R S>D R> FM/MOD DROP or the phrase >R S>D R> 
SM/REM DROP. 

 See: 3.2.2.1 Integer division. 

 
6.1.1900   MOVE    CORE 

( addr1 addr2 u -- ) 

If u is greater than zero, copy the contents of u consecutive address units at addr1 to the u 
consecutive address units at addr2.  After MOVE completes, the u consecutive address units at 
addr2 contain exactly what the u consecutive address units at addr1 contained before the move. 

 See: 17.6.1.0910 CMOVE, 17.6.1.0920 CMOVE>. 

 
6.1.1910   NEGATE    CORE 

( n1 -- n2 ) 

Negate n1, giving its arithmetic inverse n2.   

 See: 6.1.1720 INVERT, 6.1.0270 0=. 

 
6.1.1980   OR    CORE 

( x1 x2 -- x3 ) 

x3 is the bit-by-bit inclusive-or of x1 with x2. 

 
6.1.1990   OVER    CORE 

( x1 x2 -- x1 x2 x1 ) 

Place a copy of x1 on top of the stack. 
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6.1.2033   POSTPONE    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Find name.  Append the 
compilation semantics of name to the current definition.  An ambiguous condition exists if 
name is not found. 

 See: 3.4.1 Parsing. 
 
6.1.2050   QUIT    CORE 

( -- )  ( R:  i*x -- ) 

Empty the return stack, store zero in SOURCE-ID if it is present, make the user input device 
the input source, and enter interpretation state.  Do not display a message.  Repeat the 
following: 

–  Accept a line from the input source into the input buffer, set >IN to zero, and interpret. 
–  Display the implementation-defined system prompt if in interpretation state, all 
processing has been completed, and no ambiguous condition exists.   

 See: 3.4 The Forth text interpreter. 
 
6.1.2060   R>   “r-from” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- x )  ( R:  x -- ) 

Move x from the return stack to the data stack. 

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@. 
 
6.1.2070   R@   “r-fetch” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- x )  ( R:  x -- x ) 

Copy x from the return stack to the data stack. 

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.2.0340 2>R, 6.2.0410 2R>, 6.2.0415 2R@. 
 
6.1.2120   RECURSE    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( -- ) 

Append the execution semantics of the current definition to the current definition.  An 
ambiguous condition exists if RECURSE appears in a definition after DOES>. 

 See: 6.1.1250 DOES>, 6.1.2120 RECURSE. 
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6.1.2140   REPEAT    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: orig dest -- ) 

Append the run-time semantics given below to the current definition, resolving the backward 
reference dest.  Resolve the forward reference orig using the location following the appended 
run-time semantics. 

 Run-time: ( -- ) 

Continue execution at the location given by dest. 

 See: 6.1.0760 BEGIN, 6.1.2430 WHILE. 

 
 
6.1.2160   ROT   “rote” CORE 

( x1 x2 x3 -- x2 x3 x1 ) 

Rotate the top three stack entries. 

 
 
6.1.2162   RSHIFT   “r-shift” CORE 

( x1 u -- x2 ) 

Perform a logical right shift of u bit-places on x1, giving x2.  Put zeroes into the most 
significant bits vacated by the shift.  An ambiguous condition exists if u is greater than or equal 
to the number of bits in a cell. 

 
 
6.1.2165   S"   “s-quote” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by " (double-quote).  Append the run-time semantics given below to the 
current definition. 

 Run-time: ( -- c-addr u ) 

Return c-addr and u describing a string consisting of the characters ccc.  A program shall not 
alter the returned string. 

 See: 3.4.1 Parsing, 6.2.0855 C", 11.6.1.2165 S". 

 
 
6.1.2170   S>D   “s-to-d” CORE 

( n -- d ) 

Convert the number n to the double-cell number d with the same numerical value.   
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6.1.2210   SIGN    CORE 

( n -- ) 

If n is negative, add a minus sign to the beginning of the pictured numeric output string.  An 
ambiguous condition exists if SIGN executes outside of a <# #> delimited number 
conversion. 

 
6.1.2214   SM/REM   “s-m-slash-rem” CORE 

( d1 n1 -- n2 n3 ) 

Divide d1 by n1, giving the symmetric quotient n3 and the remainder n2.  Input and output stack 
arguments are signed.  An ambiguous condition exists if n1 is zero or if the quotient lies outside 
the range of a single-cell signed integer.  

 See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2370 UM/MOD. 

 
6.1.2216   SOURCE    CORE 

( -- c-addr u ) 

c-addr is the address of, and u is the number of characters in, the input buffer. 

 
6.1.2220   SPACE    CORE 

( -- ) 

Display one space. 

 
6.1.2230   SPACES    CORE 

( n -- ) 

If n is greater than zero, display n spaces. 

 
6.1.2250   STATE    CORE 

( -- a-addr ) 

a-addr is the address of a cell containing the compilation-state flag.  STATE is true when in 
compilation state, false otherwise.  The true value in STATE is non-zero, but is otherwise 
implementation-defined.  Only the following standard words alter the value in STATE:  : 
(colon), ; (semicolon), ABORT, QUIT, :NONAME, [ (left-bracket), and ] (right-bracket). 

 Note: A program shall not directly alter the contents of STATE. 

 See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ;, 6.1.0670 ABORT, 6.1.2050 QUIT, 
6.1.2500 [, 6.1.2540 ], 6.2.0455 :NONAME, 15.6.2.2250 STATE. 

 
6.1.2260   SWAP    CORE 

( x1 x2 -- x2 x1 ) 

Exchange the top two stack items. 
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6.1.2270   THEN    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: orig -- ) 

Append the run-time semantics given below to the current definition.  Resolve the forward 
reference orig using the location of the appended run-time semantics. 

 Run-time: ( -- ) 

Continue execution. 

 See: 6.1.1310 ELSE, 6.1.1700 IF. 

 
6.1.2310   TYPE    CORE 

( c-addr u -- ) 

If u is greater than zero, display the character string specified by c-addr and u. 

When passed a character in a character string whose character-defining bits have a value 
between hex 20 and 7E inclusive, the corresponding standard character, specified by 3.1.2.1 
graphic characters, is displayed.  Because different output devices can respond differently to 
control characters, programs that use control characters to perform specific functions have an 
environmental dependency. 

 See: 6.1.1320 EMIT. 

 
6.1.2320   U.   “u-dot” CORE 

( u -- ) 

Display u in free field format. 

 
6.1.2340   U<   “u-less-than” CORE 

( u1 u2 -- flag ) 

flag is true if and only if u1 is less than u2. 

 See: 6.1.0480 <. 

 
6.1.2360   UM*   “u-m-star” CORE 

( u1 u2 -- ud ) 

Multiply u1 by u2, giving the unsigned double-cell product ud.  All values and arithmetic are 
unsigned. 

 
6.1.2370   UM/MOD   “u-m-slash-mod” CORE 

( ud u1 -- u2 u3 ) 

Divide ud by u1, giving the quotient u3 and the remainder u2.  All values and arithmetic are 
unsigned.  An ambiguous condition exists if u1 is zero or if the quotient lies outside the range 
of a single-cell unsigned integer. 

 See: 3.2.2.1 Integer division, 6.1.1561 FM/MOD, 6.1.2214 SM/REM. 
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6.1.2380   UNLOOP     CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- ) ( R: loop-sys -- ) 

Discard the loop-control parameters for the current nesting level.  An UNLOOP is required for 
each nesting level before the definition may be EXITed.  An ambiguous condition exists if the 
loop-control parameters are unavailable. 

 See: 3.2.3.3 Return stack. 

 
6.1.2390   UNTIL    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: dest -- ) 

Append the run-time semantics given below to the current definition, resolving the backward 
reference dest. 

 Run-time: ( x -- ) 

If all bits of x are zero, continue execution at the location specified by dest. 

 See: 6.1.0760 BEGIN. 

 
6.1.2410   VARIABLE    CORE 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below.  Reserve one cell of data space at an aligned 
address. 

name is referred to as a “variable”. 

 name Execution: ( -- a-addr ) 

a-addr is the address of the reserved cell.  A program is responsible for initializing the contents 
of the reserved cell. 

 See: 3.4.1 Parsing. 

 
6.1.2430   WHILE    CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: dest -- orig dest ) 

Put the location of a new unresolved forward reference orig onto the control flow stack, under 
the existing dest.  Append the run-time semantics given below to the current definition.  The 
semantics are incomplete until orig and dest are resolved (e.g., by REPEAT). 

 Run-time: ( x -- ) 

If all bits of x are zero, continue execution at the location specified by the resolution of orig. 
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6.1.2450   WORD    CORE 

( char “<chars>ccc<char>” -- c-addr ) 

Skip leading delimiters.  Parse characters ccc delimited by char.  An ambiguous condition 
exists if the length of the parsed string is greater than the implementation-defined length of a 
counted string. 

c-addr is the address of a transient region containing the parsed word as a counted string.  If the 
parse area was empty or contained no characters other than the delimiter, the resulting string 
has a zero length.  A space, not included in the length, follows the string.  A program may 
replace characters within the string. 

 Note: The requirement to follow the string with a space is obsolescent and is included as a concession 
to existing programs that use CONVERT.  A program shall not depend on the existence of the 
space. 

 See: 3.3.3.6 Other transient regions, 3.4.1 Parsing. 

 

6.1.2490   XOR   “x-or” CORE 

( x1 x2 -- x3 ) 

x3 is the bit-by-bit exclusive-or of x1 with x2. 

 

6.1.2500   [   “left-bracket” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: Perform the execution semantics given below. 

 Execution: ( -- ) 

Enter interpretation state.  [ is an immediate word. 

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2540 ]. 

 

6.1.2510   [']   “bracket-tick” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Find name.  Append the run-
time semantics given below to the current definition. 

An ambiguous condition exists if name is not found. 

 Run-time: ( -- xt ) 

Place name’s execution token xt on the stack.  The execution token returned by the compiled 
phrase “['] X ” is the same value returned by “' X ” outside of compilation state. 

 See: 3.4.1 Parsing, A.6.1.0070 ', A.6.1.2033 POSTPONE, D.6.7 Immediacy. 
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6.1.2520   [CHAR]   “bracket-char” CORE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Append the run-time 
semantics given below to the current definition. 

 Run-time: ( -- char ) 

Place char, the value of the first character of name, on the stack. 

 See: 3.4.1 Parsing, 6.1.0895 CHAR. 

 
6.1.2540   ]   “right-bracket” CORE 

( -- ) 

Enter compilation state. 

 See: 3.4 The Forth text interpreter, 3.4.5 Compilation, 6.1.2500 [. 

 

6.2   Core extension words   
 
6.2.0060   #TIB   “number-t-i-b” CORE EXT 

( -- a-addr ) 

a-addr is the address of a cell containing the number of characters in the terminal input buffer. 

 Note: This word is obsolescent and is included as a concession to existing implementations. 

 
6.2.0200   .(   “dot-paren” CORE EXT 

 Compilation: Perform the execution semantics given below. 

 Execution: ( “ccc<paren>” -- ) 

Parse and display ccc delimited by ) (right parenthesis).  .( is an immediate word. 

 See: 3.4.1 Parsing, 6.1.0190 .". 

 
6.2.0210   .R   “dot-r” CORE EXT 

( n1 n2 -- ) 

Display n1 right aligned in a field n2 characters wide.  If the number of characters required to 
display n1 is greater than n2, all digits are displayed with no leading spaces in a field as wide as 
necessary. 

 
6.2.0260   0<>   “zero-not-equals” CORE EXT 

( x -- flag ) 

flag is true if and only if x is not equal to zero. 
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6.2.0280   0>   “zero-greater” CORE EXT 
( n -- flag ) 

flag is true if and only if n is greater than zero. 
 
6.2.0340   2>R   “two-to-r” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( x1 x2 -- ) ( R:  -- x1 x2 ) 

Transfer cell pair x1 x2 to the return stack.  Semantically equivalent to SWAP >R >R. 

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0410 2R>, 6.2.0415 2R@. 
 
6.2.0410   2R>   “two-r-from” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- x1 x2 )  ( R:  x1 x2 -- ) 

Transfer cell pair x1 x2 from the return stack.  Semantically equivalent to R> R> SWAP. 

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0415 2R@. 
 
6.2.0415   2R@   “two-r-fetch” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( -- x1 x2 )  ( R:  x1 x2 -- x1 x2 ) 

Copy cell pair x1 x2 from the return stack.  Semantically equivalent to 
R> R> 2DUP >R >R SWAP. 

 See: 3.2.3.3 Return stack, 6.1.0580 >R, 6.1.2060 R>, 6.1.2070 R@, 6.2.0340 2>R, 6.2.0410 2R>. 
 
6.2.0455   :NONAME   “colon-no-name” CORE EXT 

( C:  -- colon-sys )  ( S:  -- xt ) 

Create an execution token xt, enter compilation state and start the current definition, producing 
colon-sys.  Append the initiation semantics given below to the current definition. 

The execution semantics of xt will be determined by the words compiled into the body of the 
definition.  This definition can be executed later by using xt EXECUTE. 

If the control-flow stack is implemented using the data stack, colon-sys shall be the topmost 
item on the data stack.  See 3.2.3.2 Control-flow stack. 

 Initiation: ( i*x -- i*x )  ( R:  -- nest-sys ) 

Save implementation-dependent information nest-sys about the calling definition.  The stack 
effects i*x represent arguments to xt. 

 xt Execution: ( i*x -- j*x ) 

Execute the definition specified by xt.  The stack effects i*x and j*x represent arguments to and 
results from xt, respectively. 
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6.2.0500   <>   “not-equals” CORE EXT 

( x1 x2 -- flag ) 

flag is true if and only if x1 is not bit-for-bit the same as x2. 

 
 
 
6.2.0620   ?DO   “question-do” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- do-sys ) 

Put do-sys onto the control-flow stack.  Append the run-time semantics given below to the 
current definition.  The semantics are incomplete until resolved by a consumer of do-sys such 
as LOOP. 

 Run-time: ( n1|u1 n2|u2 -- ) ( R: --  | loop-sys ) 

If n1|u1 is equal to n2|u2, continue execution at the location given by the consumer of do-sys.  
Otherwise set up loop control parameters with index n2|u2 and limit n1|u1 and continue 
executing immediately following ?DO.  Anything already on the return stack becomes 
unavailable until the loop control parameters are discarded.  An ambiguous condition exists if 
n1|u1 and n2|u2 are not both of the same type. 

 See: 3.2.3.2 Control-flow stack, 6.1.0140 +LOOP, 6.1.1240 DO, 6.1.1680 I, 6.1.1760 LEAVE, 
6.1.1800 LOOP, 6.1.2380 UNLOOP. 

 
 
 
6.2.0700   AGAIN     CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: dest -- ) 

Append the run-time semantics given below to the current definition, resolving the backward 
reference dest. 

 Run-time: ( -- ) 

Continue execution at the location specified by dest.  If no other control flow words are used, 
any program code after AGAIN will not be executed. 

 See: 6.1.0760 BEGIN. 
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6.2.0855   C"   “c-quote” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by " (double-quote) and append the run-time semantics given below to the 
current definition. 

 Run-time: ( -- c-addr ) 

Return c-addr, a counted string consisting of the characters ccc.  A program shall not alter the 
returned string. 

 See: 3.4.1 Parsing, 6.1.2165 S", 11.6.1.2165 S".  

 
6.2.0873   CASE    CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- case-sys ) 

Mark the start of the CASE ... OF ... ENDOF ... ENDCASE  structure.  Append the 
run-time semantics given below to the current definition. 

 Run-time: ( -- ) 

Continue execution. 

 See: 6.2.1342 ENDCASE, 6.2.1343 ENDOF, 6.2.1950 OF. 

 

6.2.0945   COMPILE,   “compile-comma” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( xt -- ) 

Append the execution semantics of the definition represented by xt to the execution semantics 
of the current definition.   

 

6.2.0970   CONVERT    CORE EXT 

( ud1 c-addr1 -- ud2 c-addr2 ) 

ud2 is the result of converting the characters within the text beginning at the first character after 
c-addr1 into digits, using the number in BASE, and adding each digit to ud1 after multiplying 
ud1 by the number in BASE.  Conversion continues until a character that is not convertible is 
encountered.  c-addr2 is the location of the first unconverted character.  An ambiguous 
condition exists if ud2 overflows. 

 Note: This word is obsolescent and is included as a concession to existing implementations.  Its 
function is superseded by 6.1.0570 >NUMBER. 

 See: 3.2.1.2 Digit conversion. 
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6.2.1342   ENDCASE   “end-case” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: case-sys -- ) 

Mark the end of the CASE ... OF ... ENDOF ... ENDCASE  structure.  Use case-sys 
to resolve the entire structure.  Append the run-time semantics given below to the current 
definition. 

 Run-time: ( x -- ) 

Discard the case selector x and continue execution. 

 See: 6.2.0873 CASE, 6.2.1343 ENDOF, 6.2.1950 OF. 

 
6.2.1343   ENDOF   “end-of” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: case-sys1 of-sys -- case-sys2 ) 

Mark the end of the OF ... ENDOF part of the CASE structure.  The next location for a 
transfer of control resolves the reference given by of-sys.  Append the run-time semantics given 
below to the current definition.  Replace case-sys1 with case-sys2 on the control-flow stack, to 
be resolved by ENDCASE. 

 Run-time: ( -- ) 

Continue execution at the location specified by the consumer of case-sys2. 

 See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1950 OF. 

 
6.2.1350   ERASE    CORE EXT 

( addr u -- ) 

If u is greater than zero, clear all bits in each of u consecutive address units of memory 
beginning at addr . 

 
6.2.1390   EXPECT    CORE EXT 

( c-addr +n -- ) 

Receive a string of at most +n characters.  Display graphic characters as they are received.  A 
program that depends on the presence or absence of non-graphic characters in the string has an 
environmental dependency.  The editing functions, if any, that the system performs in order to 
construct the string of characters are implementation-defined. 

Input terminates when an implementation-defined line terminator is received or when the string 
is +n characters long.  When input terminates, nothing is appended to the string and the display 
is maintained in an implementation-defined way. 

Store the string at c-addr and its length in SPAN. 

 Note: This word is obsolescent and is included as a concession to existing implementations.  Its 
function is superseded by 6.1.0695 ACCEPT. 

 

! " # $ % & ' ( ) * + , - . / digits : ; < = > ? @ ALPHA [ \ ] ^ _ ` alpha { | } ~ 53 



ANSI X3.215-1994 

6.2.1485   FALSE    CORE EXT 

( -- false ) 

Return a false flag. 

 See: 3.1.3.1 Flags 

 
6.2.1660   HEX    CORE EXT 

( -- ) 

Set contents of BASE to sixteen. 

 
 
6.2.1850   MARKER    CORE EXT 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below. 

 name Execution: ( -- ) 

Restore all dictionary allocation and search order pointers to the state they had just prior to the 
definition of name.  Remove the definition of name and all subsequent definitions.  Restoration 
of any structures still existing that could refer to deleted definitions or deallocated data space is 
not necessarily provided.  No other contextual information such as numeric base is affected. 

 See: 3.4.1 Parsing, 15.6.2.1580 FORGET. 

 
 
6.2.1930   NIP    CORE EXT 

( x1 x2 -- x2 ) 

Drop the first item below the top of stack. 

 
 
6.2.1950   OF    CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- of-sys ) 

Put of-sys onto the control flow stack.  Append the run-time semantics given below to the 
current definition.  The semantics are incomplete until resolved by a consumer of of-sys such as 
ENDOF. 

 Run-time: ( x1 x2 --   | x1 ) 

If the two values on the stack are not equal, discard the top value and continue execution at the 
location specified by the consumer of of-sys, e.g., following the next ENDOF.  Otherwise, 
discard both values and continue execution in line. 

 See: 6.2.0873 CASE, 6.2.1342 ENDCASE, 6.2.1343 ENDOF. 
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6.2.2000   PAD    CORE EXT 
( -- c-addr ) 

c-addr is the address of a transient region that can be used to hold data for intermediate 
processing. 

 See: 3.3.3.6 Other transient regions. 

 
 
6.2.2008   PARSE    CORE EXT 

( char “ccc<char>” -- c-addr u ) 

Parse ccc delimited by the delimiter char. 

c-addr is the address (within the input buffer) and u is the length of the parsed string.  If the 
parse area was empty, the resulting string has a zero length. 

 See: 3.4.1 Parsing. 

 
 
6.2.2030   PICK    CORE EXT 

( xu ... x1 x0 u -- xu ... x1 x0 xu ) 

Remove u.  Copy the xu to the top of the stack.  An ambiguous condition exists if there are less 
than u+2 items on the stack before PICK is executed. 

 
 
6.2.2040   QUERY    CORE EXT 

( -- ) 

Make the user input device the input source.  Receive input into the terminal input buffer, 
replacing any previous contents.  Make the result, whose address is returned by TIB, the input 
buffer.  Set >IN to zero. 

 Note: This word is obsolescent and is included as a concession to existing implementations. 

 
 
6.2.2125   REFILL    CORE EXT 

( -- flag ) 

Attempt to fill the input buffer from the input source, returning a true flag if successful. 

When the input source is the user input device, attempt to receive input into the terminal input 
buffer.  If successful, make the result the input buffer, set >IN to zero, and return true.  Receipt 
of a line containing no characters is considered successful.  If there is no input available from 
the current input source, return false. 

When the input source is a string from EVALUATE, return false and perform no other action. 

 See: 7.6.2.2125 REFILL, 11.6.2.2125 REFILL. 
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6.2.2148   RESTORE-INPUT    CORE EXT 

( xn ... x1 n -- flag ) 

Attempt to restore the input source specification to the state described by x1 through xn.  flag is 
true if the input source specification cannot be so restored. 

An ambiguous condition exists if the input source represented by the arguments is not the same 
as the current input source. 

 See: A.6.2.2182 SAVE-INPUT. 

 
6.2.2150   ROLL    CORE EXT 

( xu xu-1 ... x0 u -- xu-1 ... x0 xu ) 

Remove u.  Rotate u+1 items on the top of the stack.  An ambiguous condition exists if there 
are less than u+2 items on the stack before ROLL is executed. 

 
6.2.2182   SAVE-INPUT    CORE EXT 

( -- xn ... x1 n ) 

x1 through xn describe the current state of the input source specification for later use by 
RESTORE-INPUT. 

 
6.2.2218   SOURCE-ID   “source-i-d” CORE EXT 

( -- 0 | -1 ) 

Identifies the input source as follows: 

SOURCE-ID Input source 
 -1 String (via EVALUATE) 
 0 User input device 

 
 See: 11.6.1.2218 SOURCE-ID. 

 
6.2.2240   SPAN    CORE EXT 

( -- a-addr ) 

a-addr is the address of a cell containing the count of characters stored by the last execution of 
EXPECT. 

 Note: This word is obsolescent and is included as a concession to existing implementations. 

 
6.2.2290   TIB   “t-i-b” CORE EXT 

( -- c-addr ) 

c-addr is the address of the terminal input buffer. 

 Note: This word is obsolescent and is included as a concession to existing implementations. 
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6.2.2295   TO    CORE EXT 

 Interpretation: ( x “<spaces>name” -- ) 

Skip leading spaces and parse name delimited by a space.  Store x in name.  An ambiguous 
condition exists if name was not defined by VALUE. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading spaces and parse name delimited by a space.  Append the run-time semantics 
given below to the current definition.  An ambiguous condition exists if name was not defined 
by VALUE. 

 Run-time: ( x -- ) 

Store x in name. 

 Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO. 

 See: 6.2.2405 VALUE, 13.6.1.2295 TO. 

 
6.2.2298   TRUE    CORE EXT 

( -- true ) 

Return a true flag, a single-cell value with all bits set. 

 See: 3.1.3.1 Flags. 

 
6.2.2300   TUCK    CORE EXT 

( x1 x2 -- x2 x1 x2 ) 

Copy the first (top) stack item below the second stack item. 

 
6.2.2330   U.R   “u-dot-r” CORE EXT 

( u n -- ) 

Display u right aligned in a field n characters wide.  If the number of characters required to 
display u is greater than n, all digits are displayed with no leading spaces in a field as wide as 
necessary. 

 
6.2.2350   U>   “u-greater-than” CORE EXT 

( u1 u2 -- flag ) 

flag is true if and only if u1 is greater than u2. 

 See: 6.1.0540 >. 

 
6.2.2395   UNUSED    CORE EXT 

( -- u ) 

u is the amount of space remaining in the region addressed by HERE , in address units. 
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6.2.2405   VALUE    CORE EXT 

( x “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below, with an initial value equal to x. 

name is referred to as a “value”. 

 name Execution: ( -- x ) 

Place x on the stack.  The value of x is that given when name was created, until the phrase x 
TO name is executed, causing a new value of x to be associated with name. 

 See: 3.4.1 Parsing. 

 
6.2.2440   WITHIN    CORE EXT 

( n1|u1 n2|u2 n3|u3 -- flag ) 

Perform a comparison of a test value n1|u1 with a lower limit n2|u2 and an upper limit n3|u3, 
returning true if either (n2|u2 < n3|u3 and (n2|u2 <= n1|u1 and n1|u1 < n3|u3)) or (n2|u2 > n3|u3 
and (n2|u2 <= n1|u1 or n1|u1 < n3|u3)) is true, returning false otherwise.  An ambiguous 
condition exists if n1|u1, n2|u2, and n3|u3 are not all the same type. 

 
6.2.2530   [COMPILE]   “bracket-compile” CORE EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Find name.  If name has other 
than default compilation semantics, append them to the current definition; otherwise append the 
execution semantics of name.  An ambiguous condition exists if name is not found. 

 See: 3.4.1 Parsing. 

 
6.2.2535   \   “backslash” CORE EXT 

 Compilation: Perform the execution semantics given below. 

 Execution: ( “ccc<eol>”-- ) 

Parse and discard the remainder of the parse area.  \ is an immediate word. 

 See: 7.6.2.2535 \. 
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7.   The optional Block word set   

7.1   Introduction   

7.2   Additional terms   
block:  1024 characters of data on mass storage, designated by a block number.   

block buffer:  A block-sized region of data space where a block is made temporarily available for use.  
The current block buffer is the block buffer most recently accessed by BLOCK, BUFFER, LOAD, LIST, or 
THRU. 

7.3   Additional usage requirements   

7.3.1   Environmental queries   
Append table 7.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 7.1 – Environmental Query Strings   

String Value data type Constant? Meaning 
BLOCK flag no block word set present 
BLOCK-EXT flag no block extensions word set present 

 

7.3.2   Data space   
A program may access memory within a valid block buffer. 

See:  3.3.3 Data Space. 

7.3.3   Block buffer regions   
The address of a block buffer returned by BLOCK or BUFFER is transient.  A call to BLOCK or BUFFER 
may render a previously-obtained block-buffer address invalid, as may a call to any word that: 

– parses: 
– displays characters on the user output device, such as TYPE or EMIT; 
– controls the user output device, such as CR or AT-XY; 
– receives or tests for the presence of characters from the user input device such as ACCEPT or KEY; 
– waits for a condition or event, such as MS or EKEY; 
– manages the block buffers, such as FLUSH, SAVE-BUFFERS, or EMPTY-BUFFERS; 
– performs any operation on a file or file-name directory that implies I/O, such as REFILL or any word 

that returns an ior; 
– implicitly performs I/O, such as text interpreter nesting and un-nesting when files are being used 

(including un-nesting implied by THROW). 

If the input source is a block, these restrictions also apply to the address returned by SOURCE. 

Block buffers are uniquely assigned to blocks. 
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7.3.4   Parsing   
The Block word set implements an alternative input source for the text interpreter.  When the input source 
is a block, BLK shall contain the non-zero block number and the input buffer is the 1024-character buffer 
containing that block. 

A block is conventionally displayed as 16 lines of 64 characters. 

A program may switch the input source to a block by using LOAD or THRU.  Input sources may be nested 
using LOAD and EVALUATE in any order. 

A program may reposition the parse area within a block by manipulating >IN.  More extensive 
repositioning can be accomplished using SAVE-INPUT and RESTORE-INPUT. 

See:  3.4.1 Parsing. 

7.3.5   Possible action on an ambiguous condition   
See:  3.4.4 Possible action on an ambiguous condition. 

–  A system with the Block word set may set interpretation state and interpret a block. 

7.4   Additional documentation requirements   

7.4.1   System documentation   

7.4.1.1   Implementation-defined options   

– the format used for display by 7.6.2.1770 LIST (if implemented); 
– the length of a line affected by 7.6.2.2535 \ (if implemented). 

7.4.1.2   Ambiguous conditions   

– Correct block read was not possible; 
– I/O exception in block transfer; 
– Invalid block number (7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1790 LOAD); 
– A program directly alters the contents of 7.6.1.0790 BLK; 
– No current block buffer for 7.6.1.2400 UPDATE. 

7.4.1.3  Other system documentation   

– any restrictions a multiprogramming system places on the use of buffer addresses; 
– the number of blocks available for source text and data. 

7.4.2   Program documentation   
– the number of blocks required by the program. 

7.5   Compliance and labeling   

7.5.1   ANS Forth systems   
The phrase “Providing the Block word set” shall be appended to the label of any Standard System that 
provides all of the Block word set. 

The phrase “Providing name(s) from the Block Extensions word set” shall be appended to the label of any 
Standard System that provides portions of the Block Extensions word set. 

The phrase “Providing the Block Extensions word set” shall be appended to the label of any Standard 
System that provides all of the Block and Block Extensions word sets. 
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7.5.2   ANS Forth programs   
The phrase “Requiring the Block word set” shall be appended to the label of Standard Programs that 
require the system to provide the Block word set. 

The phrase “Requiring name(s) from the Block Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the Block Extensions word set. 

The phrase “Requiring the Block Extensions word set” shall be appended to the label of Standard Programs 
that require the system to provide all of the Block and Block Extensions word sets. 
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7.6   Glossary   

7.6.1   Block words   
7.6.1.0790   BLK   “b-l-k” BLOCK 

( -- a-addr ) 

a-addr is the address of a cell containing zero or the number of the mass-storage block being 
interpreted.  If BLK contains zero, the input source is not a block and can be identified by 
SOURCE-ID, if SOURCE-ID is available.  An ambiguous condition exists if a program 
directly alters the contents of BLK. 

 See: 7.3.3 Block buffer regions. 

 
7.6.1.0800   BLOCK    BLOCK 

( u -- a-addr ) 

a-addr is the address of the first character of the block buffer assigned to mass-storage block u.  
An ambiguous condition exists if u is not an available block number. 

If block u is already in a block buffer, a-addr is the address of that block buffer. 

If block u is not already in memory and there is an unassigned block buffer, transfer block u 
from mass storage to an unassigned block buffer.  a-addr is the address of that block buffer. 

If block u is not already in memory and there are no unassigned block buffers, unassign a block 
buffer.  If the block in that buffer has been UPDATEd, transfer the block to mass storage and 
transfer block u from mass storage into that buffer.  a-addr is the address of that block buffer. 

At the conclusion of the operation, the block buffer pointed to by a-addr is the current block 
buffer and is assigned to u. 

 
7.6.1.0820   BUFFER    BLOCK 

( u -- a-addr ) 

a-addr is the address of the first character of the block buffer assigned to block u.  The contents 
of the block are unspecified.  An ambiguous condition exists if u is not an available block 
number. 

If block u is already in a block buffer, a-addr is the address of that block buffer. 

If block u is not already in memory and there is an unassigned buffer, a-addr is the address of 
that block buffer. 

If block u is not already in memory and there are no unassigned block buffers, unassign a block 
buffer.  If the block in that buffer has been UPDATEd, transfer the block to mass storage.  a-
addr is the address of that block buffer. 

At the conclusion of the operation, the block buffer pointed to by a-addr is the current block 
buffer and is assigned to u. 

 See: 7.6.1.0800 BLOCK. 
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7.6.1.1360   EVALUATE    BLOCK 

Extend the semantics of 6.1.1360 EVALUATE to include: 

Store zero in BLK. 

 
7.6.1.1559   FLUSH    BLOCK 

( -- ) 

Perform the function of SAVE-BUFFERS, then unassign all block buffers. 
 
7.6.1.1790   LOAD    BLOCK 

( i*x u -- j*x ) 

Save the current input-source specification.  Store u in BLK (thus making block u the input 
source and setting the input buffer to encompass its contents), set >IN to zero, and interpret.  
When the parse area is exhausted, restore the prior input source specification.  Other stack 
effects are due to the words LOADed. 

An ambiguous condition exists if u is zero or is not a valid block number. 

 See: 3.4 The Forth text interpreter. 

 
7.6.1.2180   SAVE-BUFFERS    BLOCK 

( -- ) 

Transfer the contents of each UPDATEd block buffer to mass storage.  Mark all buffers as 
unmodified. 

 
7.6.1.2400   UPDATE    BLOCK 

( -- ) 

Mark the current block buffer as modified.  An ambiguous condition exists if there is no 
current block buffer. 

UPDATE does not immediately cause I/O. 

 See: 7.6.1.0800 BLOCK, 7.6.1.0820 BUFFER, 7.6.1.1559 FLUSH, 7.6.1.2180 SAVE-BUFFERS. 

 

7.6.2   Block extension words   
 
7.6.2.1330   EMPTY-BUFFERS    BLOCK EXT 

( -- ) 

Unassign all block buffers.  Do not transfer the contents of any UPDATEd block buffer to mass 
storage. 

 See: 7.6.1.0800 BLOCK. 
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7.6.2.1770   LIST    BLOCK EXT 

( u -- ) 

Display block u in an implementation-defined format.  Store u in SCR. 

 See: 7.6.1.0800 BLOCK. 

 
7.6.2.2125   REFILL    BLOCK EXT 

( -- flag ) 

Extend the execution semantics of 6.2.2125 REFILL with the following: 

When the input source is a block, make the next block the input source and current input buffer 
by adding one to the value of BLK and setting >IN to zero.  Return true if the new value of 
BLK is a valid block number, otherwise false. 

 See: 6.2.2125 REFILL, 11.6.2.2125 REFILL. 

 
7.6.2.2190   SCR   “s-c-r” BLOCK EXT 

( -- a-addr ) 

a-addr is the address of a cell containing the block number of the block most recently LISTed. 

 
7.6.2.2280   THRU    BLOCK EXT 

( i*x u1 u2 -- j*x ) 

LOAD the mass storage blocks numbered u1 through u2 in sequence.  Other stack effects are 
due to the words LOADed. 

 
7.6.2.2535   \   “backslash” BLOCK EXT 

Extend the semantics of 6.2.2535 \ to be: 

 Compilation: Perform the execution semantics given below. 

 Execution: ( “ccc<eol>”-- ) 

If BLK contains zero, parse and discard the remainder of the parse area; otherwise parse and 
discard the portion of the parse area corresponding to the remainder of the current line.  \ is an 
immediate word. 
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8.   The optional Double-Number word set   

8.1   Introduction   
Sixteen-bit Forth systems often use double-length numbers.  However, many Forths on small embedded 
systems do not, and many users of Forth on systems with a cell size of 32 bits or more find that the use of 
double-length numbers is much diminished.  Therefore, the words that manipulate double-length entities 
have been placed in this optional word set. 

8.2   Additional terms and notation   
None. 

8.3   Additional usage requirements   

8.3.1   Environmental queries   
Append table 8.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 8.1 – Environmental Query Strings   

String Value data type Constant? Meaning 
DOUBLE flag no double-number word set present 
DOUBLE-EXT flag no double-number extensions word set present 

 

8.3.2   Text interpreter input number conversion   
When the text interpreter processes a number that is immediately followed by a decimal point and is not 
found as a definition name, the text interpreter shall convert it to a double-cell number. 

For example, entering DECIMAL 1234 leaves the single-cell number 1234 on the stack, 
and entering DECIMAL 1234. leaves the double-cell number 1234 0 on the stack. 

See:  3.4.1.3 Text interpreter input number conversion. 

8.4   Additional documentation requirements   

8.4.1   System documentation   

8.4.1.1   Implementation-defined options   

– no additional requirements. 

8.4.1.2   Ambiguous conditions   

– d outside range of n in 8.6.1.1140 D>S. 

8.4.1.3   Other system documentation   

– no additional requirements. 

8.4.2   Program documentation   
– no additional requirements. 
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8.5   Compliance and labeling   

8.5.1   ANS Forth systems   
The phrase “Providing the Double-Number word set” shall be appended to the label of any Standard 
System that provides all of the Double-Number word set. 

The phrase “Providing name(s) from the Double-Number Extensions word set” shall be appended to the 
label of any Standard System that provides portions of the Double-Number Extensions word set. 

The phrase “Providing the Double-Number Extensions word set” shall be appended to the label of any 
Standard System that provides all of the Double-Number and Double-Number Extensions word sets. 

8.5.2   ANS Forth programs   
The phrase “Requiring the Double-Number word set” shall be appended to the label of Standard Programs 
that require the system to provide the Double-Number word set. 

The phrase “Requiring name(s) from the Double-Number Extensions word set” shall be appended to the 
label of Standard Programs that require the system to provide portions of the Double-Number Extensions 
word set. 

The phrase “Requiring the Double-Number Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide all of the Double-Number and Double-Number 
Extensions word sets. 

8.6   Glossary   

8.6.1   Double-Number words   
8.6.1.0360   2CONSTANT   “two-constant” DOUBLE 

( x1 x2 “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below. 

name is referred to as a “two-constant”. 

 name Execution: ( -- x1 x2 ) 

Place cell pair x1 x2 on the stack. 

 See: 3.4.1 Parsing. 

 
8.6.1.0390   2LITERAL   “two-literal” DOUBLE 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( x1 x2 -- ) 

Append the run-time semantics below to the current definition. 

 Run-time: ( -- x1 x2 ) 

Place cell pair x1 x2 on the stack. 
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8.6.1.0440   2VARIABLE   “two-variable” DOUBLE 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below.  Reserve two consecutive cells of data space. 

name is referred to as a “two-variable”. 

 name Execution: ( -- a-addr ) 

a-addr is the address of the first (lowest address) cell of two consecutive cells in data space 
reserved by 2VARIABLE when it defined name.  A program is responsible for initializing the 
contents. 

 See: 3.4.1 Parsing, 6.1.2410 VARIABLE. 

 
8.6.1.1040   D+   “d-plus” DOUBLE 

( d1|ud1 d2|ud2 -- d3|ud3 ) 

Add d2|ud2 to d1|ud1, giving the sum d3|ud3. 

 
8.6.1.1050   D-   “d-minus” DOUBLE 

( d1|ud1 d2|ud2 -- d3|ud3 ) 

Subtract d2|ud2 from d1|ud1, giving the difference d3|ud3. 

 
8.6.1.1060   D.   “d-dot” DOUBLE 

( d -- ) 

Display d in free field format. 

 
8.6.1.1070   D.R   “d-dot-r” DOUBLE 

( d n -- ) 

Display d right aligned in a field n characters wide. If the number of characters required to 
display d is greater than n, all digits are displayed with no leading spaces in a field as wide as 
necessary. 

 
8.6.1.1075   D0<   “d-zero-less” DOUBLE 

( d -- flag ) 

flag is true if and only if d is less than zero. 

 
8.6.1.1080   D0=   “d-zero-equals” DOUBLE 

( xd -- flag ) 

flag is true if and only if xd is equal to zero. 
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8.6.1.1090   D2*   “d-two-star” DOUBLE 

( xd1 -- xd2 ) 

xd2 is the result of shifting xd1 one bit toward the most-significant bit, filling the vacated least-
significant bit with zero. 

 
 
8.6.1.1100   D2/   “d-two-slash” DOUBLE 

( xd1 -- xd2 ) 

xd2 is the result of shifting xd1 one bit toward the least-significant bit, leaving the most-
significant bit unchanged. 

 
 
8.6.1.1110   D<   “d-less-than” DOUBLE 

( d1 d2 -- flag ) 

flag is true if and only if d1 is less than d2. 

 
 
8.6.1.1120   D=   “d-equals” DOUBLE 

( xd1 xd2 -- flag ) 

flag is true if and only if xd1 is bit-for-bit the same as xd2. 

 
 
8.6.1.1140   D>S   “d-to-s” DOUBLE 

( d -- n ) 

n is the equivalent of d.  An ambiguous condition exists if d lies outside the range of a signed 
single-cell number. 

 
 
8.6.1.1160   DABS   “d-abs” DOUBLE 

( d -- ud ) 

ud is the absolute value of d.  

 
 
8.6.1.1210   DMAX   “d-max” DOUBLE 

( d1 d2 -- d3 ) 

d3 is the greater of d1 and d2. 
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8.6.1.1220   DMIN   “d-min” DOUBLE 

( d1 d2 -- d3 ) 

d3 is the lesser of d1 and d2. 

 
8.6.1.1230   DNEGATE   “d-negate” DOUBLE 

( d1 -- d2 ) 

d2 is the negation of d1. 

 
8.6.1.1820   M*/   “m-star-slash” DOUBLE 

( d1 n1 +n2 -- d2 ) 

Multiply d1 by n1 producing the triple-cell intermediate result t.  Divide t by +n2 giving the 
double-cell quotient d2.  An ambiguous condition exists if +n2 is zero or negative, or the 
quotient lies outside of the range of a double-precision signed integer. 

 
8.6.1.1830   M+   “m-plus” DOUBLE 

( d1|ud1 n -- d2|ud2 ) 

Add n to d1|ud1, giving the sum d2|ud2. 

 

8.6.2   Double-Number extension words   
8.6.2.0420   2ROT   “two-rote” DOUBLE EXT 

( x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2 ) 

Rotate the top three cell pairs on the stack bringing cell pair x1 x2 to the top of the stack. 

 
8.6.2.1270   DU<   “d-u-less” DOUBLE EXT 

( ud1 ud2 -- flag ) 

flag is true if and only if ud1 is less than ud2. 
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9.   The optional Exception word set   

9.1   Introduction   

9.2   Additional terms and notation   
None. 

9.3   Additional usage requirements   

9.3.1   THROW values   
The THROW values {-255...-1} shall be used only as assigned by this Standard.  The values {-4095...-256} 
shall be used only as assigned by a system. 

If the File-Access or Memory-Allocation word sets are implemented, it is recommended that the non-zero 
values of ior lie within the range of system THROW values, as defined above.  In an operating-system 
environment, this can sometimes be accomplished by “biasing” the range of operating-system exception-
codes to fall within the THROW range. 

Programs shall not define values for use with THROW in the range {-4095...-1}. 

9.3.2   Exception frame   
An exception frame is the implementation-dependent set of information recording the current execution 
state necessary for the proper functioning of CATCH and THROW.  It often includes the depths of the data 
stack and return stack. 

9.3.3   Exception stack   
A stack used for the nesting of exception frames by CATCH and THROW.  It may be, but need not be, 
implemented using the return stack. 

9.3.4   Environmental queries   
Append table 9.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 9.1 – Environmental query strings   

String Value data type Constant? Meaning 
EXCEPTION flag no Exception word set present 
EXCEPTION-EXT flag no Exception extensions word set present 

 

9.3.5   Possible actions on an ambiguous condition   
A system choosing to execute THROW when detecting one of the ambiguous conditions listed in table 9.3.6 
shall use the throw code listed there. 

See:  3.4.4 Possible actions on an ambiguous condition. 
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Table 9.2 – THROW code assignments   
Code Reserved for Code Reserved for 
 -1 ABORT 
 -2 ABORT" 
 -3 stack overflow 
 -4 stack underflow 
 -5 return stack overflow 
 -6 return stack underflow 
 -7 do-loops nested too deeply during execution 
 -8 dictionary overflow 
 -9 invalid memory address 
 -10 division by zero 
 -11 result out of range 
 -12 argument type mismatch 
 -13 undefined word 
 -14 interpreting a compile-only word 
 -15 invalid FORGET 
 -16 attempt to use zero-length string as a name 
 -17 pictured numeric output string overflow 
 -18 parsed string overflow 
 -19 definition name too long 
 -20 write to a read-only location 
 -21 unsupported operation 

(e.g., AT-XY on a too-dumb terminal) 
 -22 control structure mismatch 
 -23 address alignment exception 
 -24 invalid numeric argument 
 -25 return stack imbalance 
 -26 loop parameters unavailable 
 -27 invalid recursion 
 -28 user interrupt 
 -29 compiler nesting 

 -30 obsolescent feature 
 -31 >BODY used on non-CREATEd definition 
 -32 invalid name argument (e.g., TO xxx) 
 -33 block read exception 
 -34 block write exception 
 -35 invalid block number 
 -36 invalid file position 
 -37 file I/O exception 
 -38 non-existent file 
 -39 unexpected end of file 
 -40 invalid BASE for floating point conversion 
 -41 loss of precision 
 -42 floating-point divide by zero 
 -43 floating-point result out of range 
 -44 floating-point stack overflow 
 -45 floating-point stack underflow 
 -46 floating-point invalid argument 
 -47 compilation word list deleted 
 -48 invalid POSTPONE 
 -49 search-order overflow 
 -50 search-order underflow 
 -51 compilation word list changed 
 -52 control-flow stack overflow 
 -53 exception stack overflow 
 -54 floating-point underflow 
 -55 floating-point unidentified fault 
 -56 QUIT 
 -57 exception in sending or receiving a 

character 
 -58 [IF], [ELSE], or [THEN] exception 

 

9.3.6   Exception handling   
There are several methods of coupling CATCH and THROW to other procedural nestings.  The usual nestings 
are the execution of definitions, use of the return stack, use of loops, instantiation of locals and nesting of 
input sources (i.e., with LOAD, EVALUATE, or INCLUDE-FILE). 

When a THROW returns control to a CATCH, the system shall un-nest not only definitions, but also, if 
present, locals and input source specifications, to return the system to its proper state for continued 
execution past the CATCH. 

9.4   Additional documentation requirements   

9.4.1   System documentation   

9.4.1.1   Implementation-defined options   

– Values used in the system by 9.6.1.0875 CATCH and 9.6.1.2275 THROW (9.3.1 THROW values, 9.3.5 
Possible actions on an ambiguous condition). 
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9.4.1.2   Ambiguous conditions   

– no additional requirements. 

9.4.1.3   Other system documentation   

– no additional requirements. 

9.4.2   Program documentation   
– no additional requirements. 

9.5   Compliance and labeling   

9.5.1   ANS Forth systems   
The phrase “Providing the Exception word set” shall be appended to the label of any Standard System that 
provides all of the Exception word set. 

The phrase “Providing name(s) from the Exception Extensions word set” shall be appended to the label of 
any Standard System that provides portions of the Exception Extensions word set. 

The phrase “Providing the Exception Extensions word set” shall be appended to the label of any Standard 
System that provides all of the Exception and Exception Extensions word sets. 

9.5.2   ANS Forth programs   
The phrase “Requiring the Exception word set” shall be appended to the label of Standard Programs that 
require the system to provide the Exception word set. 

The phrase “Requiring name(s) from the Exception Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the Exception Extensions word set. 

The phrase “Requiring the Exception Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the Exception and Exception Extensions word sets. 

9.6   Glossary   

9.6.1   Exception words   
9.6.1.0875   CATCH    EXCEPTION 

( i*x xt -- j*x 0 | i*x n ) 

Push an exception frame on the exception stack and then execute the execution token xt (as 
with EXECUTE) in such a way that control can be transferred to a point just after CATCH if 
THROW is executed during the execution of xt. 

If the execution of xt completes normally (i.e., the exception frame pushed by this CATCH is 
not popped by an execution of THROW) pop the exception frame and return zero on top of the 
data stack, above whatever stack items would have been returned by xt EXECUTE.  Otherwise, 
the remainder of the execution semantics are given by THROW. 
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9.6.1.2275   THROW    EXCEPTION 

( k*x n -- k*x | i*x n ) 

If any bits of n are non-zero, pop the topmost exception frame from the exception stack, along 
with everything on the return stack above that frame.  Then restore the input source 
specification in use before the corresponding CATCH and adjust the depths of all stacks defined 
by this Standard so that they are the same as the depths saved in the exception frame (i is the 
same number as the i in the input arguments to the corresponding CATCH), put n on top of the 
data stack, and transfer control to a point just after the CATCH that pushed that exception 
frame. 

If the top of the stack is non zero and there is no exception frame on the exception stack, the 
behavior is as follows: 

If n is minus-one (-1), perform the function of 6.1.0670 ABORT (the version of ABORT in 
the Core word set), displaying no message. 
If n is minus-two, perform the function of 6.1.0680 ABORT" (the version of ABORT" in 
the Core word set), displaying the characters ccc associated with the ABORT" that 
generated the THROW. 
Otherwise, the system may display an implementation-dependent message giving 
information about the condition associated with the THROW code n. Subsequently, the 
system shall perform the function of 6.1.0670 ABORT (the version of ABORT in the Core 
word set). 

 
9.6.2   Exception extension words   
9.6.2.0670   ABORT    EXCEPTION EXT 

Extend the semantics of 6.1.0670 ABORT to be: 

( i*x -- ) ( R: j*x -- ) 

Perform the function of -1 THROW . 

 See: 6.1.0670 ABORT. 

 
9.6.2.0680   ABORT"   “abort-quote” EXCEPTION EXT 

Extend the semantics of 6.1.0680 ABORT" to be: 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by a " (double-quote).  Append the run-time semantics given below to the 
current definition.   

 Run-time: ( i*x x1 --  | i*x ) ( R: j*x --  | j*x ) 

Remove x1 from the stack.  If any bit of x1 is not zero, perform the function of -2 THROW, 
displaying ccc if there is no exception frame on the exception stack. 

 See: 3.4.1 Parsing, 6.1.0680 ABORT". 
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10.   The optional Facility word set   

10.1   Introduction   

10.2   Additional terms and notation   
None. 

10.3   Additional usage requirements   

10.3.1   Character types   
Programs that use more than seven bits of a character by 10.6.2.1305 EKEY have an environmental 
dependency. 

See:  3.1.2 Character types. 

10.3.2   Environmental queries   
Append table 10.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 10.1 – Environmental query strings   

String Value data type Constant? Meaning 
FACILITY flag no facility word set present 
FACILITY-EXT flag no facility extensions word set present 

 

10.4   Additional documentation requirements   

10.4.1   System documentation   

10.4.1.1   Implementation-defined options   

– encoding of keyboard events (10.6.2.1305 EKEY); 
– duration of a system clock tick; 
– repeatability to be expected from execution of 10.6.2.1905 MS. 

10.4.1.2   Ambiguous conditions   

– 10.6.1.0742 AT-XY operation can't be performed on user output device. 

10.4.1.3   Other system documentation   

– no additional requirements. 

10.4.2   Program documentation   

10.4.2.1   Environmental dependencies   

– using more than seven bits of a character in 10.6.2.1305 EKEY. 

10.4.2.2   Other program documentation   

– no additional requirements. 
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10.5   Compliance and labeling   

10.5.1   ANS Forth systems   
The phrase “Providing the Facility word set” shall be appended to the label of any Standard System that 
provides all of the Facility word set. 

The phrase “Providing name(s) from the Facility Extensions word set” shall be appended to the label of 
any Standard System that provides portions of the Facility Extensions word set. 

The phrase “Providing the Facility Extensions word set” shall be appended to the label of any Standard 
System that provides all of the Facility and Facility Extensions word sets. 

10.5.2   ANS Forth programs   
The phrase “Requiring the Facility word set” shall be appended to the label of Standard Programs that 
require the system to provide the Facility word set. 

The phrase “Requiring name(s) from the Facility Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the Facility Extensions word set. 

The phrase “Requiring the Facility Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the Facility and Facility Extensions word sets. 

10.6   Glossary   

10.6.1   Facility words   
10.6.1.0742   AT-XY   “at-x-y” FACILITY 

( u1 u2 -- ) 

Perform implementation-dependent steps so that the next character displayed will appear in 
column u1, row u2 of the user output device, the upper left corner of which is column zero, row 
zero.  An ambiguous condition exists if the operation cannot be performed on the user output 
device with the specified parameters. 

 
10.6.1.1755   KEY?   “key-question” FACILITY 

( -- flag ) 

If a character is available, return true.  Otherwise, return false.  If non-character keyboard 
events are available before the first valid character, they are discarded and are subsequently 
unavailable.  The character shall be returned by the next execution of KEY. 

After KEY? returns with a value of true, subsequent executions of KEY? prior to the execution 
of KEY or EKEY also return true, without discarding keyboard events. 

 
10.6.1.2005   PAGE    FACILITY 

( -- ) 

Move to another page for output.  Actual function depends on the output device.  On a 
terminal, PAGE clears the screen and resets the cursor position to the upper left corner.  On a 
printer, PAGE performs a form feed. 
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10.6.2   Facility extension words   
10.6.2.1305   EKEY   “e-key” FACILITY EXT 

( -- u ) 

Receive one keyboard event u.  The encoding of keyboard events is implementation defined. 

 See: 10.6.1.1755 KEY?, 6.1.1750 KEY. 

 
10.6.2.1306   EKEY>CHAR   “e-key-to-char” FACILITY EXT 

( u -- u false | char true ) 

If the keyboard event u corresponds to a character in the implementation-defined character set, 
return that character and true.  Otherwise return u and false. 

 
10.6.2.1307   EKEY?   “e-key-question” FACILITY EXT 

( -- flag ) 

If a keyboard event is available, return true.  Otherwise return false.  The event shall be 
returned by the next execution of EKEY. 

After EKEY? returns with a value of true, subsequent executions of EKEY? prior to the 
execution of KEY, KEY? or EKEY also return true, referring to the same event. 

 
10.6.2.1325   EMIT?   “emit-question” FACILITY EXT 

( -- flag ) 

flag is true if the user output device is ready to accept data and the execution of EMIT in place 
of EMIT? would not have suffered an indefinite delay.  If the device status is indeterminate, 
flag is true. 

 
10.6.2.1905   MS    FACILITY EXT 

( u -- ) 

Wait at least u milliseconds. 

 Note: The actual length and variability of the time period depends upon the implementation-defined 
resolution of the system clock and upon other system and computer characteristics beyond the 
scope of this Standard. 

 
10.6.2.2292   TIME&DATE   “time-and-date” FACILITY EXT 

( -- +n1 +n2 +n3 +n4 +n5 +n6 ) 

Return the current time and date.  +n1 is the second {0...59}, +n2 is the minute {0...59}, +n3 is 
the hour {0...23}, +n4 is the day {1...31} +n5 is the month {1...12}, and +n6 is the year (e.g., 
1991). 
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11.   The optional File-Access word set   

11.1   Introduction   
These words provide access to mass storage in the form of “files” under the following assumptions: 

– files are provided by a host operating system; 
– file names are represented as character strings; 
– the format of file names is determined by the host operating system; 
– an open file is identified by a single-cell file identifier (fileid); 
– file-state information (e.g., position, size) is managed by the host operating system; 
– file contents are accessed as a sequence of characters; 
– file read operations return an actual transfer count, which can differ from the requested transfer count. 

11.2   Additional terms   
file-access method:  A permissible means of accessing a file, such as “read/write” or “read only”. 

file position:  The character offset from the start of the file. 

input file:  The file, containing a sequence of lines, that is the input source. 

11.3   Additional usage requirements   

11.3.1   Data types   
Append table 11.1 to table 3.1. 

Table 11.1 – Data types   
Symbol Data type Size on stack 
ior I/O results 1 cell 
fam file access method 1 cell 
fileid file identifiers 1 cell 

 

11.3.1.1   File identifiers   

File identifiers are implementation-dependent single-cell values that are passed to file operators to 
designate specific files.  Opening a file assigns a file identifier, which remains valid until closed. 

11.3.1.2   I/O results   

I/O results are single-cell numbers indicating the result of I/O operations.  A value of zero indicates that the 
I/O operation completed successfully; other values and their meanings are implementation-defined.  
Reaching the end of a file shall be reported as zero. 

An I/O exception in the execution of a File-Access word that can return an I/O result shall not cause a 
THROW; exception indications are returned in the ior. 

11.3.1.3   File access methods   

File access methods are implementation-defined single-cell values. 

11.3.1.4   File names   

A character string containing the name of the file.  The file name may include an implementation-
dependent path name.  The format of file names is implementation defined. 
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11.3.2   Blocks in files   
If the File-Access word set is implemented, the Block word set shall be implemented. 

Blocks may, but need not, reside in files.  When they do: 

– Block numbers may be mapped to one or more files by implementation-defined means.  An ambiguous 
condition exists if a requested block number is not currently mapped; 

– An UPDATEd block that came from a file shall be transferred back to the same file. 

11.3.3   Environmental queries   
Append table 11.2 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 11.2 – Environmental query strings   

String Value data type Constant? Meaning 
FILE flag no file word set present 
FILE-EXT flag no file extensions word set present 

 

11.3.4   Input source   
The File-Access word set creates another input source for the text interpreter.  When the input source is a 
text file, BLK shall contain zero, SOURCE-ID shall contain the fileid of that text file, and the input buffer 
shall contain one line of the text file.   

Input with INCLUDED, INCLUDE-FILE, LOAD and EVALUATE shall be nestable in any order to at least 
eight levels. 

A program that uses more than eight levels of input-file nesting has an environmental dependency. 

See:  3.3.3.5 Input buffers, 9. Optional Exception word set. 

11.3.5   Other transient regions   
The list of words using memory in transient regions is extended to include 11.6.1.2165 S". 

See:  3.3.3.6 Other transient regions. 

11.3.6   Parsing   
When parsing from a text file using a space delimiter, control characters shall be treated the same as the 
space character. 

Lines of at least 128 characters shall be supported.  A program that requires lines of more than 128 
characters has an environmental dependency. 

A program may reposition the parse area within the input buffer by manipulating the contents of >IN.  
More extensive repositioning can be accomplished using SAVE-INPUT and RESTORE-INPUT. 

See:  3.4.1 Parsing. 
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11.4   Additional documentation requirements   

11.4.1   System documentation   

11.4.1.1   Implementation-defined options   

– file access methods used by 11.6.1.0765 BIN, 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-
FILE, 11.6.1.2054 R/O, 11.6.1.2056 R/W, and 11.6.1.2425 W/O; 

– file exceptions; 
– file line terminator (11.6.1.2090 READ-LINE); 
– file name format (11.3.1.4 File names); 
– information returned by 11.6.2.1524 FILE-STATUS; 
– input file state after an exception (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED); 
– ior values and meaning (11.3.1.2 I/O results); 
– maximum depth of file input nesting (11.3.4 Input source); 
– maximum size of input line (11.3.6 Parsing); 
– methods for mapping block ranges to files (11.3.2 Blocks in files); 
– number of string buffers provided (11.6.1.2165 S"); 
– size of string buffer used by 11.6.1.2165 S". 

11.4.1.2   Ambiguous conditions   

– attempting to position a file outside its boundaries (11.6.1.2142 REPOSITION-FILE); 
– attempting to read from file positions not yet written (11.6.1.2080 READ-FILE,  

11.6.1.2090 READ-LINE); 
– fileid is invalid (11.6.1.1717 INCLUDE-FILE); 
– I/O exception reading or closing fileid (11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED); 
– named file cannot be opened (11.6.1.1718 INCLUDED); 
– requesting an unmapped block number (11.3.2 Blocks in files); 
– using 11.6.1.2218 SOURCE-ID when 7.6.1.0790 BLK is not zero. 

11.4.1.3   Other system documentation   

– no additional requirements. 

11.4.2   Program documentation   

11.4.2.1   Environmental dependencies   

– requiring lines longer than 128 characters (11.3.6 Parsing); 
– using more than eight levels of input-file nesting (11.3.4 Input source). 

11.4.2.2   Other program documentation   

– no additional requirements. 

11.5   Compliance and labeling   

11.5.1   ANS Forth systems   
The phrase “Providing the File Access word set” shall be appended to the label of any Standard System 
that provides all of the File Access word set. 
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The phrase “Providing name(s) from the File Access Extensions word set” shall be appended to the label of 
any Standard System that provides portions of the File Access Extensions word set. 

The phrase “Providing the File Access Extensions word set” shall be appended to the label of any Standard 
System that provides all of the File Access and File Access Extensions word sets. 

11.5.2   ANS Forth programs   
The phrase “Requiring the File Access word set” shall be appended to the label of Standard Programs that 
require the system to provide the File Access word set. 

The phrase “Requiring name(s) from the File Access Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the File Access Extensions word set. 

The phrase “Requiring the File Access Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the File Access and File Access Extensions word sets. 

11.6   Glossary   

11.6.1   File Access words   
11.6.1.0080   (   “paren” FILE 

( “ccc<paren>” -- ) 

Extend the semantics of 6.1.0080 ( to include: 

When parsing from a text file, if the end of the parse area is reached before a right parenthesis 
is found, refill the input buffer from the next line of the file, set >IN to zero, and resume 
parsing, repeating this process until either a right parenthesis is found or the end of the file is 
reached. 

 
11.6.1.0765   BIN    FILE 

( fam1 -- fam2 ) 

Modify the implementation-defined file access method fam1 to additionally select a “binary”, 
i.e., not line oriented, file access method, giving access method fam2. 

 See: 11.6.1.2054 R/O, 11.6.1.2056 R/W, 11.6.1.2425 W/O. 

 
11.6.1.0900   CLOSE-FILE    FILE 

( fileid -- ior ) 

Close the file identified by fileid.  ior is the implementation-defined I/O result code. 

 

80  Collating Sequence: 



  ANSI X3.215-1994 

11.6.1.1010   CREATE-FILE    FILE 

( c-addr u fam -- fileid ior ) 

Create the file named in the character string specified by c-addr and u, and open it with file 
access method fam.  The meaning of values of fam is implementation defined.  If a file with the 
same name already exists, recreate it as an empty file. 

If the file was successfully created and opened, ior is zero, fileid is its identifier, and the file has 
been positioned to the start of the file. 

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined. 

 
 
11.6.1.1190   DELETE-FILE    FILE 

( c-addr u -- ior ) 

Delete the file named in the character string specified by c-addr u.  ior is the implementation-
defined I/O result code. 

 
 
11.6.1.1520   FILE-POSITION    FILE 

( fileid -- ud ior ) 

ud is the current file position for the file identified by fileid.  ior is the implementation-defined 
I/O result code.  ud is undefined if ior is non-zero. 

 
 
11.6.1.1522   FILE-SIZE    FILE 

( fileid -- ud ior ) 

ud is the size, in characters, of the file identified by fileid.  ior is the implementation-defined 
I/O result code.  This operation does not affect the value returned by FILE-POSITION.  ud is 
undefined if ior is non-zero. 

 
 
11.6.1.1717   INCLUDE-FILE    FILE 

( i*x fileid -- j*x ) 

Remove fileid from the stack.  Save the current input source specification, including the current 
value of SOURCE-ID.  Store fileid in SOURCE-ID.  Make the file specified by fileid the input 
source.  Store zero in BLK.  Other stack effects are due to the words INCLUDEd. 

Repeat until end of file:  read a line from the file, fill the input buffer from the contents of that 
line, set >IN to zero, and interpret. 

Text interpretation begins at the file position where the next file read would occur. 
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When the end of the file is reached, close the file and restore the input source specification to 
its saved value. 

An ambiguous condition exists if fileid is invalid, if there is an I/O exception reading fileid, or 
if an I/O exception occurs while closing fileid.  When an ambiguous condition exists, the status 
(open or closed) of any files that were being interpreted is implementation-defined. 

 See: 11.3.4 Input source. 

 
11.6.1.1718   INCLUDED    FILE 

( i*x c-addr u -- j*x ) 

Remove c-addr u from the stack.  Save the current input source specification, including the 
current value of SOURCE-ID.  Open the file specified by c-addr u, store the resulting fileid in 
SOURCE-ID, and make it the input source.  Store zero in BLK.  Other stack effects are due to 
the words included. 

Repeat until end of file:  read a line from the file, fill the input buffer from the contents of that 
line, set >IN to zero, and interpret. 

Text interpretation begins at the file position where the next file read would occur. 

When the end of the file is reached, close the file and restore the input source specification to 
its saved value. 

An ambiguous condition exists if the named file can not be opened, if an I/O exception occurs 
reading the file, or if an I/O exception occurs while closing the file.  When an ambiguous 
condition exists, the status (open or closed) of any files that were being interpreted is 
implementation-defined. 

 See: 11.6.1.1717 INCLUDE-FILE. 

 
11.6.1.1970   OPEN-FILE    FILE 

( c-addr u fam -- fileid ior ) 

Open the file named in the character string specified by c-addr u, with file access method 
indicated by fam.  The meaning of values of fam is implementation defined. 

If the file is successfully opened, ior is zero, fileid is its identifier, and the file has been 
positioned to the start of the file. 

Otherwise, ior is the implementation-defined I/O result code and fileid is undefined. 

 
11.6.1.2054   R/O   “r-o” FILE 

( -- fam ) 

fam is the implementation-defined value for selecting the “read only” file access method. 

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE. 
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11.6.1.2056   R/W   “r-w” FILE 

( -- fam ) 

fam is the implementation-defined value for selecting the “read/write” file access method. 

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE. 

 
11.6.1.2080   READ-FILE    FILE 

( c-addr u1 fileid -- u2 ior ) 

Read u1 consecutive characters to c-addr from the current position of the file identified by 
fileid. 

If u1 characters are read without an exception, ior is zero and u2 is equal to u1. 

If the end of the file is reached before u1 characters are read, ior is zero and u2 is the number of 
characters actually read. 

If the operation is initiated when the value returned by FILE-POSITION is equal to the value 
returned by FILE-SIZE for the file identified by fileid, ior is zero and u2 is zero. 

If an exception occurs, ior is the implementation-defined I/O result code, and u2 is the number 
of characters transferred to c-addr without an exception. 

An ambiguous condition exists if the operation is initiated when the value returned by FILE-
POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid, 
or if the requested operation attempts to read portions of the file not written. 

At the conclusion of the operation, FILE-POSITION returns the next file position after the 
last character read. 

 
11.6.1.2090   READ-LINE    FILE 

( c-addr u1 fileid -- u2 flag ior ) 

Read the next line from the file specified by fileid into memory at the address c-addr.  At most 
u1 characters are read.  Up to two implementation-defined line-terminating characters may be 
read into memory at the end of the line, but are not included in the count u2.  The line buffer 
provided by c-addr should be at least u1+2 characters long. 

If the operation succeeded, flag is true and ior is zero.  If a line terminator was received before 
u1 characters were read, then u2 is the number of characters, not including the line terminator, 
actually read (0 <= u2 <= u1).  When u1 = u2 the line terminator has yet to be reached. 

If the operation is initiated when the value returned by FILE-POSITION is equal to the value 
returned by FILE-SIZE for the file identified by fileid, flag is false, ior is zero, and u2 is zero.  
If ior is non-zero, an exception occurred during the operation and ior is the implementation-
defined I/O result code. 

An ambiguous condition exists if the operation is initiated when the value returned by FILE-
POSITION is greater than the value returned by FILE-SIZE for the file identified by fileid, 
or if the requested operation attempts to read portions of the file not written. 

At the conclusion of the operation, FILE-POSITION returns the next file position after the 
last character read. 
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11.6.1.2142   REPOSITION-FILE    FILE 

( ud fileid -- ior ) 

Reposition the file identified by fileid to ud.  ior is the implementation-defined I/O result code.  
An ambiguous condition exists if the file is positioned outside the file boundaries. 

At the conclusion of the operation, FILE-POSITION returns the value ud. 

 
11.6.1.2147   RESIZE-FILE    FILE 

( ud fileid -- ior ) 

Set the size of the file identified by fileid to ud.  ior is the implementation-defined I/O result 
code. 

If the resultant file is larger than the file before the operation, the portion of the file added as a 
result of the operation might not have been written. 

At the conclusion of the operation, FILE-SIZE returns the value ud and FILE-POSITION 
returns an unspecified value. 

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE. 

 
11.6.1.2165   S"   “s-quote” FILE 

Extend the semantics of 6.1.2165 S" to be: 

 Interpretation: ( “ccc<quote>” -- c-addr u ) 

Parse ccc delimited by " (double quote).  Store the resulting string c-addr u at a temporary 
location.  The maximum length of the temporary buffer is implementation-dependent but shall 
be no less than 80 characters.  Subsequent uses of S" may overwrite the temporary buffer.  At 
least one such buffer shall be provided. 

 Compilation: ( “ccc<quote>” -- ) 

Parse ccc delimited by " (double quote).  Append the run-time semantics given below to the 
current definition. 

 Run-time: ( -- c-addr u ) 

Return c-addr and u that describe a string consisting of the characters ccc. 

 See: 3.4.1 Parsing, 6.2.0855 C", 6.1.2165 S", 11.3.5 Other transient regions. 

 

11.6.1.2218   SOURCE-ID   “source-i-d” FILE 
( -- 0 | -1 | fileid ) 

Extend 6.2.2218 SOURCE-ID to include text-file input as follows: 

SOURCE-ID Input source 
 fileid Text file “fileid” 
 -1 String (via EVALUATE) 
 0 User input device 

 
An ambiguous condition exists if SOURCE-ID is used when BLK contains a non-zero value. 
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11.6.1.2425   W/O   “w-o” FILE 

( -- fam ) 

fam is the implementation-defined value for selecting the “write only” file access method. 

 See: 11.6.1.1010 CREATE-FILE, 11.6.1.1970 OPEN-FILE. 

 
11.6.1.2480   WRITE-FILE    FILE 

( c-addr u fileid -- ior ) 

Write u characters from c-addr to the file identified by fileid starting at its current position.  ior 
is the implementation-defined I/O result code. 

At the conclusion of the operation, FILE-POSITION returns the next file position after the 
last character written to the file, and FILE-SIZE returns a value greater than or equal to the 
value returned by FILE-POSITION. 

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE. 

 
11.6.1.2485   WRITE-LINE    FILE 

( c-addr u fileid -- ior ) 

Write u characters from c-addr followed by the implementation-dependent line terminator to 
the file identified by fileid starting at its current position.  ior is the implementation-defined I/O 
result code. 

At the conclusion of the operation, FILE-POSITION returns the next file position after the 
last character written to the file, and FILE-SIZE returns a value greater than or equal to the 
value returned by FILE-POSITION. 

 See: 11.6.1.2080 READ-FILE, 11.6.1.2090 READ-LINE. 

 

11.6.2   File-Access extension words   
11.6.2.1524   FILE-STATUS    FILE EXT 

(c-addr u -- x ior ) 

Return the status of the file identified by the character string c-addr u.  If the file exists, ior is 
zero; otherwise ior is the implementation-defined I/O result code.  x contains implementation-
defined information about the file. 

 
11.6.2.1560   FLUSH-FILE    FILE EXT 

( fileid -- ior ) 

Attempt to force any buffered information written to the file referred to by fileid to be written 
to mass storage, and the size information for the file to be recorded in the storage directory if 
changed.  If the operation is successful, ior is zero.  Otherwise, it is an implementation-defined 
I/O result code. 
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11.6.2.2125   REFILL    FILE EXT 

( -- flag ) 

Extend the execution semantics of 6.2.2125 REFILL with the following: 

When the input source is a text file, attempt to read the next line from the text-input file.  If 
successful, make the result the current input buffer, set >IN to zero, and return true.  Otherwise 
return false. 

 See: 6.2.2125 REFILL, 7.6.2.2125 REFILL. 

 
11.6.2.2130   RENAME-FILE    FILE EXT 

( c-addr1 u1 c-addr2 u2 -- ior ) 

Rename the file named by the character string c-addr1 u1 to the name in the character string c-
addr2 u2.  ior is the implementation-defined I/O result code.  
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12.   The optional Floating-Point word set   

12.1   Introduction   

12.2   Additional terms and notation   

12.2.1 Definition of terms   
float-aligned address:  The address of a memory location at which a floating-point number can be 
accessed. 

double-float-aligned address:  The address of a memory location at which a 64-bit IEEE double-precision 
floating-point number can be accessed. 

single-float-aligned address:  The address of a memory location at which a 32-bit IEEE single-precision 
floating-point number can be accessed. 

IEEE floating-point number:  A single- or double-precision floating-point number as defined in 
ANSI/IEEE 754-1985. 

12.2.2 Notation   

12.2.2.1   Numeric notation   

The following notation is used to define the syntax of the external representation of floating-point numbers: 

– Each component of a floating-point number is defined with a rule consisting of the name of the 
component (italicized in angle-brackets, e.g., <sign>), the characters := and a concatenation of tokens 
and metacharacters; 

– Tokens may be literal characters (in bold face, e.g., E) or rule names in angle brackets (e.g., <digit>); 
– The metacharacter * is used to specify zero or more occurrences of the preceding token 

(e.g., <digit>*); 
– Tokens enclosed with [ and ] are optional (e.g., [<sign>]); 
– Vertical bars separate choices from a list of tokens enclosed with braces (e.g., { + | - }). 

12.2.2.2   Stack notation   

Floating-point stack notation when the floating-point stack is separate from the data stack is: 

( F:  before -- after ) 

12.3   Additional usage requirements   

12.3.1   Data types   
Append table 12.1 to table 3.1. 

Table 12.1 – Data Types   
Symbol Data type Size on stack 
r floating-point number implementation-defined 
f-addr float-aligned address 1 cell 
sf-addr single-float-aligned address 1 cell 
df-addr double-float-aligned address 1 cell 

 

! " # $ % & ' ( ) * + , - . / digits : ; < = > ? @ ALPHA [ \ ] ^ _ ` alpha { | } ~ 87 



ANSI X3.215-1994 

12.3.1.1   Addresses   

The set of float-aligned addresses is an implementation-defined subset of the set of aligned addresses.  
Adding the size of a floating-point number to a float-aligned address shall produce a float-aligned address. 

The set of double-float-aligned addresses is an implementation-defined subset of the set of aligned 
addresses.  Adding the size of a 64-bit IEEE double-precision floating-point number to a double-float-
aligned address shall produce a double-float-aligned address. 

The set of single-float-aligned addresses is an implementation-defined subset of the set of aligned 
addresses.  Adding the size of a 32-bit IEEE single-precision floating-point number to a single-float-
aligned address shall produce a single-float-aligned address. 

12.3.1.2   Floating-point numbers   

The internal representation of a floating-point number, including the format and precision of the significand 
and the format and range of the exponent, is implementation defined. 

Any rounding or truncation of floating-point numbers is implementation defined. 

12.3.2   Floating-point operations   
“Round to nearest” means round the result of a floating-point operation to the representable value nearest 
the result.  If the two nearest representable values are equally near the result, the one having zero as its least 
significant bit shall be delivered. 

“Round toward negative infinity” means round the result of a floating-point operation to the representable 
value nearest to and no greater than the result. 

12.3.3   Floating-point stack   
A last in, first out list that shall be used by all floating-point operators. 

The width of the floating-point stack is implementation-defined. By default the floating-point stack shall be 
separate from the data and return stacks.  A program may determine whether floating-point numbers are 
kept on the data stack by passing the string “FLOATING-STACK” to ENVIRONMENT?. 

The size of a floating-point stack shall be at least 6 items. 

A program that depends on the floating-point stack being larger than six items has an environmental 
dependency. 

12.3.4   Environmental queries   
Append table 12.2 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 12.2 – Environmental query strings   

String Value Data type Constant? Meaning 
FLOATING flag no floating-point word set present 
FLOATING-EXT flag no floating-point extensions word set present 
FLOATING-STACK n yes If n = zero, floating-point numbers are kept 

on the data stack; otherwise n is the 
maximum depth of the separate floating-
point stack.  

MAX-FLOAT r yes largest usable floating-point number 
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12.3.5   Address alignment   
Since the address returned by a CREATEd word is not necessarily aligned for any particular class of 
floating-point data, a program shall align the address (to be float aligned, single-float aligned, or double-
float aligned) before accessing floating-point data at the address. 

See:  3.3.3.1  Address Alignment, 12.3.1.1 Addresses. 

12.3.6   Variables   
A program may address memory in data space regions made available by FVARIABLE.  These regions 
may be non-contiguous with regions subsequently allocated with , (comma) or ALLOT. 

See:  3.3.3.3  Variables. 

12.3.7   Text interpreter input number conversion   
If the Floating-Point word set is present in the dictionary and the current base is DECIMAL, the input 
number-conversion algorithm shall be extended to recognize floating-point numbers in this form: 

Convertible string := <significand><exponent> 

<significand> := [<sign>]<digits>[.<digits0>] 
<exponent> := E[<sign>]<digits0> 
<sign> := { + | - } 
<digits> := <digit><digits0> 
<digits0> := <digit>* 
<digit> := { 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 } 

These are examples of valid representations of floating-point numbers in program source: 

1E   1.E   1.E0   +1.23E-1   -1.23E+1 

See:  3.4.1.3  Text interpreter input number conversion, 12.6.1.0558  >FLOAT. 

12.4   Additional documentation requirements   

12.4.1   System documentation   

12.4.1.1   Implementation-defined options   

– format and range of floating-point numbers (12.3.1 Data types, 12.6.1.2143 REPRESENT); 
– results of 12.6.1.2143 REPRESENT when float is out of range; 
– rounding or truncation of floating-point numbers (12.3.1.2 Floating-point numbers); 
– size of floating-point stack (12.3.3 Floating-point stack); 
– width of floating-point stack (12.3.3 Floating-point stack). 

12.4.1.2   Ambiguous conditions   

– DF@ or DF! is used with an address that is not double-float aligned; 
– F@ or F! is used with an address that is not float aligned; 
– floating point result out of range (e.g., in 12.6.1.1430 F/); 
– SF@ or SF! is used with an address that is not single-float aligned; 
– BASE is not decimal (12.6.1.2143 REPRESENT, 12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.); 
– both arguments equal zero (12.6.2.1489 FATAN2); 
– cosine of argument is zero for 12.6.2.1625 FTAN; 
– d can't be precisely represented as float in 12.6.1.1130 D>F; 
– dividing by zero (12.6.1.1430 F/); 
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– exponent too big for conversion (12.6.2.1203 DF!, 12.6.2.1204 DF@, 12.6.2.2202 SF!, 
12.6.2.2203 SF@); 

– float less than one (12.6.2.1477 FACOSH); 
– float less than or equal to minus-one (12.6.2.1554 FLNP1); 
– float less than or equal to zero (12.6.2.1553 FLN, 12.6.2.1557 FLOG); 
– float less than zero (12.6.2.1487 FASINH, 12.6.2.1618 FSQRT); 
– float magnitude greater than one (12.6.2.1476 FACOS, 12.6.2.1486 FASIN, 12.6.2.1491 FATANH); 
– integer part of float can't be represented by d in 12.6.1.1470 F>D; 
– string larger than pictured-numeric output area (12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.). 

12.4.1.3   Other system documentation   

– no additional requirements. 

12.4.2   Program documentation   

12.4.2.1   Environmental dependencies   

– requiring the floating-point stack to be larger than six items (12.3.3 Floating-point stack). 

12.4.2.2   Other program documentation   

– no additional requirements. 

12.5   Compliance and labeling   

12.5.1   ANS Forth systems   
The phrase “Providing the Floating-Point word set” shall be appended to the label of any Standard System 
that provides all of the Floating-Point word set. 

The phrase “Providing name(s) from the Floating-Point Extensions word set” shall be appended to the label 
of any Standard System that provides portions of the Floating-Point Extensions word set. 

The phrase “Providing the Floating-Point Extensions word set” shall be appended to the label of any 
Standard System that provides all of the Floating-Point and Floating-Point Extensions word sets. 

12.5.2   ANS Forth programs   
The phrase “Requiring the Floating-Point word set” shall be appended to the label of Standard Programs 
that require the system to provide the Floating-Point word set. 

The phrase “Requiring name(s) from the Floating-Point Extensions word set” shall be appended to the 
label of Standard Programs that require the system to provide portions of the Floating-Point Extensions 
word set. 

The phrase “Requiring the Floating-Point Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the Floating-Point and Floating-Point Extensions word 
sets. 

90  Collating Sequence: 



  ANSI X3.215-1994 

12.6   Glossary   

12.6.1   Floating-Point words   
 
12.6.1.0558   >FLOAT   “to-float” FLOATING 

( c-addr u -- true | false ) ( F: -- r |  )  or  ( c-addr u -- r true | false ) 

An attempt is made to convert the string specified by c-addr and u to internal floating-point 
representation.  If the string represents a valid floating-point number in the syntax below, its 
value r and true are returned.  If the string does not represent a valid floating-point number 
only false is returned. 

A string of blanks should be treated as a special case representing zero. 

The syntax of a convertible string := <significand>[<exponent>] 
<significand> := [<sign>]{<digits>[.<digits0>] | .<digits> } 
<exponent> := <marker><digits0> 
<marker> := {<e-form> | <sign-form>} 
<e-form> := <e-char>[<sign-form>] 
<sign-form> := { + | – }  
<e-char>:= { D | d | E | e } 

 
12.6.1.1130   D>F   “d-to-f” FLOATING 

( d -- ) ( F: -- r ) or ( d -- r ) 

r is the floating-point equivalent of d.  An ambiguous condition exists if d cannot be precisely 
represented as a floating-point value. 

 
12.6.1.1400   F!   “f-store” FLOATING 

( f-addr -- ) ( F: r -- ) or ( r f-addr -- ) 

 Store r at f-addr. 

 
12.6.1.1410   F*   “f-star” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

Multiply r1 by r2 giving r3. 

 
12.6.1.1420   F+   “f-plus” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 )  

Add r1 to r2 giving the sum r3. 

 
12.6.1.1425   F-   “f-minus” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

Subtract r2 from r1, giving r3. 
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12.6.1.1430   F/   “f-slash” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

Divide r1 by r2, giving the quotient r3.  An ambiguous condition exists if r2 is zero, or the 
quotient lies outside of the range of a floating-point number. 

 
 
12.6.1.1440   F0<   “f-zero-less-than” FLOATING 

( -- flag ) ( F: r -- ) or ( r -- flag ) 

flag is true if and only if r is less than zero. 

 
 
12.6.1.1450   F0=   “f-zero-equals” FLOATING 

( -- flag ) ( F: r -- ) or ( r -- flag ) 

flag is true if and only if r is equal to zero. 

 
12.6.1.1460   F<   “f-less-than” FLOATING 

( -- flag ) ( F: r1 r2 -- ) or ( r1 r2 -- flag ) 

flag is true if and only if r1 is less than r2. 

 
 
12.6.1.1470   F>D   “f-to-d” FLOATING 

( -- d ) ( F: r -- ) or ( r -- d ) 

d is the double-cell signed-integer equivalent of the integer portion of r.  The fractional portion 
of r is discarded.  An ambiguous condition exists if the integer portion of r cannot be precisely 
represented as a double-cell signed integer. 

 
 
12.6.1.1472   F@   “f-fetch” FLOATING 

( f-addr -- ) ( F: -- r )  or  ( f-addr -- r ) 

r is the value stored at f-addr. 

 
12.6.1.1479   FALIGN   “f-align” FLOATING 

( -- ) 

If the data-space pointer is not float aligned, reserve enough data space to make it so. 

 
12.6.1.1483   FALIGNED   “f-aligned” FLOATING 

( addr -- f-addr ) 

f-addr is the first float-aligned address greater than or equal to addr. 
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12.6.1.1492   FCONSTANT   “f-constant” FLOATING 

( “<spaces>name” -- ) ( F: r -- ) or ( r “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below. 

name is referred to as an “f-constant”. 

 name Execution: ( -- ) ( F: -- r ) or ( -- r ) 

Place r on the floating-point stack. 

 See: 3.4.1 Parsing. 

 
 
12.6.1.1497   FDEPTH   “f-depth” FLOATING 

( -- +n ) 

+n is the number of values contained on the default separate floating-point stack.  If floating-
point numbers are kept on the data stack, +n is the current number of possible floating-point 
values contained on the data stack. 

 
 
12.6.1.1500   FDROP   “f-drop” FLOATING 

( F: r -- ) or ( r -- ) 

Remove r from the floating-point stack. 

 
12.6.1.1510   FDUP   “f-dupe” FLOATING 

( F: r -- r r ) or ( r -- r r ) 

Duplicate r. 

 
12.6.1.1552   FLITERAL   “f-literal” FLOATING 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( F: r -- ) or ( r -- ) 

Append the run-time semantics given below to the current definition. 

 Run-time: ( F: -- r ) or ( -- r ) 

Place r on the floating-point stack. 

 
 
12.6.1.1555   FLOAT+   “float-plus” FLOATING 

( f-addr1 -- f-addr2 ) 

Add the size in address units of a floating-point number to f-addr1, giving f-addr2. 
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12.6.1.1556   FLOATS    FLOATING 

( n1 -- n2 ) 

n2 is the size in address units of n1 floating-point numbers. 

 
12.6.1.1558   FLOOR    FLOATING 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

Round r1 to an integral value using the “round toward negative infinity” rule, giving r2. 

 
12.6.1.1562   FMAX   “f-max” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

r3 is the greater of r1 and r2. 

 
12.6.1.1565   FMIN   “f-min” FLOATING 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

r3 is the lesser of r1 and r2. 

 
12.6.1.1567   FNEGATE   “f-negate” FLOATING 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the negation of r1. 

 
12.6.1.1600   FOVER   “f-over” FLOATING 

( F: r1 r2 -- r1 r2 r1 ) or ( r1 r2 -- r1 r2 r1 ) 

Place a copy of r1 on top of the floating-point stack. 

 
12.6.1.1610   FROT   “f-rote” FLOATING 

( F: r1 r2 r3 -- r2 r3 r1 ) or ( r1 r2 r3 -- r2 r3 r1 ) 

Rotate the top three floating-point stack entries. 

 
12.6.1.1612   FROUND   “f-round” FLOATING 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

Round r1 to an integral value using the “round to nearest” rule, giving r2. 

 See: 12.3.2 Floating-point operations. 

 
12.6.1.1620   FSWAP   “f-swap” FLOATING 

( F: r1 r2 -- r2 r1 ) or ( r1 r2 -- r2 r1 ) 

Exchange the top two floating-point stack items. 
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12.6.1.1630   FVARIABLE   “f-variable” FLOATING 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name 
with the execution semantics defined below.  Reserve 1 FLOATS address units of data space 
at a float-aligned address. 

name is referred to as an “f-variable”. 

 name Execution: ( --f-addr ) 

f-addr is the address of the data space reserved by FVARIABLE when it created name.  A 
program is responsible for initializing the contents of the reserved space. 

 See: 3.4.1 Parsing. 

 
 
12.6.1.2143   REPRESENT    FLOATING 

( c-addr u -- n flag1 flag2 )  (F: r -- )  or  ( r c-addr u -- n flag1 flag2 ) 

At c-addr, place the character-string external representation of the significand of the floating-
point number r.  Return the decimal-base exponent as n, the sign as flag1 and “valid result” as 
flag2.  The character string shall consist of the u most significant digits of the significand 
represented as a decimal fraction with the implied decimal point to the left of the first digit, and 
the first digit zero only if all digits are zero.  The significand is rounded to u digits following 
the “round to nearest” rule; n is adjusted, if necessary, to correspond to the rounded magnitude 
of the significand.  If flag2 is true then r was in the implementation-defined range of floating-
point numbers.  If flag1 is true then r is negative. 

An ambiguous condition exists if the value of BASE is not decimal ten. 

When flag2 is false, n and flag1 are implementation defined, as are the contents of c-addr.  
Under these circumstances, the string at c-addr shall consist of graphic characters. 

 See: 3.2.1.2 Digit conversion, 6.1.0750 BASE, 12.3.2 Floating-point operations. 

 

12.6.2   Floating-Point extension words   
 
12.6.2.1203   DF!   “d-f-store” FLOATING EXT 

( df-addr -- ) ( F: r -- ) or ( r df-addr -- ) 

Store the floating-point number r as a 64-bit IEEE double-precision number at df-addr.  If the 
significand of the internal representation of r has more precision than the IEEE double-
precision format, it will be rounded using the “round to nearest” rule.  An ambiguous condition 
exists if the exponent of r is too large to be accommodated in IEEE double-precision format. 

 See:  12.3.1.1 Addresses, 12.3.2 Floating-point operations. 
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12.6.2.1204   DF@   “d-f-fetch” FLOATING EXT 

( df-addr -- ) ( F: -- r ) or ( df-addr -- r )  

Fetch the 64-bit IEEE double-precision number stored at df-addr to the floating-point stack as r 
in the internal representation.  If the IEEE double-precision significand has more precision than 
the internal representation it will be rounded to the internal representation using the “round to 
nearest” rule.  An ambiguous condition exists if the exponent of the IEEE double-precision 
representation is too large to be accommodated by the internal representation. 

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations. 

 
 
12.6.2.1205   DFALIGN   “d-f-align” FLOATING EXT 

( -- ) 

If the data-space pointer is not double-float aligned, reserve enough data space to make it so. 

 See:  12.3.1.1 Addresses. 

 
 
12.6.2.1207   DFALIGNED   “d-f-aligned” FLOATING EXT 

( addr -- df-addr ) 

df-addr is the first double-float-aligned address greater than or equal to addr. 

 See:  12.3.1.1 Addresses. 

 
 
12.6.2.1208   DFLOAT+   “d-float-plus” FLOATING EXT 

( df-addr1 -- df-addr2 ) 

Add the size in address units of a 64-bit IEEE double-precision number to df-addr1, giving df-
addr2. 

 See:  12.3.1.1 Addresses. 

 
 
12.6.2.1209   DFLOATS   “d-floats” FLOATING EXT 

( n1 -- n2 ) 

n2 is the size in address units of n1 64-bit IEEE double-precision numbers. 

 
 
12.6.2.1415   F**   “f-star-star” FLOATING EXT 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

Raise r1 to the power r2, giving the product r3. 
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12.6.2.1427   F.   “f-dot” FLOATING EXT 

( -- ) ( F: r -- ) or ( r -- ) 

Display, with a trailing space, the top number on the floating-point stack using fixed-point 
notation: 

[-] <digits>.<digits0> 

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character 
string representation exceeds the size of the pictured numeric output string buffer. 

 See: 12.6.1.0558 >FLOAT. 

 
12.6.2.1474   FABS   “f-abs” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the absolute value of r1.  

 
12.6.2.1476   FACOS   “f-a-cos” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the principal radian angle whose cosine is r1.  An ambiguous condition exists if |r1| is 
greater than one. 

 
12.6.2.1477   FACOSH   “f-a-cosh” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the floating-point value whose hyperbolic cosine is r1.  An ambiguous condition exists if 
r1 is less than one. 

 
12.6.2.1484   FALOG   “f-a-log” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

Raise ten to the power r1, giving r2. 

 
12.6.2.1486   FASIN   “f-a-sine” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the principal radian angle whose sine is r1.  An ambiguous condition exists if |r1| is greater 
than one. 

 
12.6.2.1487   FASINH   “f-a-cinch” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the floating-point value whose hyperbolic sine is r1.  An ambiguous condition exists if r1 
is less than zero. 
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12.6.2.1488   FATAN   “f-a-tan” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the principal radian angle whose tangent is r1. 

 
12.6.2.1489   FATAN2   “f-a-tan-two” FLOATING EXT 

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 ) 

r3 is the radian angle whose tangent is r1/r2.  An ambiguous condition exists if r1 and r2 are 
zero. 

 
12.6.2.1491   FATANH   “f-a-tan-h” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the floating-point value whose hyperbolic tangent is r1.  An ambiguous condition exists if 
r1 is outside the range of -1E0 to 1E0. 

 
 
12.6.2.1493   FCOS   “f-cos” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the cosine of the radian angle r1. 

 
 
12.6.2.1494   FCOSH   “f-cosh” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the hyperbolic cosine of r1. 

 
 
12.6.2.1513   FE.   “f-e-dot” FLOATING EXT 

( -- ) ( F: r -- ) or ( r -- ) 

Display, with a trailing space, the top number on the floating-point stack using engineering 
notation, where the significand is greater than or equal to 1.0 and less than 1000.0 and the 
decimal exponent is a multiple of three. 

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character 
string representation exceeds the size of the pictured numeric output string buffer. 

 See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT. 

 
 
12.6.2.1515   FEXP   “f-e-x-p” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

Raise e to the power r1, giving r2. 
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12.6.2.1516   FEXPM1   “f-e-x-p-m-one” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

Raise e to the power r1 and subtract one, giving r2. 

 
 
12.6.2.1553   FLN   “f-l-n” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the natural logarithm of r1.  An ambiguous condition exists if r1 is less than or equal to 
zero. 

 
 
12.6.2.1554   FLNP1   “f-l-n-p-one” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the natural logarithm of the quantity r1 plus one.  An ambiguous condition exists if r1 is 
less than or equal to negative one. 

 
 
12.6.2.1557   FLOG   “f-log” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the base-ten logarithm of r1.  An ambiguous condition exists if r1 is less than or equal to 
zero. 

 
 
12.6.2.1613   FS.   “f-s-dot” FLOATING EXT 

( -- ) ( F: r -- ) or ( r -- ) 

Display, with a trailing space, the top number on the floating-point stack in scientific notation: 

<significand><exponent> 

where: 

<significand>  :=  [–]<digit>.<digits0> 
<exponent>  :=  E[–]<digits> 

An ambiguous condition exists if the value of BASE is not (decimal) ten or if the character 
string representation exceeds the size of the pictured numeric output string buffer. 

 See: 6.1.0750 BASE, 12.3.2 Floating-point operations, 12.6.1.2143 REPRESENT. 

 
 
12.6.2.1614   FSIN   “f-sine” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the sine of the radian angle r1. 
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12.6.2.1616   FSINCOS   “f-sine-cos” FLOATING EXT 

( F: r1 -- r2 r3 ) or ( r1 -- r2 r3 ) 

r2 is the sine of the radian angle r1.  r3 is the cosine of the radian angle r1. 

 
12.6.2.1617   FSINH   “f-cinch” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the hyperbolic sine of r1. 

 
12.6.2.1618   FSQRT   “f-square-root” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the square root of r1.  An ambiguous condition exists if r1 is less than zero. 

 
12.6.2.1625   FTAN   “f-tan” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the tangent of the radian angle r1.  An ambiguous condition exists if cos(r1) is zero. 

 
12.6.2.1626   FTANH   “f-tan-h” FLOATING EXT 

( F: r1 -- r2 ) or ( r1 -- r2 ) 

r2 is the hyperbolic tangent of r1. 

 
12.6.2.1640   F~   “f-proximate” FLOATING EXT 

( -- flag ) ( F: r1 r2 r3 -- ) or ( r1 r2 r3 -- flag ) 

If r3 is positive, flag is true if the absolute value of (r1 minus r2) is less than r3. 

If r3 is zero, flag is true if the implementation-dependent encoding of r1 and r2 are exactly 
identical (positive and negative zero are unequal if they have distinct encodings). 

If r3 is negative, flag is true if the absolute value of (r1 minus r2) is less than the absolute value 
of r3 times the sum of the absolute values of r1 and r2. 

 
12.6.2.2035   PRECISION    FLOATING EXT 

( -- u ) 

Return the number of significant digits currently used by F., FE., or FS. as u. 

 
12.6.2.2200   SET-PRECISION    FLOATING EXT 

( u -- ) 

Set the number of significant digits currently used by F., FE., or FS. to u. 
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12.6.2.2202   SF!   “s-f-store” FLOATING EXT 

( sf-addr -- ) ( F: r -- ) or ( r sf-addr -- ) 

Store the floating-point number r as a 32-bit IEEE single-precision number at sf-addr.  If the 
significand of the internal representation of r has more precision than the IEEE single-precision 
format, it will be rounded using the “round to nearest” rule.  An ambiguous condition exists if 
the exponent of r is too large to be accommodated by the IEEE single-precision format. 

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations. 

 
12.6.2.2203   SF@   “s-f-fetch” FLOATING EXT 

( sf-addr -- ) ( F: -- r ) or ( sf-addr -- r ) 

Fetch the 32-bit IEEE single-precision number stored at sf-addr to the floating-point stack as r 
in the internal representation.  If the IEEE single-precision significand has more precision than 
the internal representation, it will be rounded to the internal representation using the “round to 
nearest” rule.  An ambiguous condition exists if the exponent of the IEEE single-precision 
representation is too large to be accommodated by the internal representation. 

 See: 12.3.1.1 Addresses, 12.3.2 Floating-point operations. 

 
12.6.2.2204   SFALIGN   “s-f-align” FLOATING EXT 

( -- ) 

If the data-space pointer is not single-float aligned, reserve enough data space to make it so. 

 See: 12.3.1.1 Addresses. 

 
12.6.2.2206   SFALIGNED   “s-f-aligned” FLOATING EXT 

( addr -- sf-addr ) 

sf-addr is the first single-float-aligned address greater than or equal to addr. 

 See: 12.3.1.1 Addresses. 

 
12.6.2.2207   SFLOAT+   “s-float-plus” FLOATING EXT 

( sf-addr1 -- sf-addr2 ) 

Add the size in address units of a 32-bit IEEE single-precision number to sf-addr1, giving sf-
addr2. 

 See: 12.3.1.1 Addresses. 

 
12.6.2.2208   SFLOATS   “s-floats” FLOATING EXT 

( n1 -- n2 ) 

n2 is the size in address units of n1 32-bit IEEE single-precision numbers. 

 See: 12.3.1.1 Addresses. 
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13.   The optional Locals word set   

13.1   Introduction   
See:  Annex A.13  The Locals Word Set. 

13.2   Additional terms and notation   
None. 

13.3   Additional usage requirements   

13.3.1   Locals   
A local is a data object whose execution semantics shall return its value, whose scope shall be limited to the 
definition in which it is declared, and whose use in a definition shall not preclude reentrancy or recursion. 

13.3.2   Environmental queries   
Append table 13.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 13.1 – Environmental query strings   

String Value data type Constant? Meaning 
#LOCALS n yes maximum number of local variables in a 

definition 
LOCALS flag no locals word set present 
LOCALS-EXT flag no locals extensions word set present 

 

13.3.3   Processing locals   
To support the locals word set, a system shall provide a mechanism to receive the messages defined by 
(LOCAL) and respond as described here. 

During the compilation of a definition after : (colon), :NONAME, or DOES>, a program may begin sending 
local identifier messages to the system.  The process shall begin when the first message is sent.  The 
process shall end when the “last local” message is sent.  The system shall keep track of the names, order, 
and number of identifiers contained in the complete sequence. 

13.3.3.1   Compilation semantics   

The system, upon receipt of a sequence of local-identifier messages, shall take the following actions at 
compile time: 

a) Create temporary dictionary entries for each of the identifiers passed to (LOCAL), such that each 
identifier will behave as a local.  These temporary dictionary entries shall vanish at the end of the 
definition, denoted by ; (semicolon), ;CODE, or DOES>.  The system need not maintain these 
identifiers in the same way it does other dictionary entries as long as they can be found by normal 
dictionary searching processes.  Furthermore, if the Search-Order word set is present, local identifiers 
shall always be searched before any of the word lists in any definable search order, and none of the 
Search-Order words shall change the locals’ privileged position in the search order.  Local identifiers 
may reside in mass storage. 
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b) For each identifier passed to (LOCAL), the system shall generate an appropriate code sequence that 
does the following at execution time:  
1) Allocate a storage resource adequate to contain the value of a local.  The storage shall be allocated 

in a way that does not preclude re-entrancy or recursion in the definition using the local. 
2) Initialize the value using the top item on the data stack.  If more than one local is declared, the top 

item on the stack shall be moved into the first local identified, the next item shall be moved into 
the second, and so on. 

 The storage resource may be the return stack or may be implemented in other ways, such as in 
registers.  The storage resource shall not be the data stack.  Use of locals shall not restrict use of the 
data stack before or after the point of declaration. 

c) Arrange that any of the legitimate methods of terminating execution of a definition, specifically ; 
(semicolon), ;CODE, DOES> or EXIT, will release the storage resource allocated for the locals, if any, 
declared in that definition.  ABORT shall release all local storage resources, and CATCH / THROW (if 
implemented) shall release such resources for all definitions whose execution is being terminated. 

d) Separate sets of locals may be declared in defining words before DOES> for use by the defining word, 
and after DOES> for use by the word defined. 

A system implementing the Locals word set shall support the declaration of at least eight locals in a 
definition. 

13.3.3.2   Syntax restrictions   

Immediate words in a program may use (LOCAL) to implement syntaxes for local declarations with the 
following restrictions: 

a) A program shall not compile any executable code into the current definition between the time 
(LOCAL) is executed to identify the first local for that definition and the time of sending the single 
required “last local” message; 

b) The position in program source at which the sequence of (LOCAL) messages is sent, referred to here 
as the point at which locals are declared, shall not lie within the scope of any control structure; 

c) Locals shall not be declared until values previously placed on the return stack within the definition 
have been removed; 

d) After a definition’s locals have been declared, a program may place data on the return stack.  However, 
if this is done, locals shall not be accessed until those values have been removed from the return stack; 

e) Words that return execution tokens, such as ' (tick), ['], or FIND, shall not be used with local 
names; 

f) A program that declares more than eight locals in a single definition has an environmental dependency; 
g) Locals may be accessed or updated within control structures, including do-loops; 
h) Local names shall not be referenced by POSTPONE and [COMPILE]. 

See:  3.4 The Forth text interpreter. 

13.4   Additional documentation requirements   

13.4.1   System documentation   

13.4.1.1   Implementation-defined options   

– maximum number of locals in a definition (13.3.3 Processing locals, 13.6.2.1795 LOCALS|). 
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13.4.1.2   Ambiguous conditions   

– executing a named local while in interpretation state (13.6.1.0086 (LOCAL)); 
– name not defined by VALUE or LOCAL (13.6.1.2295 TO). 

13.4.1.3   Other system documentation   

– no additional requirements. 

13.4.2   Program documentation   

13.4.2.1   Environmental dependencies   

– declaring more than eight locals in a single definition (13.3.3 Processing locals). 

13.4.2.2   Other program documentation   

– no additional requirements. 

13.5   Compliance and labeling   

13.5.1   ANS Forth systems   
The phrase “Providing the Locals word set” shall be appended to the label of any Standard System that 
provides all of the Locals word set. 

The phrase “Providing name(s) from the Locals Extensions word set” shall be appended to the label of any 
Standard System that provides portions of the Locals Extensions word set. 

The phrase “Providing the Locals Extensions word set” shall be appended to the label of any Standard 
System that provides all of the Locals and Locals Extensions word sets. 

13.5.2   ANS Forth programs   
The phrase “Requiring the Locals word set” shall be appended to the label of Standard Programs that 
require the system to provide the Locals word set. 

The phrase “Requiring name(s) from the Locals Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the Locals Extensions word set. 

The phrase “Requiring the Locals Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the Locals and Locals Extensions word sets. 

104  Collating Sequence: 



  ANSI X3.215-1994 

13.6   Glossary   

13.6.1   Locals words   
 
 
13.6.1.0086   (LOCAL)   “paren-local-paren” LOCAL 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( c-addr u -- ) 

When executed during compilation, (LOCAL) passes a message to the system that has one of 
two meanings.  If u is non-zero, the message identifies a new local whose definition name is 
given by the string of characters identified by c-addr u.  If u is zero, the message is “last local” 
and c-addr has no significance. 

The result of executing (LOCAL) during compilation of a definition is to create a set of named 
local identifiers, each of which is a definition name, that only have execution semantics within 
the scope of that definition’s source. 

 local Execution: ( -- x ) 

Push the local’s value, x, onto the stack.  The local’s value is initialized as described in 13.3.3 
Processing locals and may be changed by preceding the local’s name with TO.  An ambiguous 
condition exists when local is executed while in interpretation state. 

 Note: This word does not have special compilation semantics in the usual sense because it provides 
access to a system capability for use by other user-defined words that do have them.  However, 
the locals facility as a whole and the sequence of messages passed defines specific usage rules 
with semantic implications that are described in detail in section 13.3.3 Processing locals. 

 Note: This word is not intended for direct use in a definition to declare that definition’s locals.  It is 
instead used by system or user compiling words.  These compiling words in turn define their 
own syntax, and may be used directly in definitions to declare locals.  In this context, the 
syntax for (LOCAL) is defined in terms of a sequence of compile-time messages and is 
described in detail in section 13.3.3 Processing locals. 

 Note: The Locals word set modifies the syntax and semantics of 6.2.2295 TO as defined in the Core 
Extensions word set. 

 See: 3.4 The Forth text interpreter. 
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13.6.1.2295   TO    LOCAL 

Extend the semantics of 6.2.2295 TO to be: 

 Interpretation: ( x “<spaces>name” -- ) 

Skip leading spaces and parse name delimited by a space.  Store x in name.  An ambiguous 
condition exists if name was not defined by VALUE. 

 Compilation: ( “<spaces>name” -- ) 

Skip leading spaces and parse name delimited by a space.  Append the run-time semantics 
given below to the current definition.  An ambiguous condition exists if name was not defined 
by either VALUE or (LOCAL). 

 Run-time: ( x -- ) 

Store x in name. 

 Note: An ambiguous condition exists if either POSTPONE or [COMPILE] is applied to TO. 

 See: 3.4.1 Parsing, 6.2.2295 TO, 6.2.2405 VALUE, 13.6.1.0086 (LOCAL). 

 
 

13.6.2   Locals extension words   
 
13.6.2.1795   LOCALS|   “locals-bar” LOCAL EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( “<spaces>name1” “<spaces>name2” ... “<spaces>namen” “|” -- ) 

Create up to eight local identifiers by repeatedly skipping leading spaces, parsing name, and 
executing 13.6.1.0086 (LOCAL).  The list of locals to be defined is terminated by |.  Append 
the run-time semantics given below to the current definition. 

 Run-time: ( xn ... x2 x1 -- ) 

Initialize up to eight local identifiers as described in 13.6.1.0086 (LOCAL), each of which 
takes as its initial value the top stack item, removing it from the stack.  Identifier name1 is 
initialized with x1, identifier name2 with x2, etc.  When invoked, each local will return its value.  
The value of a local may be changed using 13.6.1.2295 TO. 
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14.   The optional Memory-Allocation word set   

14.1   Introduction   

14.2   Additional terms and notation   
None. 

14.3   Additional usage requirements   

14.3.1   I/O Results data type   
I/O results are single-cell numbers indicating the result of I/O operations.  A value of zero indicates that the 
I/O operation completed successfully; other values and their meanings are implementation-defined. 

Append table 14.1 to table 3.1. 

Table 14.1 – Data types   
Symbol Data type Size on stack 
ior I/O results 1 cell 

 

14.3.2   Environmental queries   
Append table 14.2 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 14.2 – Environmental query strings   

String Value data type Constant? Meaning 
MEMORY-ALLOC flag no memory-allocation word set present 
MEMORY-ALLOC-EXT flag no memory-allocation extensions word set 

present 
 

14.3.3   Allocated regions   
A program may address memory in data space regions made available by ALLOCATE or RESIZE and not 
yet released by FREE. 

See:  3.3.3 Data space. 

14.4   Additional documentation requirements   

14.4.1   System documentation   

14.4.1.1   Implementation-defined options   

– values and meaning of ior (14.3.1 I/O Results data type, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE, 
14.6.1.2145 RESIZE). 

14.4.1.2   Ambiguous conditions   

– no additional requirements. 
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14.4.1.3   Other system documentation   

– no additional requirements. 

14.4.2   Program documentation   
– no additional requirements. 

14.5   Compliance and labeling   

14.5.1   ANS Forth systems   
The phrase “Providing the Memory-Allocation word set” shall be appended to the label of any Standard 
System that provides all of the Memory-Allocation word set. 

The phrase “Providing name(s) from the Memory-Allocation Extensions word set” shall be appended to the 
label of any Standard System that provides portions of the Memory-Allocation Extensions word set. 

The phrase “Providing the Memory-Allocation Extensions word set” shall be appended to the label of any 
Standard System that provides all of the Memory-Allocation and Memory-Allocation Extensions word sets. 

14.5.2   ANS Forth programs   
The phrase “Requiring the Memory-Allocation word set” shall be appended to the label of Standard 
Programs that require the system to provide the Memory-Allocation word set. 

The phrase “Requiring name(s) from the Memory-Allocation Extensions word set” shall be appended to 
the label of Standard Programs that require the system to provide portions of the Memory-Allocation 
Extensions word set. 

The phrase “Requiring the Memory-Allocation Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide all of the Memory-Allocation and Memory-
Allocation Extensions word sets. 
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14.6   Glossary   

14.6.1   Memory-Allocation words   
14.6.1.0707   ALLOCATE    MEMORY 

( u -- a-addr ior ) 

Allocate u address units of contiguous data space.  The data-space pointer is unaffected by this 
operation.  The initial content of the allocated space is undefined. 

If the allocation succeeds, a-addr is the aligned starting address of the allocated space and ior 
is zero. 

If the operation fails, a-addr does not represent a valid address and ior is the implementation-
defined I/O result code. 

 See: 6.1.1650 HERE, 14.6.1.1605 FREE, 14.6.1.2145 RESIZE. 

 
14.6.1.1605   FREE    MEMORY 

( a-addr -- ior ) 

Return the contiguous region of data space indicated by a-addr to the system for later 
allocation.  a-addr shall indicate a region of data space that was previously obtained by 
ALLOCATE or RESIZE.  The data-space pointer is unaffected by this operation. 

If the operation succeeds, ior is zero.  If the operation fails, ior is the implementation-defined 
I/O result code. 

 See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.2145 RESIZE. 

 
14.6.1.2145   RESIZE    MEMORY 

( a-addr1 u -- a-addr2 ior ) 

Change the allocation of the contiguous data space starting at the address a-addr1, previously 
allocated by ALLOCATE or RESIZE, to u address units.  u may be either larger or smaller than 
the current size of the region.  The data-space pointer is unaffected by this operation. 

If the operation succeeds, a-addr2 is the aligned starting address of u address units of allocated 
memory and ior is zero.  a-addr2 may be, but need not be, the same as a-addr1.  If they are not 
the same, the values contained in the region at a-addr1 are copied to a-addr2, up to the 
minimum size of either of the two regions.  If they are the same, the values contained in the 
region are preserved to the minimum of u or the original size.  If a-addr2 is not the same as a-
addr1, the region of memory at a-addr1 is returned to the system according to the operation of 
FREE. 

If the operation fails, a-addr2 equals a-addr1, the region of memory at a-addr1 is unaffected, 
and ior is the implementation-defined I/O result code. 

 See: 6.1.1650 HERE, 14.6.1.0707 ALLOCATE, 14.6.1.1605 FREE. 

 

14.6.2   Memory-Allocation extension words   
None 
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15.   The optional Programming-Tools word set   

15.1   Introduction   
This optional word set contains words most often used during the development of applications. 

15.2   Additional terms and notation   
None. 

15.3   Additional usage requirements   

15.3.1   Environmental queries   
Append table 15.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 15.1 – Environmental query strings   

String Value data type Constant? Meaning 
TOOLS flag no programming-tools word set present 
TOOLS-EXT flag no programming-tools extensions word set 

present 
 

15.3.2   The Forth dictionary   
A program using the words CODE or ;CODE associated with assembler code has an environmental 
dependency on that particular instruction set and assembler notation. 

Programs using the words EDITOR or ASSEMBLER require the Search Order word set or an equivalent 
implementation-defined capability. 

See:  3.3 The Forth dictionary. 

15.4   Additional documentation requirements   

15.4.1   System documentation   

15.4.1.1   Implementation-defined options   

– ending sequence for input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE; 
– manner of processing input following 15.6.2.0470 ;CODE and 15.6.2.0930 CODE; 
– search-order capability for 15.6.2.1300 EDITOR and 15.6.2.0740 ASSEMBLER (15.3.3 The Forth 

dictionary); 
– source and format of display by 15.6.1.2194 SEE. 

15.4.1.2   Ambiguous conditions   

– deleting the compilation word-list (15.6.2.1580 FORGET); 
– fewer than u+1 items on control-flow stack (15.6.2.1015 CSPICK, 15.6.2.1020 CSROLL); 
– name can't be found (15.6.2.1580 FORGET); 
– name not defined via 6.1.1000 CREATE (15.6.2.0470 ;CODE); 
– 6.1.2033 POSTPONE applied to 15.6.2.2532 [IF]; 
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– reaching the end of the input source before matching 15.6.2.2531 [ELSE] or 15.6.2.2533 [THEN] 
(15.6.2.2532 [IF]); 

– removing a needed definition (15.6.2.1580 FORGET). 

15.4.1.3   Other system documentation   

– no additional requirements. 

15.4.2   Program documentation   

15.4.2.1   Environmental dependencies   

– using the words 15.6.2.0470 ;CODE or 15.6.2.0930 CODE. 

15.4.2.2   Other program documentation   

– no additional requirements. 

15.5   Compliance and labeling   

15.5.1   ANS Forth systems   
The phrase “Providing the Programming-Tools word set” shall be appended to the label of any Standard 
System that provides all of the Programming-Tools word set. 

The phrase “Providing name(s) from the Programming-Tools Extensions word set” shall be appended to 
the label of any Standard System that provides portions of the Programming-Tools Extensions word set. 

The phrase “Providing the Programming-Tools Extensions word set” shall be appended to the label of any 
Standard System that provides all of the Programming-Tools and Programming-Tools Extensions word 
sets. 

15.5.2   ANS Forth programs   
The phrase “Requiring the Programming-Tools word set” shall be appended to the label of Standard 
Programs that require the system to provide the Programming-Tools word set. 

The phrase “Requiring name(s) from the Programming-Tools Extensions word set” shall be appended to 
the label of Standard Programs that require the system to provide portions of the Programming-Tools 
Extensions word set. 

The phrase “Requiring the Programming-Tools Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide all of the Programming-Tools and Programming-
Tools Extensions word sets. 
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15.6   Glossary   

15.6.1   Programming-Tools words   
 
15.6.1.0220   .S   “dot-s” TOOLS 

( -- ) 

Copy and display the values currently on the data stack. The format of the display is 
implementation-dependent. 

.S may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See: 3.3.3.6 Other transient regions. 

 
 
15.6.1.0600   ?   “question” TOOLS 

( a-addr -- ) 

Display the value stored at a-addr. 

? may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See: 3.3.3.6 Other transient regions. 

 
 
15.6.1.1280   DUMP    TOOLS 

( addr u -- ) 

Display the contents of u consecutive addresses starting at addr.  The format of the display is 
implementation dependent. 

DUMP may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See: 3.3.3.6 Other Transient Regions. 

 
 
15.6.1.2194   SEE    TOOLS 

( “<spaces>name” -- ) 

Display a human-readable representation of the named word’s definition.  The source of the 
representation (object-code decompilation, source block, etc.) and the particular form of the 
display is implementation defined. 

SEE may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See: 3.3.3.6 Other transient regions. 
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15.6.1.2465   WORDS    TOOLS 

( -- ) 

List the definition names in the first word list of the search order.  The format of the display is 
implementation-dependent. 

WORDS may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See: 3.3.3.6 Other Transient Regions. 

 

15.6.2   Programming-Tools extension words   
 
15.6.2.0470   ;CODE   “semicolon-code” TOOLS EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: colon-sys -- ) 

Append the run-time semantics below to the current definition.  End the current definition, 
allow it to be found in the dictionary, and enter interpretation state, consuming colon-sys. 

Subsequent characters in the parse area typically represent source code in a programming 
language, usually some form of assembly language.  Those characters are processed in an 
implementation-defined manner, generating the corresponding machine code.  The process 
continues, refilling the input buffer as needed, until an implementation-defined ending 
sequence is processed.  

 Run-time: ( -- ) ( R: nest-sys -- ) 

Replace the execution semantics of the most recent definition with the name execution 
semantics given below.  Return control to the calling definition specified by nest-sys.  An 
ambiguous condition exists if the most recent definition was not defined with CREATE or a 
user-defined word that calls CREATE. 

 name Execution: ( i*x -- j*x ) 

Perform the machine code sequence that was generated following ;CODE. 

 See: 6.1.1250 DOES>. 

 
15.6.2.0702   AHEAD    TOOLS EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( C: -- orig ) 

Put the location of a new unresolved forward reference orig onto the control flow stack.  
Append the run-time semantics given below to the current definition.  The semantics are 
incomplete until orig is resolved (e.g., by THEN). 

 Run-time: ( -- ) 

Continue execution at the location specified by the resolution of orig. 
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15.6.2.0740   ASSEMBLER    TOOLS EXT 

( -- ) 

Replace the first word list in the search order with the ASSEMBLER word list. 

 See: 16. The optional Search-Order word set. 

 
15.6.2.0830   BYE    TOOLS EXT 

( -- ) 

Return control to the host operating system, if any. 

 
15.6.2.0930   CODE    TOOLS EXT 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Create a definition for name, 
called a “code definition”, with the execution semantics defined below.   

Subsequent characters in the parse area typically represent source code in a programming 
language, usually some form of assembly language.  Those characters are processed in an 
implementation-defined manner, generating the corresponding machine code.  The process 
continues, refilling the input buffer as needed, until an implementation-defined ending 
sequence is processed.  

 name Execution: ( i*x -- j*x ) 

Execute the machine code sequence that was generated following CODE. 

 See: 3.4.1 Parsing. 

 
15.6.2.1015   CS-PICK   “c-s-pick” TOOLS EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( C: destu ... orig0|dest0 -- destu ... orig0|dest0 destu ) 
( S: u -- ) 

Remove u.  Copy destu to the top of the control-flow stack.  An ambiguous condition exists if 
there are less than u+1 items, each of which shall be an orig or dest, on the control-flow stack 
before CS-PICK is executed. 

If the control-flow stack is implemented using the data stack, u shall be the topmost item on the 
data stack. 
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15.6.2.1020   CS-ROLL   “c-s-roll” TOOLS EXT 

 Interpretation: Interpretation semantics for this word are undefined. 

 Execution: ( C: origu|destu origu-1|destu-1 ... orig0|dest0 -- origu-1|destu-1 ... orig0|dest0 origu|destu ) 
( S: u -- ) 

Remove u.  Rotate u+1 elements on top of the control-flow stack so that origu|destu is on top of 
the control-flow stack.  An ambiguous condition exists if there are less than u+1 items, each of 
which shall be an orig or dest, on the control-flow stack before CS-ROLL is executed. 

If the control-flow stack is implemented using the data stack, u shall be the topmost item on the 
data stack. 

 
 
15.6.2.1300   EDITOR    TOOLS EXT 

( -- ) 

Replace the first word list in the search order with the EDITOR word list. 

 See: 16. The Optional Search-Order Word Set. 

 
 
15.6.2.1580   FORGET    TOOLS EXT 

( “<spaces>name” -- ) 

Skip leading space delimiters.  Parse name delimited by a space.  Find name, then delete name 
from the dictionary along with all words added to the dictionary after name.  An ambiguous 
condition exists if name cannot be found. 

If the Search-Order word set is present, FORGET searches the compilation word list.  An 
ambiguous condition exists if the compilation word list is deleted. 

An ambiguous condition exists if FORGET removes a word required for correct execution. 

 Note: This word is obsolescent and is included as a concession to existing implementations. 

 See: 3.4.1 Parsing. 

 
 
15.6.2.2250   STATE    TOOLS EXT 

( -- a-addr ) 

Extend the semantics of 6.1.2250 STATE to allow ;CODE to change the value in STATE.  A 
program shall not directly alter the contents of STATE. 

 See: 3.4 The Forth text interpreter, 6.1.0450 :, 6.1.0460 ;, 6.1.0670 ABORT, 6.1.2050 QUIT, 
6.1.2250 STATE, 6.1.2500 [, 6.1.2540 ], 6.2.0455 :NONAME, 15.6.2.0470 ;CODE. 
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15.6.2.2531   [ELSE]   “bracket-else” TOOLS EXT 

 Compilation: Perform the execution semantics given below. 

 Execution: ( “<spaces>name ... ” -- ) 

Skipping leading spaces, parse and discard space-delimited words from the parse area, 
including nested occurrences of [IF] ... [THEN] and [IF] ... [ELSE] ... 
[THEN], until the word [THEN] has been parsed and discarded.  If the parse area becomes 
exhausted, it is refilled as with REFILL.  [ELSE] is an immediate word. 

 See: 3.4.1 Parsing. 

 
15.6.2.2532   [IF]   “bracket-if” TOOLS EXT 

 Compilation: Perform the execution semantics given below. 

 Execution: ( flag | flag “<spaces>name ... ” -- ) 

If flag is true, do nothing.  Otherwise, skipping leading spaces, parse and discard space-
delimited words from the parse area, including nested occurrences of [IF] ... [THEN] 
and [IF] ... [ELSE] ... [THEN], until either the word [ELSE] or the word 
[THEN] has been parsed and discarded.  If the parse area becomes exhausted, it is refilled as 
with REFILL.  [IF] is an immediate word. 

An ambiguous condition exists if [IF] is POSTPONEd, or if the end of the input buffer is 
reached and cannot be refilled before the terminating [ELSE] or [THEN] is parsed. 

 See: 3.4.1 Parsing. 

 
15.6.2.2533   [THEN]   “bracket-then” TOOLS EXT 

 Compilation: Perform the execution semantics given below. 

 Execution: ( -- ) 

Does nothing.  [THEN] is an immediate word. 
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16.   The optional Search-Order word set   
16.1   Introduction   
16.2   Additional terms and notation   

compilation word list:  The word list into which new definition names are placed. 

search order:  A list of word lists specifying the order in which the dictionary will be searched. 

16.3   Additional usage requirements   

16.3.1   Data types   
Word list identifiers are implementation-dependent single-cell values that identify word lists. 

Append table 16.1 to table 3.1.   

Table 16.1 – Data types   
Symbol Data type Size on stack 
wid word list identifiers 1 cell 

 
See:  3.1  Data types, 3.4.2  Finding definition names, 3.4 The Forth text interpreter. 

16.3.2   Environmental queries   
Append table 16.2 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 16.2 – Environmental query strings   

String Value data type Constant? Meaning 
SEARCH-ORDER flag no search-order word set present 
SEARCH-ORDER-EXT flag no search-order extensions word set present 
WORDLISTS n yes maximum number of word lists usable in the 

search order 
 

16.3.3   Finding definition names   
When searching a word list for a definition name, the system shall search each word list from its last 
definition to its first.  The search may encompass only a single word list, as with SEARCH-WORDLIST, or 
all the word lists in the search order, as with the text interpreter and FIND. 

Changing the search order shall only affect the subsequent finding of definition names in the dictionary. 

A system with the Search-Order word set shall allow at least eight word lists in the search order. 

An ambiguous condition exists if a program changes the compilation word list during the compilation of a 
definition or before modification of the behavior of the most recently compiled definition with ;CODE, 
DOES>, or IMMEDIATE. 

A program that requires more than eight word lists in the search order has an environmental dependency. 

See:  3.4.2  Finding definition names 
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16.3.4   Contiguous regions   
The regions of data space produced by the operations described in 3.3.3.2 Contiguous regions may be 
non-contiguous if WORDLIST is executed between allocations. 

16.4   Additional documentation requirements   

16.4.1   System documentation   

16.4.1.1   Implementation-defined options   

– maximum number of word lists in the search order (16.3.3 Finding definition names, 16.6.1.2197 
SET-ORDER); 

– minimum search order (16.6.1.2197 SET-ORDER, 16.6.2.1965 ONLY). 

16.4.1.2   Ambiguous conditions   

– changing the compilation word list (16.3.3 Finding definition names); 
– search order empty (16.6.2.2037 PREVIOUS); 
– too many word lists in search order (16.6.2.0715 ALSO). 

16.4.1.3   Other system documentation   

– no additional requirements. 

16.4.2   Program documentation   

16.4.2.1   Environmental dependencies   

– requiring more than eight word-lists in the search order (16.3.3 Finding definition names). 

16.4.2.2   Other program documentation   

– no additional requirements. 

16.5   Compliance and labeling   

16.5.1   ANS Forth systems   
The phrase “Providing the Search-Order word set” shall be appended to the label of any Standard System 
that provides all of the Search-Order word set. 

The phrase “Providing name(s) from the Search-Order Extensions word set” shall be appended to the label 
of any Standard System that provides portions of the Search-Order Extensions word set. 

The phrase “Providing the Search-Order Extensions word set” shall be appended to the label of any 
Standard System that provides all of the Search-Order and Search-Order Extensions word sets. 

16.5.2   ANS Forth programs   
The phrase “Requiring the Search-Order word set” shall be appended to the label of Standard Programs 
that require the system to provide the Search-Order word set. 

The phrase “Requiring name(s) from the Search-Order Extensions word set” shall be appended to the label 
of Standard Programs that require the system to provide portions of the Search-Order Extensions word set. 

The phrase “Requiring the Search-Order Extensions word set” shall be appended to the label of Standard 
Programs that require the system to provide all of the Search-Order and Search-Order Extensions word 
sets. 
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16.6   Glossary   

16.6.1   Search-Order words   
 
16.6.1.1180   DEFINITIONS    SEARCH 

( -- ) 

Make the compilation word list the same as the first word list in the search order.  Specifies that 
the names of subsequent definitions will be placed in the compilation word list.  Subsequent 
changes in the search order will not affect the compilation word list. 

 See: 16.3.3 Finding Definition Names. 

 
 
16.6.1.1550   FIND    SEARCH 

Extend the semantics of 6.1.1550 FIND to be: 

( c-addr -- c-addr 0  |  xt 1  |  xt -1 )  

Find the definition named in the counted string at c-addr.  If the definition is not found after 
searching all the word lists in the search order, return c-addr and zero.  If the definition is 
found, return xt.  If the definition is immediate, also return one (1); otherwise also return 
minus-one (-1).  For a given string, the values returned by FIND while compiling may differ 
from those returned while not compiling. 

 See: 3.4.2 Finding definition names, 6.1.0070 ', 6.1.1550 FIND, 6.1.2033 POSTPONE, 
6.1.2510 ['], D.6.7 Immediacy. 

 
 
16.6.1.1595   FORTH-WORDLIST    SEARCH 

( -- wid ) 

Return wid, the identifier of the word list that includes all standard words provided by the 
implementation.  This word list is initially the compilation word list and is part of the initial 
search order. 

 
 
16.6.1.1643   GET-CURRENT    SEARCH 

( -- wid ) 

Return wid, the identifier of the compilation word list. 

 
 
16.6.1.1647   GET-ORDER    SEARCH 

( -- widn ... wid1 n ) 

Returns the number of word lists n in the search order and the word list identifiers widn ... wid1 
identifying these word lists.  wid1 identifies the word list that is searched first, and widn the 
word list that is searched last.  The search order is unaffected. 
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16.6.1.2192   SEARCH-WORDLIST    SEARCH 

( c-addr u wid -- 0 | xt 1 | xt -1 ) 

Find the definition identified by the string c-addr u in the word list identified by wid.  If the 
definition is not found, return zero.  If the definition is found, return its execution token xt and 
one (1) if the definition is immediate, minus-one (-1) otherwise. 

 
 
16.6.1.2195   SET-CURRENT    SEARCH 

( wid -- ) 

Set the compilation word list to the word list identified by wid. 

 
 
16.6.1.2197   SET-ORDER    SEARCH 

( widn ... wid1 n -- ) 

Set the search order to the word lists identified by widn ... wid1.  Subsequently, word list wid1 
will be searched first, and word list widn searched last.  If n is zero, empty the search order.  If 
n is minus one, set the search order to the implementation-defined minimum search order.  The 
minimum search order shall include the words FORTH-WORDLIST and SET-ORDER.  A 
system shall allow n to be at least eight. 

 
 
16.6.1.2460   WORDLIST    SEARCH 

( -- wid ) 

Create a new empty word list, returning its word list identifier wid.  The new word list may be 
returned from a pool of preallocated word lists or may be dynamically allocated in data space.  
A system shall allow the creation of at least 8 new word lists in addition to any provided as part 
of the system. 

 

16.6.2   Search-Order extension words   
 
16.6.2.0715   ALSO    SEARCH EXT 

( -- ) 

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into 
widn, ... wid2, wid1, wid1.  An ambiguous condition exists if there are too many word lists in the 
search order. 

 
 
16.6.2.1590   FORTH    SEARCH EXT 

( -- ) 

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into 
widn, ... wid2, widFORTH-WORDLIST. 
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16.6.2.1965   ONLY    SEARCH EXT 

( -- ) 

Set the search order to the implementation-defined minimum search order.  The minimum 
search order shall include the words FORTH-WORDLIST and SET-ORDER. 

 
 
16.6.2.1985   ORDER    SEARCH EXT 

( -- ) 

Display the word lists in the search order in their search order sequence, from first searched to 
last searched.  Also display the word list into which new definitions will be placed.  The 
display format is implementation dependent. 

ORDER may be implemented using pictured numeric output words.  Consequently, its use may 
corrupt the transient region identified by #>. 

 See 3.3.3.6 Other Transient Regions. 

 
 
16.6.2.2037   PREVIOUS    SEARCH EXT 

( -- ) 

Transform the search order consisting of widn, ... wid2, wid1 (where wid1 is searched first) into 
widn, ... wid2.  An ambiguous condition exists if the search order was empty before PREVIOUS 
was executed. 
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17.   The optional String word set   

17.1   Introduction   

17.2   Additional terms and notation   
None. 

17.3   Additional usage requirements   
Append table 17.1 to table 3.5.   

See:  3.2.6 Environmental queries. 

Table 17.1 – Environmental query strings   

String Value data type Constant? Meaning 
STRING flag no string word set present 
STRING-EXT flag no string extensions word set present 

 

17.4   Additional documentation requirements   
None. 

17.5   Compliance and labeling   

17.5.1   ANS Forth systems   
The phrase “Providing the String word set” shall be appended to the label of any Standard System that 
provides all of the String word set. 

The phrase “Providing name(s) from the String Extensions word set” shall be appended to the label of any 
Standard System that provides portions of the String Extensions word set. 

The phrase “Providing the String Extensions word set” shall be appended to the label of any Standard 
System that provides all of the String and String Extensions word sets. 

17.5.2   ANS Forth programs   
The phrase “Requiring the String word set” shall be appended to the label of Standard Programs that 
require the system to provide the String word set. 

The phrase “Requiring name(s) from the String Extensions word set” shall be appended to the label of 
Standard Programs that require the system to provide portions of the String Extensions word set. 

The phrase “Requiring the String Extensions word set” shall be appended to the label of Standard Programs 
that require the system to provide all of the String and String Extensions word sets. 
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17.6   Glossary   

17.6.1   String words   
 
17.6.1.0170   -TRAILING   “dash-trailing” STRING 

( c-addr u1 -- c-addr u2 ) 

If u1 is greater than zero, u2 is equal to u1 less the number of spaces at the end of the character 
string specified by c-addr u1.  If u1 is zero or the entire string consists of spaces, u2 is zero. 

 
17.6.1.0245   /STRING   “slash-string” STRING 

( c-addr1 u1 n -- c-addr2 u2 ) 

Adjust the character string at c-addr1 by n characters.  The resulting character string, specified 
by c-addr2 u2, begins at c-addr1 plus n characters and is u1 minus n characters long. 

 
17.6.1.0780   BLANK    STRING 

( c-addr u -- ) 

If u is greater than zero, store the character value for space in u consecutive character positions 
beginning at c-addr. 

 
17.6.1.0910   CMOVE   “c-move” STRING 

( c-addr1 c-addr2 u -- ) 

If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1 
to that starting at c-addr2, proceeding character-by-character from lower addresses to higher 
addresses. 

 Contrast with: 17.6.1.0920 CMOVE>. 

 
17.6.1.0920   CMOVE>   “c-move-up” STRING 

( c-addr1 c-addr2 u -- ) 

If u is greater than zero, copy u consecutive characters from the data space starting at c-addr1 
to that starting at c-addr2, proceeding character-by-character from higher addresses to lower 
addresses. 

 Contrast with: 17.6.1.0910 CMOVE. 
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17.6.1.0935   COMPARE    STRING 

( c-addr1 u1 c-addr2 u2 -- n ) 

Compare the string specified by c-addr1 u1 to the string specified by c-addr2 u2.  The strings 
are compared, beginning at the given addresses, character by character, up to the length of the 
shorter string or until a difference is found.  If the two strings are identical, n is zero.  If the two 
strings are identical up to the length of the shorter string, n is minus-one (-1) if u1 is less than 
u2 and one (1) otherwise.  If the two strings are not identical up to the length of the shorter 
string, n is minus-one (-1) if the first non-matching character in the string specified by c-addr1 
u1 has a lesser numeric value than the corresponding character in the string specified by c-
addr2 u2 and one (1) otherwise. 

 
 
17.6.1.2191   SEARCH    STRING 

( c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag ) 

Search the string specified by c-addr1 u1 for the string specified by c-addr2 u2.  If flag is true, a 
match was found at c-addr3 with u3 characters remaining.  If flag is false there was no match 
and c-addr3 is c-addr1 and u3 is u1. 

 
 
17.6.1.2212   SLITERAL    STRING 

 Interpretation: Interpretation semantics for this word are undefined. 

 Compilation: ( c-addr1 u -- ) 

Append the run-time semantics given below to the current definition. 

 Run-time: ( -- c-addr2 u ) 

Return c-addr2 u describing a string consisting of the characters specified by c-addr1 u during 
compilation.  A program shall not alter the returned string. 

 
 

17.6.2   String extension words   

None 
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A.   Rationale (informative annex)   

A.1   Introduction   

A.1.1   Purpose   

A.1.2   Scope   
This Standard is more extensive than previous industry standards for the Forth language.  Several things 
made this necessary: 

– the desire to resolve conflicts between previous standards; 
– the need to eliminate semantic ambiguities and other inadequacies; 
– the requirement to standardize common practice, where possible resolving divergences in a way that 

minimizes the cost of compliance; 
– the desire to standardize common system techniques, including those germane to hardware. 

The result of the effort to satisfy all of these objectives is a Standard arranged so that the required word set 
remains small.  Thus ANS Forth can be provided for resource-constrained embedded systems.  Words 
beyond those in the required word set are organized into a number of optional word sets and their 
extensions, enabling implementation of tailored systems that are Standard. 

When judging relative merits, the members of the X3J14 Technical Committee were guided by the 
following goals (listed in alphabetic order): 

Consistency The Standard provides a functionally complete set of words with minimal 
functional overlap. 

Cost of compliance This goal includes such issues as common practice, how much existing code 
would be broken by the proposed change, and the amount of effort required to 
bring existing applications and systems into conformity with the Standard. 

Efficiency Execution speed, memory compactness. 

Portability Words chosen for inclusion should be free of system-dependent features. 

Readability Forth definition names should clearly delineate their behavior.  That behavior 
should have an apparent simplicity which supports rapid understanding.  Forth 
should be easily taught and support readily maintained code. 

Utility Be judged to have sufficiently essential functionality and frequency of use to be 
deemed suitable for inclusion. 

A.1.3   Document organization   

A.1.3.1   Word sets   

From the beginning, the X3J14 Technical Committee faced not only conflicting ideas as to what “real” 
Forth is, but also conflicting needs of the various groups within the Forth community.  At one extreme 
were those who pressed for a “bare” Forth.  At the other extreme were those who wanted a “fat” Forth.  
Many were somewhere in between.  All were convinced of the rightness of their own position and of the 
wrongness of at least one of the two extremes.  The committee’s composition reflected this full range of 
interests. 

The approach we have taken is to define a Core word set establishing a greatest lower bound for required 
system functionality and to provide a portfolio of optional word sets for special purposes.  This simple 
approach parallels the fundamental nature of Forth as an extensible language, and thereby achieves a kind 
of meta-extensibility. 
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With this key, high-level compromise, regardless of the actual makeup of the individual word sets, a firm 
and workable framework is established for the long term.  One may or may not agree that there should be a 
Locals word set, or that the word COMPILE, belongs in the Core Extensions word set.  But at least there is 
a mechanism whereby such things can be included in a logical and orderly manner.   

Several implications of this scheme of optional word sets are significant.   

First, ANS Forth systems can continue to be implemented on a greater range of hardware than could be 
claimed by almost any other single language.  Since only the Core word set is required, very limited 
hardware will be able to accommodate an ANS Forth implementation. 

Second, a greater degree of portability of applications, and of programmers, is anticipated.  The optional 
word sets standardize various functions (e.g., floating point) that were widely implemented before, but not 
with uniform definition names and methodologies, nor the same levels of completeness.  With such words 
now standardized in the optional word sets, communications between programmers – verbally, via 
magazine or journal articles, etc. – will leap to a new level of facility, and the shareability of code and 
applications should rise dramatically. 

Third, ANS Forth systems may be designed to offer the user the power to selectively, even dynamically, 
include or exclude one or more of the optional word sets or portions thereof.  Also, lower-priced products 
may be offered for the user who needs the Core word set and not much more.  Thus, virtually unlimited 
flexibility will be available to the user. 

But these advantages have a price.  The burden is on the user to decide what capabilities are desired, and to 
select product offerings accordingly, especially when portability of applications is important.  We do not 
expect most implementors to attempt to provide all word sets, but rather to select those most valuable to 
their intended markets. 

The basic requirement is that if the implementor claims to have a particular optional word set the entire 
required portion of that word set must be available.  If the implementor wishes to offer only part of an 
optional word set, it is acceptable to say, for example, “This system offers portions of the [named] word 
set”, particularly if the selected or excluded words are itemized clearly. 

Each optional word set will probably appeal to a particular constituency.  For example, scientists 
performing complex mathematical analysis may place a higher value on the Floating-Point word set than 
programmers developing simple embedded controllers.  As in the case of the core extensions, we expect 
implementors to offer those word sets they expect will be valued by their users. 

Optional word sets may be offered in source form or otherwise factored so that the user may selectively 
load them. 

The extensions to the optional word sets include words which are deemed less essential to performing the 
primary activity supported by the word set, though clearly relevant to it.  As in the case of the Core 
Extensions, implementors may selectively add itemized subsets of a word set extension providing the 
labeling doesn’t mislead the user into thinking incorrectly that all words are present. 

A.2   Terms and notation   

A.2.1   Definitions of terms   
ambiguous condition   

The response of a Standard System to an ambiguous condition is left to the discretion of the implementor.  
A Standard System need not explicitly detect or report the occurrence of ambiguous conditions. 

cross compiler   

Cross-compilers may be used to prepare a program for execution in an embedded system, or may be used 
to generate Forth kernels either for the same or a different run-time environment. 
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data field   

In earlier standards, data fields were known as “parameter fields”. 

On subroutine threaded Forth systems, everything is object code.  There are no traditional code or data 
fields.  Only a word defined by CREATE or by a word that calls CREATE has a data field.  Only a data field 
defined via CREATE can be manipulated portably. 

word set   

This Standard recognizes that some functions, while useful in certain application areas, are not sufficiently 
general to justify requiring them in all Forth systems.  Further, it is helpful to group Forth words according 
to related functions.  These issues are dealt with using the concept of word sets. 

The “Core” word set contains the essential body of words in a Forth system.  It is the only “required” word 
set.  Other word sets defined in this Standard are optional additions to make it possible to provide Standard 
Systems with tailored levels of functionality. 

A.2.2   Notation   

A.2.2.2   Stack notation   

The use of -sys, orig, and dest data types in stack effect diagrams conveys two pieces of information.  First, 
it warns the reader that many implementations use the data stack in unspecified ways for those purposes, so 
that items underneath on either the control-flow or data stacks are unavailable.  Second, in cases where orig 
and dest are used, explicit pairing rules are documented on the assumption that all systems will implement 
that model so that its results are equivalent to employment of some stack, and that in fact many 
implementations do use the data stack for this purpose.  However, nothing in this Standard requires that 
implementations actually employ the data stack (or any other) for this purpose so long as the implied 
behavior of the model is maintained. 

A.3   Usage requirements   
Forth systems are unusually simple to develop, in comparison with compilers for more conventional 
languages such as C.  In addition to Forth systems supported by vendors, public-domain implementations 
and implementation guides have been widely available for nearly twenty years, and a large number of 
individuals have developed their own Forth systems.  As a result, a variety of implementation approaches 
have developed, each optimized for a particular platform or target market. 

The X3J14 Technical Committee has endeavored to accommodate this diversity by constraining 
implementors as little as possible, consistent with a goal of defining a standard interface between an 
underlying Forth System and an application program being developed on it. 

Similarly, we will not undertake in this section to tell you how to implement a Forth System, but rather will 
provide some guidance as to what the minimum requirements are for systems that can properly claim 
compliance with this Standard. 

A.3.1   Data-types   
Most computers deal with arbitrary bit patterns.  There is no way to determine by inspection whether a cell 
contains an address or an unsigned integer.  The only meaning a datum possesses is the meaning assigned 
by an application. 

When data are operated upon, the meaning of the result depends on the meaning assigned to the input 
values.  Some combinations of input values produce meaningless results: for instance, what meaning can be 
assigned to the arithmetic sum of the ASCII representation of the character “A” and a TRUE flag? The 
answer may be “no meaning”; or alternatively, that operation might be the first step in producing a 
checksum. Context is the determiner. 
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The discipline of circumscribing meaning which a program may assign to various combinations of bit 
patterns is sometimes called data typing.  Many computer languages impose explicit data typing and have 
compilers that prevent ill-defined operations. 

Forth rarely explicitly imposes data-type restrictions.  Still, data types implicitly do exist, and discipline is 
required, particularly if portability of programs is a goal.  In Forth, it is incumbent upon the programmer 
(rather than the compiler) to determine that data are accurately typed. 

This section attempts to offer guidance regarding de facto data typing in Forth.   

A.3.1.2   Character types   

The correct identification and proper manipulation of the character data type is beyond the purview of 
Forth’s enforcement of data type by means of stack depth.  Characters do not necessarily occupy the entire 
width of their single stack entry with meaningful data.  While the distinction between signed and unsigned 
character is entirely absent from the formal specification of Forth, the tendency in practice is to treat 
characters as short positive integers when mathematical operations come into play. 

a) Standard Character Set   

1) The storage unit for the character data type (C@, C!, FILL, etc.) must be able to contain unsigned 
numbers from 0 through 255. 

2) An implementation is not required to restrict character storage to that range, but a Standard Program 
without environmental dependencies cannot assume the ability to store numbers outside that range in a 
“char” location. 

3) The allowed number representations are two’s-complement, one’s-complement, and signed-magnitude.  
Note that all of these number systems agree on the representation of positive numbers. 

4) Since a “char” can store small positive numbers and since the character data type is a sub-range of the 
unsigned integer data type, C! must store the n least-significant bits of a cell (8 <= n <= bits/cell).  Given 
the enumeration of allowed number representations and their known encodings, “TRUE xx C! xx C@” 
must leave a stack item with some number of bits set, which will thus will be accepted as non-zero by IF. 

5) For the purposes of input (KEY, ACCEPT, etc.) and output (EMIT, TYPE, etc.), the encoding between 
numbers and human-readable symbols is ISO646/IRV (ASCII) within the range from 32 to 126 (space 
to ~).  EBCDIC is out (most “EBCDIC” computer systems support ASCII too).  Outside that range, it is up 
to the implementation.  The obvious implementation choice is to use ASCII control characters for the range 
from 0 to 31, at least for the “displayable” characters in that range (TAB, RETURN, LINEFEED, 
FORMFEED).  However, this is not as clear-cut as it may seem, because of the variation between operating 
systems on the treatment of those characters.  For example, some systems TAB to 4 character boundaries, 
others to 8 character boundaries, and others to preset tab stops.  Some systems perform an automatic 
linefeed after a carriage return, others perform an automatic carriage return after a linefeed, and others do 
neither.   

The codes from 128 to 255 may eventually be standardized, either formally or informally, for use as 
international characters, such as the letters with diacritical marks found in many European languages.  One 
such encoding is the 8-bit ISO Latin-1 character set.  The computer marketplace at large will eventually 
decide which encoding set of those characters prevails.  For Forth implementations running under an 
operating system (the majority of those running on standard platforms these days), most Forth 
implementors will probably choose to do whatever the system does, without performing any remapping 
within the domain of the Forth system itself.   

6) A Standard Program can depend on the ability to receive any character in the range 32 ... 126 through 
KEY, and similarly to display the same set of characters with EMIT.  If a program must be able to receive 
or display any particular character outside that range, it can declare an environmental dependency on the 
ability to receive or display that character.   
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7) A Standard Program cannot use control characters in definition names.  However, a Standard System is 
not required to enforce this prohibition.  Thus, existing systems that currently allow control characters in 
words names from BLOCK source may continue to allow them, and programs running on those systems will 
continue to work.  In text file source, the parsing action with space as a delimiter (e.g., BL WORD) treats 
control characters the same as spaces.  This effectively implies that you cannot use control characters in 
definition names from text-file source, since the text interpreter will treat the control characters as 
delimiters.  Note that this “control-character folding” applies only when space is the delimiter, thus the 
phrase “CHAR ) WORD” may collect a string containing control characters. 

b) Storage and retrieval  

Characters are transferred from the data stack to memory by C! and from memory to the data stack by C@. 
A number of lower-significance bits equivalent to the implementation-dependent width of a character are 
transferred from a popped data stack entry to an address by the action of C! without affecting any bits 
which may comprise the higher-significance portion of the cell at the destination address; however, the 
action of C@ clears all higher-significance bits of the data stack entry which it pushes that are beyond the 
implementation-dependent width of a character (which may include implementation-defined display 
information in the higher-significance bits). The programmer should keep in mind that operating upon 
arbitrary stack entries with words intended for the character data type may result in truncation of such data. 

c) Manipulation on the stack  

In addition to C@ and C!, characters are moved to, from and upon the data stack by the following words: 

>R  ?DUP  DROP  DUP  OVER  PICK  R>  R@  ROLL  ROT  SWAP   

d) Additional operations   

The following mathematical operators are valid for character data: 

+  -  *  /  /MOD  MOD   

The following comparison and bitwise operators may be valid for characters, keeping in mind that display 
information cached in the most significant bits of characters in an implementation-defined fashion may 
have to be masked or otherwise dealt with: 

AND  OR  >  <  U>  U<  =  <>  0=  0<>  MAX  MIN   
LSHIFT  RSHIFT 

A.3.1.3   Single-cell types   

A single-cell stack entry viewed without regard to typing is the fundamental data type of Forth. All other 
data types are actually represented by one or more single-cell stack entries. 

a) Storage and retrieval  

Single-cell data are transferred from the stack to memory by !; from memory to the stack by @.  All bits are 
transferred in both directions and no type checking of any sort is performed, nor does the Standard System 
check that a memory address used by ! or @ is properly aligned or properly sized to hold the datum thus 
transferred. 

b) Manipulation on the stack   

Here is a selection of the most important words which move single-cell data to, from and upon the data 
stack: 

!  @  >R  ?DUP  DROP  DUP  OVER  PICK  R>  R@  ROLL  ROT  SWAP   

c) Comparison operators   

The following comparison operators are universally valid for one or more single cells: 
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=  <>  0=  0<>   

A.3.1.3.1   Flags   

A FALSE flag is a single-cell datum with all bits unset, and a TRUE flag is a single-cell datum with all bits 
set. While Forth words which test flags accept any non-null bit pattern as true, there exists the concept of 
the well-formed flag. If an operation whose result is to be used as a flag may produce any bit-mask other 
than TRUE or FALSE, the recommended discipline is to convert the result to a well-formed flag by means 
of the Forth word 0<> so that the result of any subsequent logical operations on the flag will be 
predictable. 

In addition to the words which move, fetch and store single-cell items, the following words are valid for 
operations on one or more flag data residing on the data stack: 

AND  OR  XOR  INVERT   

A.3.1.3.2   Integers   

A single-cell datum may be treated by a Standard Program as a signed integer.  Moving and storing such 
data is performed as for any single-cell data.  In addition to the universally-applicable operators for single-
cell data specified above, the following mathematical and comparison operators are valid for single-cell 
signed integers: 

*  */  */MOD  /MOD  MOD  +  +!  -  /  1+  1-  ABS  MAX  MIN  NEGATE  
0<  0>  <  >   

Given the same number of bits, unsigned integers usually represent twice the number of absolute values 
representable by signed integers. 

A single-cell datum may be treated by a Standard Program as an unsigned integer.  Moving and storing 
such data is performed as for any single-cell data.  In addition, the following mathematical and comparison 
operators are valid for single-cell unsigned integers: 

UM*  UM/MOD  +  +!  -  1+  1-  *  U<  U>   

A.3.1.3.3   Addresses   

An address is uniquely represented as a single cell unsigned number and can be treated as such when being 
moved to, from, or upon the stack.  Conversely, each unsigned number represents a unique address (which 
is not necessarily an address of accessible memory).  This one-to-one relationship between addresses and 
unsigned numbers forces an equivalence between address arithmetic and the corresponding operations on 
unsigned numbers. 

Several operators are provided specifically for address arithmetic: 

CHAR+  CHARS  CELL+  CELLS   

and, if the floating-point word set is present: 

FLOAT+  FLOATS  SFLOAT+  SFLOATS  DFLOAT+  DFLOATS   

A Standard Program may never assume a particular correspondence between a Forth address and the 
physical address to which it is mapped. 

A.3.1.3.4   Counted strings   

The trend in ANS Forth is to move toward the consistent use of the “c-addr u” representation of strings on 
the stack.  The use of the alternate “address of counted string” stack representation is discouraged.  The 
traditional Forth words WORD and FIND continue to use the “address of counted string” representation for 
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historical reasons.  The new word C" , added as a porting aid for existing programs, also uses the counted 
string representation. 

Counted strings remain useful as a way to store strings in memory.  This use is not discouraged, but when 
references to such strings appear on the stack, it is preferable to use the “c-addr u” representation. 

A.3.1.3.5   Execution tokens   

The association between an execution token and a definition is static.  Once made, it does not change with 
changes in the search order or anything else.  However it may not be unique, e.g., the phrases 
 ' 1+ and 
 ' CHAR+ 
might return the same value. 

A.3.1.4   Cell-pair types   

a) Storage and retrieval   

Two operators are provided to fetch and store cell pairs: 

2@  2! 

b) Manipulation on the stack   

Additionally, these operators may be used to move cell pairs from, to and upon the stack: 

2>R  2DROP  2DUP  2OVER  2R>  2SWAP  2ROT   

c) Comparison   

The following comparison operations are universally valid for cell pairs: 

D=  D0=   

A.3.1.4.1   Double-Cell Integers   

If a double-cell integer is to be treated as signed, the following comparison and mathematical operations 
are valid: 

D+  D-  D<  D0<  DABS  DMAX  DMIN  DNEGATE  M*/  M+   

If a double-cell integer is to be treated as unsigned, the following comparison and mathematical operations 
are valid: 

D+  D-  UM/MOD  DU<   

A.3.1.4.2   Character strings   

See:  A.3.1.3.4  Counted Strings. 

A.3.2   The Implementation environment   

A.3.2.1   Numbers   

Traditionally, Forth has been implemented on two’s-complement machines where there is a one-to-one 
mapping of signed numbers to unsigned numbers – any single cell item can be viewed either as a signed or 
unsigned number.  Indeed, the signed representation of any positive number is identical to the equivalent 
unsigned representation.  Further, addresses are treated as unsigned numbers:  there is no distinct pointer 
type.  Arithmetic ordering on two’s complement machines allows + and - to work on both signed and 
unsigned numbers.  This arithmetic behavior is deeply embedded in common Forth practice. 
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As a consequence of these behaviors, the likely ranges of signed and unsigned numbers for 
implementations hosted on each of the permissible arithmetic architectures is: 

 
Arithmetic architecture signed numbers unsigned numbers 

Two’s complement -n-1 to n 0 to 2n+1 
One’s complement -n to n 0 to n 
Signed magnitude -n to n 0 to n 

 
where n is the largest positive signed number.  For all three architectures, signed numbers in the 0 to n 
range are bitwise identical to the corresponding unsigned number.  Note that unsigned numbers on a signed 
magnitude machine are equivalent to signed non-negative numbers as a consequence of the forced 
correspondence between addresses and unsigned numbers and of the required behavior of + and -. 

For reference, these number representations may be defined by the way that NEGATE is implemented: 

two’s complement: : NEGATE  INVERT 1+ ; 
one’s complement: : NEGATE  INVERT ; 
signed-magnitude: : NEGATE  HIGH-BIT XOR ; 

where HIGH-BIT is a bit mask with only the most-significant bit set.  Note that all of these number 
systems agree on the representation of non-negative numbers. 

Per 3.2.1.1 Internal number representation and 6.1.0270 0=, the implementor must ensure that no 
standard or supported word return negative zero for any numeric (non-Boolean or flag) result.  Many 
existing programmer assumptions will be violated otherwise. 

There is no requirement to implement circular unsigned arithmetic, nor to set the range of unsigned 
numbers to the full size of a cell.  There is historical precedent for limiting the range of u to that of +n, 
which is permissible when the cell size is greater than 16 bits. 

A.3.2.1.2   Digit conversion   

For example, an implementation might convert the characters “a” through “z” identically to the characters 
“A” through “Z”, or it might treat the characters “ [ ” through “~” as additional digits with decimal values 
36 through 71, respectively. 

A.3.2.2   Arithmetic   

A.3.2.2.1   Integer division   

The Forth-79 Standard specifies that the signed division operators (/, /MOD, MOD, */MOD, and */) round 
non-integer quotients towards zero (symmetric division).  Forth 83 changed the semantics of these 
operators to round towards negative infinity (floored division).  Some in the Forth community have 
declined to convert systems and applications from the Forth-79 to the Forth-83 divide.  To resolve this 
issue, an ANS Forth system is permitted to supply either floored or symmetric operators.  In addition, ANS 
Forth systems must provide a floored division primitive (FM/MOD), a symmetric division primitive 
(SM/REM), and a mixed precision multiplication operator (M*). 

This compromise protects the investment made in current Forth applications; Forth-79 and Forth-83 
programs are automatically compliant with ANS Forth with respect to division.  In practice, the rounding 
direction rarely matters to applications.  However, if a program requires a specific rounding direction, it 
can use the floored division primitive FM/MOD or the symmetric division primitive SM/REM to construct a 
division operator of the desired flavor.  This simple technique can be used to convert Forth-79 and 
Forth-83 programs to ANS Forth without any analysis of the original programs. 

A.3.2.2.2   Other integer operations   

Whether underflow occurs depends on the data-type of the result.  For example, the phrase 1 2 - 
underflows if the result is unsigned and produces the valid signed result -1. 
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A.3.2.3   Stacks   

The only data type in Forth which has concrete rather than abstract existence is the stack entry.  Even this 
primitive typing Forth only enforces by the hard reality of  stack underflow or overflow. The programmer 
must have a clear idea of the number of stack entries to be consumed by the execution of a word and the 
number of entries that will be pushed back to a stack by the execution of a word. The observation of 
anomalous occurrences on the data stack is the first line of defense whereby the programmer may recognize 
errors in an application program. It is also worth remembering that multiple stack errors caused by 
erroneous application code are frequently of equal and opposite magnitude, causing complementary (and 
deceptive) results. 

For these reasons and a host of other reasons, the one unambiguous, uncontroversial, and indispensable 
programming discipline observed since the earliest days of Forth is that of providing a stack diagram for all 
additions to the application dictionary with the exception of static constructs such as VARIABLEs and 
CONSTANTs. 

A.3.2.3.2   Control-flow stack   

The simplest use of control-flow words is to implement the basic control structures shown in figure A.1. 

 

IF

THEN

BEGIN

UNTIL

BEGIN

AGAIN

 
Figure A.1 – The basic control-flow patterns. 

In control flow every branch, or transfer of control, must terminate at some destination.  A natural 
implementation uses a stack to remember the origin of forward branches and the destination of backward 
branches.  At a minimum, only the location of each origin or destination must be indicated, although other 
implementation-dependent information also may be maintained. 

An origin is the location of the branch itself.  A destination is where control would continue if the branch 
were taken.  A destination is needed to resolve the branch address for each origin, and conversely, if every 
control-flow path is completed no unused destinations can remain. 

With the addition of just three words (AHEAD, CS-ROLL and CS-PICK), the basic control-flow words 
supply the primitives necessary to compile a variety of transportable control structures.  The abilities 
required are compilation of forward and backward conditional and unconditional branches and compile-
time management of branch origins and destinations.  Table A.1 shows the desired behavior. 

The requirement that control-flow words are properly balanced by other control-flow words makes 
reasonable the description of a compile-time implementation-defined control-flow stack.  There is no 
prescription as to how the control-flow stack is implemented, e.g., data stack, linked list, special array.  
Each element of the control-flow stack mentioned above is the same size. 

Table A.1 – Compilation behavior of control-flow words   
at compile time, 
word: 

 
supplies: 

 
resolves: 

 
is used to: 

IF  orig mark origin of forward conditional branch 
THEN orig resolve IF or AHEAD 
BEGIN dest mark backward destination 
AGAIN dest resolve with backward unconditional branch 
UNTIL dest resolve with backward conditional branch 
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AHEAD orig mark origin of forward unconditional branch 
CS-PICK  copy item on control-flow stack 
CS-ROLL  reorder items on control-flow stack 

 
With these tools, the remaining basic control-structure elements, shown in figure A.2,  can be defined.  The 
stack notation used here for immediate words is ( compilation / execution ). 

: WHILE  ( dest -- orig dest / flag -- ) 
   \ conditional exit from loops 
   POSTPONE IF      \ conditional forward branch 
   1 CS-ROLL        \ keep dest on top 
; IMMEDIATE 

: REPEAT  ( orig dest -- / -- ) 
   \ resolve a single WHILE and return to BEGIN 
   POSTPONE AGAIN   \ uncond. backward branch to dest 
   POSTPONE THEN    \ resolve forward branch from orig 
; IMMEDIATE 

: ELSE  ( orig1 -- orig2 / -- ) 
   \ resolve IF supplying alternate execution 
   POSTPONE AHEAD   \ unconditional forward branch orig2 
   1 CS-ROLL        \ put orig1 back on top 
   POSTPONE THEN    \ resolve forward branch from orig1 
; IMMEDIATE 

 

IF

THEN

BEGIN

ELSE WHILE

REPEAT
 

Figure A.2 – Additional basic control-flow patterns. 
Forth control flow provides a solution for well-known problems with strictly structured programming. 
The basic control structures can be supplemented, as shown in the examples in figure A.3, with additional 
WHILEs in BEGIN ... UNTIL and BEGIN ... WHILE ... REPEAT structures.  However, for 
each additional WHILE there must be a THEN at the end of the structure.  THEN completes the syntax with 
WHILE and indicates where to continue execution when the WHILE transfers control.  The use of more 
than one additional WHILE is possible but not common.  Note that if the user finds this use of THEN 
undesirable, an alias with a more likable name could be defined. 
Additional actions may be performed between the control flow word (the REPEAT or UNTIL) and the 
THEN that matches the additional WHILE.  Further, if additional actions are desired for normal termination  
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and early termination, the alternative actions may be separated by the ordinary Forth ELSE.  The 
termination actions are all specified after the body of the loop. 

BEGIN

WHILE

REPEAT

WHILE

THEN

BEGIN

WHILE

THEN

UNTIL

ELSE

 
Figure A.3 – Extended control-flow pattern examples. 

Note that REPEAT creates an anomaly when matching the WHILE with ELSE or THEN, most notably when 
compared with the BEGIN...UNTIL case.  That is, there will be one less ELSE or THEN than there are 
WHILEs because REPEAT resolves one THEN.  As above, if the user finds this count mismatch 
undesirable, REPEAT could be replaced in-line by its own definition. 
Other loop-exit control-flow words, and even other loops, can be defined.  The only requirements are that 
the control-flow stack is properly maintained and manipulated. 
The simple implementation of the ANS Forth CASE structure below is an example of control structure 
extension.  Note the maintenance of the data stack to prevent interference with the possible control-flow 
stack usage. 

0 CONSTANT CASE IMMEDIATE  ( init count of OFs ) 
 
: OF  ( #of -- orig #of+1 / x -- ) 
   1+    ( count OFs ) 
   >R    ( move off the stack in case the control-flow ) 
         ( stack is the data stack. ) 
   POSTPONE OVER  POSTPONE = ( copy and test case value) 
   POSTPONE IF    ( add orig to control flow stack ) 
   POSTPONE DROP  ( discards case value if = ) 
   R>             ( we can bring count back now ) 
; IMMEDIATE 
 
: ENDOF ( orig1 #of -- orig2 #of ) 
   >R   ( move off the stack in case the control-flow ) 
        ( stack is the data stack. ) 
   POSTPONE ELSE 
   R>   ( we can bring count back now ) 
; IMMEDIATE 
 
: ENDCASE  ( orig1..orign #of -- ) 
   POSTPONE DROP  ( discard case value ) 
   0 ?DO 
     POSTPONE THEN 
   LOOP  
; IMMEDIATE 
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A.3.2.3.3   Return stack   

The restrictions in section 3.2.3.3 Return stack are necessary if implementations are to be allowed to place 
loop parameters on the return stack. 

A.3.2.6   Environmental queries   

The size in address units of various data types may be determined by phrases such as 1 CHARS.  Similarly, 
alignment may be determined by phrases such as 1 ALIGNED. 

The environmental queries are divided into two groups: those that always produce the same value and those 
that might not.  The former groups include entries such as MAX-N.  This information is fixed by the 
hardware or by the design of the Forth system; a user is guaranteed that asking the question once is 
sufficient. 

The other group of queries are for things that may legitimately change over time.  For example an 
application might test for the presence of the Double Number word set using an environment query.  If it is 
missing, the system could invoke a system-dependent process to load the word set.  The system is permitted 
to change ENVIRONMENT?’s database so that subsequent queries about it indicate that it is present. 

Note that a query that returns an “unknown” response could produce a “known” result on a subsequent 
query. 

A.3.3   The Forth dictionary   
A Standard Program may redefine a standard word with a non-standard definition.  The program is still 
Standard (since it can be built on any Standard System), but the effect is to make the combined entity 
(Standard System plus Standard Program) a non-standard system. 

A.3.3.1   Name space   

A.3.3.1.2   Definition names   

The language in this section is there to ensure the portability of Standard Programs.  If a program uses 
something outside the Standard that it does not provide itself, there is no guarantee that another 
implementation will have what the program needs to run.  There is no intent whatsoever to imply that all 
Forth programs will be somehow lacking or inferior because they are not standard; some of the finest 
jewels of the programmer’s art will be non-standard.  At the same time, the committee is trying to ensure 
that a program labeled “Standard” will meet certain expectations, particularly with regard to portability. 

In many system environments the input source is unable to supply certain non-graphic characters due to 
external factors, such as the use of those characters for flow control or editing.  In addition, when 
interpreting from a text file, the parsing function specifically treats non-graphic characters like spaces; thus 
words received by the text interpreter will not contain embedded non-graphic characters.  To allow 
implementations in such environments to call themselves Standard, this minor restriction on Standard 
Programs is necessary. 

A Standard System is allowed to permit the creation of definition names containing non-graphic characters.  
Historically, such names were used for keyboard editing functions and “invisible” words. 

A.3.3.2   Code space   

A.3.3.3   Data space   

The words #TIB, >IN, BASE, BLK, SCR, SOURCE, SOURCE-ID, STATE, and TIB contain information 
used by the Forth system in its operation and may be of use to the application.  Any assumption made by 
the application about data available in the Forth system it did not store other than the data just listed is an 
environmental dependency. 
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There is no point in specifying (in the Standard) both what is and what is not addressable. 

A Standard Program may NOT address: 

– Directly into the data or return stacks; 
– Into a definition’s data field if not stored by the application. 

The read-only restrictions arise because some Forth systems run from ROM and some share I/O buffers 
with other users or systems.  Portable programs cannot know which areas are affected, hence the general 
restrictions. 

A.3.3.3.1   Address alignment   

Many processors have restrictions on the addresses that can be used by memory access instructions.  For 
example, on a Motorola 68000, 16-bit or 32-bit data can be accessed only at even addresses.  Other 
examples include RISC architectures where 16-bit data can be loaded or stored only at even addresses and 
32-bit data only at addresses that are multiples of four.  

An implementor of ANS Forth can handle these alignment restrictions in one of two ways.  Forth’s 
memory access words (@, !, +!, etc.) could be implemented in terms of smaller-width access instructions 
which have no alignment restrictions.  For example, on a 68000 Forth with 16-bit cells, @ could be 
implemented with two 68000 byte-fetch instructions and a reassembly of the bytes into a 16-bit cell.  
Although this conceals hardware restrictions from the programmer, it is inefficient, and may have 
unintended side effects in some hardware environments.  An alternate implementation of ANS Forth could 
define each memory-access word using the native instructions that most closely match the word’s function.  
On a 68000 Forth with 16-bit cells, @ would use the 68000’s 16-bit move instruction.  In this case, 
responsibility for giving @ a correctly-aligned address falls on the programmer.  A portable ANS Forth 
program must assume that alignment may be required and follow the requirements of this section. 

A.3.3.3.2   Contiguous regions   

The data space of a Forth system comes in discontinuous regions!  The location of some regions is 
provided by the system, some by the program.  Data space is contiguous within regions, allowing address 
arithmetic to generate valid addresses only within a single region.  A Standard Program cannot make any 
assumptions about the relative placement of multiple regions in memory. 

Section 3.3.3.2 does prescribe conditions under which contiguous regions of data space may be obtained.  
For example: 

CREATE TABLE   1 C, 2 C, ALIGN 1000 , 2000 , 

makes a table whose address is returned by TABLE.  In accessing this table, 

TABLE C@         will return 1 
TABLE CHAR+ C@       will return 2 
TABLE 2 CHARS + ALIGNED @   will return 1000 
TABLE 2 CHARS + ALIGNED CELL+ @ will return 2000. 

Similarly, 

CREATE DATA   1000 ALLOT 

makes an array 1000 address units in size.  A more portable strategy would define the array in application 
units, such as: 

500 CONSTANT NCELLS 
CREATE CELL-DATA  NCELLS CELLS ALLOT 

This array can be indexed like this: 

: LOOK   NCELLS 0 DO  CELL-DATA I CELLS + ? LOOP ; 
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A.3.3.3.6   Other transient regions   

In many existing Forth systems, these areas are at HERE or just beyond it, hence the many restrictions. 

(2*n)+2 is the size of a character string containing the unpunctuated binary representation of the maximum 
double number with a leading minus sign and a trailing space. 

Implementation note:  Since the minimum value of n is 16, the absolute minimum size of the pictured 
numeric output string is 34 characters.  But if your implementation has a larger n, you must also increase 
the size of the pictured numeric output string. 

A.3.4   The Forth text interpreter   

A.3.4.3   Semantics   

The “initiation semantics” correspond to the code that is executed upon entering a definition, analogous to 
the code executed by EXIT upon leaving a definition.  The “run-time semantics” correspond to code 
fragments, such as literals or branches, that are compiled inside colon definitions by words with explicit 
compilation semantics. 

In a Forth cross-compiler, the execution semantics may be specified to occur in the host system only, the 
target system only, or in both systems.  For example, it may be appropriate for words such as CELLS to 
execute on the host system returning a value describing the target, for colon definitions to execute only on 
the target, and for CONSTANT and VARIABLE to have execution behaviors on both systems.  Details of 
cross-compiler behavior are beyond the scope of this Standard. 

A.3.4.3.2   Interpretation semantics   

For a variety of reasons, this Standard does not define interpretation semantics for every word.  Examples 
of these words are >R, .", DO, and IF.  Nothing in this Standard precludes an implementation from 
providing interpretation semantics for these words, such as interactive control-flow words.  However, a 
Standard Program may not use them in interpretation state. 

A.3.4.5   Compilation   

Compiler recursion at the definition level consumes excessive resources, especially to support locals.  The 
Technical Committee does not believe that the benefits justify the costs.  Nesting definitions is also not 
common practice and won’t work on many systems. 

A.4   Documentation requirements   

A.4.1   System documentation   

A.4.2   Program documentation   

A.5   Compliance and labeling   

A.5.1   ANS Forth systems   
Section 5.1 defines the criteria that a system must meet in order to justify the label “ANS Forth System”.  
Briefly, the minimum requirement is that the system must “implement” the Core word set.  There are 
several ways in which this requirement may be met.  The most obvious is that all Core words may be in a 
pre-compiled kernel.  This is not the only way of satisfying the requirement, however.  For example, some 
words may be provided in source blocks or files with instructions explaining how to add them to the system 
if they are needed.  So long as the words are provided in such a way that the user can obtain access to them 
with a clear and straightforward procedure, they may be considered to be present. 
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A Forth cross-compiler has many characteristics in common with an ANS Forth System, in that both use 
similar compiling tools to process a program.  However, in order to fully specify an ANS Forth cross 
compiler it would be necessary to address complex issues dealing with compilation and execution 
semantics in both host and target environments as well as ROMability issues.  The level of effort to do this 
properly has proved to be impractical at this time.  As a result, although it may be possible for a Forth 
cross-compiler to correctly prepare an ANS Forth program for execution in a target environment, it is 
inappropriate for a cross-compiler to be labeled an ANS Forth System. 

A.5.2   ANS Forth programs   

A.5.2.2   Program labeling   

Declaring an environmental dependency should not be considered undesirable, merely an acknowledgment 
that the author has taken advantage of some assumed architecture.  For example, most computers in 
common use are based on two’s complement binary arithmetic.  By acknowledging an environmental 
dependency on this architecture, a programmer becomes entitled to use the number -1 to represent all bits 
set without significantly restricting the portability of the program. 

Because all programs require space for data and instructions, and time to execute those instructions, they 
depend on the presence of an environment providing those resources.  It is impossible to predict how little 
of some of these resources (e.g. stack space) might be necessary to perform some task, so this Standard 
does not do so. 

On the other hand, as a program requires increasing levels of resources, there will probably be sucessively 
fewer systems on which it will execute sucessfully.  An algorithm requiring an array of 109 cells might run 
on fewer computers than one requiring only 103. 

Since there is also no way of knowing what minimum level of resources will be implemented in a system 
useful for at least some tasks, any program performing real work labeled simply an “ANS Forth Program” 
is unlikely to be labeled correctly. 

A.6   Glossary   
In this and following sections we present rationales for the handling of specific words: why we included 
them, why we placed them in certain word sets, or why we specified their names or meaning as we did. 

Words in this section are organized by word set, retaining their index numbers for easy cross-referencing to 
the glossary. 

Historically, many Forth systems have been written in Forth.  Many of the words in Forth originally had as 
their primary purpose support of the Forth system itself.  For example, WORD and FIND are often used as 
the principle instruments of the Forth text interpreter, and CREATE in many systems is the primitive for 
building dictionary entries.  In defining words such as these in a standard way, we have endeavored not to 
do so in such a way as to preclude their use by implementors.  One of the features of Forth that has 
endeared it to its users is that the same tools that are used to implement the system are available to the 
application programmer – a result of this approach is the compactness and efficiency that characterizes 
most Forth implementations. 

A.6.1   Core words   

A.6.1.0070   '   

Typical use: ... ' name . 

Many Forth systems use a state-smart tick.  Many do not.  ANS Forth follows the usage of Forth 83. 

See: A.3.4.3..2 Interpretation semantics, A.6.1.1550 FIND. 
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A.6.1.0080   (   

Typical use: ...  ( ccc) ... 

A.6.1.0140   +LOOP   

Typical use: 

: X ... limit first DO ... step +LOOP ; 

A.6.1.0150   ,   

The use of , (comma) for compiling execution tokens is not portable. 

See: 6.2.0945 COMPILE,. 

A.6.1.0190   ."   

Typical use: : X ... ." ccc"  ... ; 

An implementation may define interpretation semantics for ." if desired.  In one plausible implementation, 
interpreting ." would display the delimited message.  In another plausible implementation, interpreting ." 
would compile code to display the message later.  In still another plausible implementation, interpreting ." 
would be treated as an exception.  Given this variation a Standard Program may not use ." while 
interpreting.  Similarly, a Standard Program may not compile POSTPONE ." inside a new word, and then 
use that word while interpreting. 

A.6.1.0320   2*   

Historically, 2* has been implemented on two’s-complement machines as a logical left-shift instruction.  
Multiplication by two is an efficient side-effect on these machines.  However, shifting implies a knowledge 
of the significance and position of bits in a cell.  While the name implies multiplication, most implementors 
have used a hardware left shift to implement 2*. 

A.6.1.0330   2/   

This word has the same common usage and misnaming implications as 2*.  It is often implemented on 
two’s-complement machines with a hardware right shift that propagates the sign bit. 

A.6.1.0350   2@   

With 2@ the storage order is specified by the Standard. 

A.6.1.0450   :   

Typical use: : name ... ; 

In Forth 83, this word was specified to alter the search order.  This specification is explicitly removed in 
this Standard.  We believe that in most cases this has no effect; however, systems that allow many search 
orders found the Forth-83 behavior of colon very undesirable. 

Note that colon does not itself invoke the compiler. Colon sets compilation state so that later words in the 
parse area are compiled. 

A.6.1.0460   ;   

Typical use: : name ... ; 

One function performed by both ; and ;CODE is to allow the current definition to be found in the 
dictionary.  If the current definition was created by :NONAME the current definition has no definition name 
and thus cannot be found in the dictionary.  If :NONAME is implemented the Forth compiler must  
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maintain enough information about the current definition to allow ; and ;CODE to determine whether or 
not any action must be taken to allow it to be found. 

A.6.1.0550   >BODY   

a-addr is the address that HERE would have returned had it been executed immediately after the execution 
of the CREATE that defined xt. 

A.6.1.0680   ABORT"   

Typical use: : X ... test ABORT" ccc" ... ; 

A.6.1.0695   ACCEPT   

Previous standards specified that collection of the input string terminates when either a “return” is received 
or when +n1 characters have been received.  Terminating when +n1 characters have been received is 
difficult, expensive, or impossible to implement in some system environments.  Consequently, a number of 
existing implementations do not comply with this requirement.  Since line-editing and collection functions 
are often implemented by system components beyond the control of the Forth implementation, this 
Standard imposes no such requirement.  A Standard Program may only assume that it can receive an input 
string with ACCEPT or EXPECT.  The detailed sequence of user actions necessary to prepare and transmit 
that line are beyond the scope of this Standard. 

Specification of a non-zero, positive integer count (+n1) for ACCEPT allows some implementors to 
continue their practice of using a zero or negative value as a flag to trigger special behavior.  Insofar as 
such behavior is outside the Standard, Standard Programs cannot depend upon it, but the Technical 
Committee doesn’t wish to preclude it unnecessarily.  Since actual values are almost always small integers, 
no functionality is impaired by this restriction. 

ACCEPT and EXPECT perform similar functions.  ACCEPT is recommended for new programs, and future 
use of EXPECT is discouraged. 

It is recommended that all non-graphic characters be reserved for editing or control functions and not be 
stored in the input string. 

Commonly, when the user is preparing an input string to be transmitted to a program, the system allows the 
user to edit that string and correct mistakes before transmitting the final version of the string.  The editing 
function is supplied sometimes by the Forth system itself, and sometimes by external system software or 
hardware.  Thus, control characters and functions may not be available on all systems.  In the usual case, 
the end of the editing process and final transmission of the string is signified by the user pressing a 
“Return” or “Enter” key. 

As in previous standards, EXPECT returns the input string immediately after the requested number of 
characters are entered, as well as when a line terminator is received.  The “automatic termination after 
specified count of characters have been entered” behavior is widely considered undesirable because the 
user “loses control” of the input editing process at a potentially unknown time (the user does not 
necessarily know how many characters were requested from EXPECT).  Thus EXPECT and SPAN have 
been made obsolescent and exist in the Standard only as a concession to existing implementations.  If 
EXPECT exists in a Standard System it must have the “automatic termination” behavior. 

ACCEPT does not have the “automatic termination” behavior of EXPECT.  However, because external 
system hardware and software may perform the ACCEPT function, when a line terminator is received the 
action of the cursor, and therefore the display, is implementation-defined.  It is recommended that the 
cursor remain immediately following the entered text after a line terminator is received. 

A.6.1.0705   ALIGN   

In this Standard we have attempted to provide transportability across various CPU architectures.  One of 
the frequent causes of transportability problems is the requirement of cell-aligned addresses on some  
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CPUs.  On these systems, ALIGN and ALIGNED may be required to build and traverse data structures built 
with C,.  Implementors may define these words as no-ops on systems for which they aren’t functional. 

A.6.1.0706   ALIGNED   

See: A.6.1.0705 ALIGN. 

A.6.1.0760   BEGIN   

Typical use: 

: X ... BEGIN ... test UNTIL ; 

or 
 : X ... BEGIN ... test WHILE ... REPEAT ; 

A.6.1.0770   BL   

Because space is used throughout Forth as the standard delimiter, this word is the only way a program has 
to find and use the system value of “space”.  The value of a space character can not be obtained with CHAR, 
for instance. 

A.6.1.0880   CELL+   

As with ALIGN and ALIGNED, the words CELL and CELL+ were added to aid in transportability across 
systems with different cell sizes.  They are intended to be used in manipulating indexes and addresses in 
integral numbers of cell-widths. 

Example: 

2VARIABLE DATA 

0 100 DATA 2! 

DATA @ . 100 

DATA CELL+ @ .  0 

A.6.1.0890   CELLS   

See:  A.6.1.0880 CELL+. 

Example:  CREATE NUMBERS  100 CELLS ALLOT 

(Allots space in the array NUMBERS for 100 cells of data.) 

A.6.1.0895   CHAR   

Typical use: ... CHAR A CONSTANT "A" ... 

A.6.1.0950   CONSTANT   

Typical use: ... DECIMAL 10 CONSTANT TEN ... 

A.6.1.1000   CREATE   

The data-field address of a word defined by CREATE is given by the  data-space pointer immediately 
following the execution of CREATE  

Reservation of data field space is typically done with ALLOT. 

Typical use: ... CREATE SOMETHING ... 
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A.6.1.1240   DO   

Typical use: 

: X ... limit first DO ... LOOP ; 

or 

: X ... limit first DO ... step +LOOP ; 

A.6.1.1250   DOES>   

Typical use: : X ... DOES> ... ; 

Following DOES>, a Standard Program may not make any assumptions regarding the ability to find either 
the name of the definition containing the DOES> or any previous definition whose name may be concealed 
by it.  DOES> effectively ends one definition and begins another as far as local variables and control-flow 
structures are concerned.  The compilation behavior makes it clear that the user is not entitled to place 
DOES> inside any control-flow structures.   

A.6.1.1310   ELSE   

Typical use: : X ... test IF ... ELSE ... THEN ; 

A.6.1.1345   ENVIRONMENT?   

In a Standard System that contains only the Core word set, effective use of ENVIRONMENT? requires 
either its use within a definition, or the use of user-supplied auxiliary definitions.  The Core word set lacks 
both a direct method for collecting a string in interpretation state (11.6.1.2165 S" is in an optional word 
set) and also a means to test the returned flag in interpretation state (e.g. the optional 15.6.2.2532 [IF]). 

The combination of 6.1.1345 ENVIRONMENT?, 11.6.1.2165 S", 15.6.2.2532 [IF], 15.6.2.2531 [ELSE], 
and 15.6.2.2533 [THEN] constitutes an effective suite of words for conditional compilation that works in 
interpretation state. 

A.6.1.1360   EVALUATE   

The Technical Committee is aware that this function is commonly spelled EVAL.  However, there exist 
implementations that could suffer by defining the word as is done here.  We also find EVALUATE to be 
more readable and explicit.  There was some sentiment for calling this INTERPRET, but that too would 
have undesirable effects on existing code.  The longer spelling was not deemed significant since this is not 
a word that should be used frequently in source code. 

A.6.1.1380   EXIT   

Typical use: : X ... test IF ... EXIT THEN ... ; 

A.6.1.1550   FIND   
One of the more difficult issues which the Committee took on was the problem of divorcing the 
specification of implementation mechanisms from the specification of the Forth language.  Three basic 
implementation approaches can be quickly enumerated: 

1) Threaded code mechanisms.  These are the traditional approaches to implementing Forth, but other 
techniques may be used. 

2) Subroutine threading with “macro-expansion” (code copying).  Short routines, like the code for DUP, 
are copied into a definition rather than compiling a JSR reference. 

3) Native coding with optimization.  This may include stack optimization (replacing such phrases as  
SWAP ROT +  with one or two machine instructions, for example), parallelization (the trend in the 
newer RISC chips is to have several functional subunits which can execute in parallel), and so on. 
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The initial requirement (inherited from Forth 83) that compilation addresses be compiled into the dictionary 
disallowed type 2 and type 3 implementations. 

Type 3 mechanisms and optimizations of type 2 implementations were hampered by the explicit 
specification of immediacy or non-immediacy of all standard words.  POSTPONE allowed de-specification of 
immediacy or non-immediacy for all but a few Forth words whose behavior must be STATE-independent. 

One type 3 implementation, Charles Moore’s cmForth, has both compiling and interpreting versions of 
many Forth words.  At the present, this appears to be a common approach for type 3 implementations.  The 
Committee felt that this implementation approach must be allowed.  Consequently, it is possible that words 
without interpretation semantics can be found only during compilation, and other words may exist in two 
versions:  a compiling version and an interpreting version.  Hence the values returned by FIND may 
depend on STATE, and ' and ['] may be unable to find words without interpretation semantics. 

A.6.1.1561   FM/MOD   

By introducing the requirement for “floored” division, Forth 83 produced much controversy and concern 
on the part of those who preferred the more common practice followed in other languages of implementing 
division according to the behavior of the host CPU, which is most often symmetric (rounded toward zero).  
In attempting to find a compromise position, this Standard provides primitives for both common varieties, 
floored and symmetric (see SM/REM).  FM/MOD is the floored version. 

The Technical Committee considered providing two complete sets of explicitly named division operators, 
and declined to do so on the grounds that this would unduly enlarge and complicate the Standard.  Instead, 
implementors may define the normal division words in terms of either FM/MOD or SM/REM providing they 
document their choice.  People wishing to have explicitly named sets of operators are encouraged to do so.  
FM/MOD may be used, for example, to define: 

: /_MOD ( n1 n2 -- n3 n4)  >R S>D R> FM/MOD ; 

: /_  ( n1 n2 -- n3)  /_MOD SWAP DROP ; 

: _MOD ( n1 n2 -- n3)   /_MOD DROP ; 

: */_MOD ( n1 n2 n3 -- n4 n5)  >R M* R> FM/MOD ; 

: */_  ( n1 n2 n3 -- n4 )   */_MOD SWAP DROP ; 

A.6.1.1700   IF   

Typical use: 

: X ... test IF ... THEN ... ; 

or 

: X ... test IF ... ELSE ... THEN ... ; 

A.6.1.1710   IMMEDIATE   

Typical use: : X  ...  ;  IMMEDIATE 

A.6.1.1720   INVERT   

The word NOT was originally provided in Forth as a flag operator to make control structures readable.  
Under its intended usage the following two definitions would produce identical results: 

: ONE  ( flag -- ) 
   IF ." true" ELSE ." false" THEN ; 

: TWO ( flag -- ) 
   NOT IF ." false" ELSE ." true" THEN ; 

This was common usage prior to the Forth-83 Standard which redefined NOT as a cell-wide one’s-
complement operation, functionally equivalent to the phrase -1 XOR.  At the same time, the data type  
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manipulated by this word was changed from a flag to a cell-wide collection of bits and the standard value 
for true was changed from “1” (rightmost bit only set) to “-1” (all bits set).  As these definitions of TRUE 
and NOT were incompatible with their previous definitions, many Forth users continue to rely on the old 
definitions.  Hence both versions are in common use. 

Therefore, usage of NOT cannot be standardized at this time.  The two traditional meanings of NOT – that 
of negating the sense of a flag and that of doing a one’s complement operation – are made available by 0= 
and INVERT, respectively. 

A.6.1.1730   J   

J may only be used with a nested DO...LOOP, DO...+LOOP, ?DO...LOOP, or ?DO...+LOOP, for example, in 
the form: 

: X ... DO ... DO ... J ... LOOP ... +LOOP ... ; 

A.6.1.1760   LEAVE   

Note that LEAVE immediately exits the loop.  No words following LEAVE within the loop will be 
executed.  Typical use: 

: X ... DO ... IF ... LEAVE THEN ... LOOP ... ; 

A.6.1.1780   LITERAL   

Typical use: : X  ... [ x ] LITERAL ...  ; 

A.6.1.1800   LOOP   

Typical use: 

: X ... limit first DO ... LOOP ... ; 

or 

: X ... limit first ?DO ... LOOP ... ; 

A.6.1.1810   M*   

This word is a useful early step in calculation, going to extra precision conveniently.  It has been in use 
since the Forth systems of the early 1970’s. 

A.6.1.1900   MOVE   

CMOVE and CMOVE> are the primary move operators in Forth 83.  They specify a behavior for moving that 
implies propagation if the move is suitably invoked.  In some hardware, this specific behavior cannot be 
achieved using the best move instruction.  Further, CMOVE and CMOVE> move characters; ANS Forth 
needs a move instruction capable of dealing with address units.  Thus MOVE has been defined and added to 
the Core word set, and CMOVE and CMOVE> have been moved to the String word set. 

A.6.1.2033   POSTPONE   

Typical use: 

: ENDIF  POSTPONE THEN ;  IMMEDIATE 

: X  ... IF ... ENDIF ... ; 

POSTPONE replaces most of the functionality of COMPILE and [COMPILE].  COMPILE and 
[COMPILE] are used for the same purpose: postpone the compilation behavior of the next word in the 
parse area.  COMPILE was designed to be applied to non-immediate words and [COMPILE] to immediate 
words.  This burdens the programmer with needing to know which words in a system are immediate.   
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Consequently, Forth standards have had to specify the immediacy or non-immediacy of all words covered 
by the Standard.  This unnecessarily constrains implementors. 

A second problem with COMPILE is that some programmers have come to expect and exploit a particular 
implementation, namely: 

:  COMPILE  R>  DUP  @  ,  CELL+  >R  ; 

This implementation will not work on native code Forth systems.  In a native code Forth using inline code 
expansion and peephole optimization, the size of the object code produced varies; this information is 
difficult to communicate to a “dumb” COMPILE.  A “smart” (i.e., immediate) COMPILE would not have 
this problem, but this was forbidden in previous standards. 

For these reasons, COMPILE has not been included in the Standard and [COMPILE] has been moved in 
favor of POSTPONE.  Additional discussion can be found in Hayes, J.R., “Postpone”, Proceedings of the 
1989 Rochester Forth Conference. 

A.6.1.2120   RECURSE   

Typical use:  : X ... RECURSE ... ; 

This is Forth’s recursion operator; in some implementations it is called MYSELF.  The usual example is the 
coding of the factorial function. 

: FACTORIAL ( +n1 -- +n2) 
   DUP 2 < IF  DROP 1 EXIT  THEN 
   DUP 1-  RECURSE  *  
; 

n2 = n1(n1-1)(n1-2)...(2)(1), the product of n1 with all positive integers less than itself (as a special case, 
zero factorial equals one).  While beloved of computer scientists, recursion makes unusually heavy use of 
both stacks and should therefore be used with caution.  See alternate definition in A.6.1.2140 REPEAT. 

A.6.1.2140   REPEAT   

Typical use: 

: FACTORIAL ( +n1 -- +n2) 
   DUP 2 < IF  DROP 1 EXIT  THEN 
   DUP 
   BEGIN  DUP 2 > WHILE 
     1-  SWAP OVER *  SWAP 
   REPEAT  DROP 
; 

A.6.1.2165   S"   

Typical use: : X  ... S" ccc" ... ; 

This word is found in many systems under the name " (quote).  However, current practice is almost evenly 
divided on the use of ", with many systems using the execution semantics given here, while others return 
the address of a counted string.  We attempt here to satisfy both camps by providing two words, S" and the 
Core Extension word C" so that users may have whichever behavior they expect with a simple renaming 
operation. 

A.6.1.2214   SM/REM   

See the previous discussion of division under FM/MOD.  SM/REM is the symmetric-division primitive, 
which allows programs to define the following symmetric-division operators: 

: /-REM  ( n1 n2 -- n3 n4 )  >R  S>D  R> SM/REM ; 
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: /-  (  n1 n2 -- n3 )  /-REM SWAP DROP ; 

: -REM  ( n1 n2 -- n3 )  /-REM DROP ; 

: */-REM  (  n1 n2 n3 -- n4 n5 )  >R  M*  R> SM/REM ; 

: */-  ( n1 n2 n3 -- n4 )  */-REM SWAP DROP ; 

 

A.6.1.2216   SOURCE   

SOURCE simplifies the process of directly accessing the input buffer by hiding the differences between its 
location for different input sources.  This also gives implementors more flexibility in their implementation 
of buffering mechanisms for different input sources.  The committee moved away from an input buffer 
specification consisting of a collection of individual variables, declaring TIB and #TIB obsolescent. 

SOURCE in this form exists in F83, polyFORTH, LMI’s Forths and others.  In conventional systems it is 
equivalent to the phrase 

BLK @  IF BLK @ BLOCK 1024  ELSE TIB #TIB @ THEN 

 

A.6.1.2250   STATE   

Although EVALUATE, LOAD, INCLUDE-FILE, and INCLUDED are not listed as words which alter 
STATE, the text interpreted by any one of these words could include one or more words which explicitly 
alter STATE. EVALUATE, LOAD, INCLUDE-FILE, and INCLUDED do not in themselves alter STATE. 

STATE does not nest with text interpreter nesting.  For example, the code sequence: 

: FOO  S" ]" EVALUATE ;       FOO 

will leave the system in compilation state.  Similarly, after LOADing a block containing ], the system will 
be in compilation state. 

Note that ] does not affect the parse area and that the only effect that : has on the parse area is to parse a 
word.  This entitles a program to use these words to set the state with known side-effects on the parse area.  
For example: 

: NOP  : POSTPONE ; IMMEDIATE ; 

NOP ALIGN    NOP ALIGNED 

Some non-ANS Forth compliant systems have ] invoke a compiler loop in addition to setting STATE.  
Such a system would inappropriately attempt to compile the second use of NOP. 

Also note that nothing in the Standard prevents a program from finding the execution tokens of ] or [ and 
using these to affect STATE.  These facts suggest that implementations of ] will do nothing but set STATE 
and a single interpreter/compiler loop will monitor STATE. 

 

A.6.1.2270   THEN   

Typical use: 

: X ... test IF ... THEN ... ; 

or 

: X ... test IF ... ELSE ... THEN ... ; 
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A.6.1.2380   UNLOOP   

Typical use: 

: X  ... 
   limit first DO 
     ... test IF ... UNLOOP EXIT THEN ... 
   LOOP ...  
; 

UNLOOP allows the use of EXIT within the context of DO ... LOOP and related do-loop constructs.  
UNLOOP as a function has been called UNDO.  UNLOOP is more indicative of the action: nothing gets 
undone -- we simply stop doing it. 

A.6.1.2390   UNTIL   

Typical use: : X ... BEGIN ... test UNTIL ... ; 

A.6.1.2410   VARIABLE   

Typical use: ... VARIABLE XYZ ... 

A.6.1.2430   WHILE   

Typical use: : X ... BEGIN ... test WHILE ... REPEAT ... ; 

A.6.1.2450   WORD   

Typical use: char WORD ccc<char> 

A.6.1.2500   [   

Typical use: : X ... [ 4321 ] LITERAL ... ; 

A.6.1.2510   [']   

Typical use: : X  ... ['] name ... ; 

See:  A.6.1.1550 FIND. 

A.6.1.2520   [CHAR]   

Typical use: : X  ...  [CHAR] ccc  ...  ; 

A.6.1.2540   ]   

Typical use: : X ... [ 1234 ] LITERAL ... ; 

A.6.2   Core extension words   
The words in this collection fall into several categories: 

– Words that are in common use but are deemed less essential than Core words (e.g., 0<>); 
– Words that are in common use but can be trivially defined from Core words (e.g., FALSE); 
– Words that are primarily useful in narrowly defined types of applications or are in less frequent use 

(e.g., PARSE); 
– Words that are being deprecated in favor of new words introduced to solve specific problems (e.g., 

CONVERT). 
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Because of the varied justifications for inclusion of these words, the Technical Committee does not 
encourage implementors to offer the complete collection, but to select those words deemed most valuable 
to their clientele. 

A.6.2.0060   #TIB    

The function of #TIB has been superseded by SOURCE. 

A.6.2.0200   .(   

Typical use: .( ccc) 

A.6.2.0210   .R   

In .R, “R” is short for RIGHT. 

A.6.2.0340   2>R   

Historically, 2>R has been used to implement DO.  Hence the order of parameters on the return stack. 

The primary advantage of 2>R is that it puts the top stack entry on the top of the return stack.  For instance, 
a double-cell number may be transferred to the return stack and still have the most significant cell 
accessible on the top of the return stack. 

A.6.2.0410   2R>   

Note that 2R> is not equivalent to R> R>.  Instead, it mirrors the action of 2>R (see A.6.2.0340). 

A.6.2.0455   :NONAME   

:NONAME allows a user to create an execution token with the semantics of a colon definition without an 
associated name.  Previously, only : (colon) could create an execution token with these semantics. Thus, 
Forth code could only be compiled using the syntax of :, that is: 

: NAME  ...  ; 

:NONAME removes this constraint and places the Forth compiler in the hands of the programmer. 

:NONAME can be used to create application-specific programming languages.  One technique is to mix 
Forth code fragments with application-specific constructs.  The application-specific constructs use 
:NONAME to compile the Forth code and store the corresponding execution tokens in data structures. 

The functionality of :NONAME can be built on any Forth system.  For years, expert Forth programmers 
have exploited intimate knowledge of their systems to generate unnamed code fragments.  Now, this 
function has been named and can be used in a portable program. 

For example, :NONAME can be used to build a table of code fragments where indexing into the table allows 
executing a particular fragment. The declaration syntax of the table is: 

:NONAME .. code for command 0 .. ;  0 CMD ! 

:NONAME .. code for command 1 .. ;  1 CMD ! 

   ... 

:NONAME .. code for command 99 .. ; 99 CMD ! 

 

... 5 CMD @ EXECUTE ... 
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The definitions of the table building words are: 

CREATE CMD-TABLE  \ table for command execution tokens 
  100 CELLS ALLOT 

 

: CMD ( n -- a-addr ) \ nth element address in table 
   CELLS CMD-TABLE + ; 

As a further example, a defining word can be created to allow performance monitoring. In the example 
below, the number of times a word is executed is counted.  : must first be renamed to allow the definition 
of the new ;. 

: DOCOLON ( -- ) 
\ Modify CREATEd word to execute like a colon def 
 DOES> ( i*x a-addr -- j*x ) 
  1 OVER +! \ count executions 
  CELL+ @ EXECUTE \ execute :NONAME definition 
; 

: OLD: : ; \ just an alias 

OLD: : ( "name" -- a-addr xt colon-sys ) 
\ begins an execution-counting colon definition 
 CREATE  HERE 0 , \ storage for execution counter 
 0 , \ storage for execution token 
 DOCOLON \ set run time for CREATEd word 
 :NONAME \ begin unnamed colon definition 
; 

(Note the placement of DOES>:  DOES> must modify the CREATEd word and not the :NONAME 
definition, so DOES> must execute before :NONAME.) 

OLD: ; ( a-addr xt colon-sys -- ) 
\ ends an execution-counting colon definition ) 
   POSTPONE ;        \ complete compilation of colon def 
   SWAP CELL+ !      \ save execution token 
;  IMMEDIATE 

The new : and ; are used just like the standard ones to define words: 

... : xxx  ... ;  ...  xxx  ... 

Now however, these words may be “ticked” to retrieve the count (and execution token): 

... ' xxx >BODY ? ... 

A.6.2.0620   ?DO   

Typical use: 

: FACTORIAL ( +n1 -- +n2 )  1 SWAP 1+ ?DO  I *  LOOP ; 

This word was added in response to many requests for a resolution of the difficulty introduced by 
Forth-83’s DO, which on a 16-bit system will loop 65,535 times if given equal arguments.  As this Standard 
also encourages 32-bit systems, this behavior can be intolerable.  The Technical Committee considered 
applying these semantics to DO, but declined on the grounds that it might break existing code. 

A.6.2.0700   AGAIN   

Typical use: : X ... BEGIN ... AGAIN ... ; 

Unless word-sequence has a way to terminate, this is an endless loop. 
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A.6.2.0855   C"   

Typical use: : X  ...  C" ccc"  ...  ; 

It is easy to convert counted strings to pointer/length but hard to do the opposite.  C" is the only new word 
that uses the “address of counted string” stack representation.  It is provided as an aid to porting existing 
programs to ANS Forth systems.  It is relatively difficult to implement C" in terms of other standard words, 
considering its “compile string into the current definition” semantics. 

Users of C" are encouraged to migrate their application code toward the consistent use of the preferred 
“c-addr u” stack representation with the alternate word S".  This may be accomplished by converting 
application words with counted string input arguments to use the preferred “c-addr u” representation, thus 
eliminating the need for C" . 

See:  A.3.1.3.4 Counted strings. 

A.6.2.0873   CASE   

Typical use: 

: X ... 
   CASE 
     test1 OF ... ENDOF 
     testn OF ... ENDOF 
     ... ( default ) 
   ENDCASE ...  
; 

A.6.2.0945   COMPILE,   

COMPILE, is the compilation equivalent of EXECUTE.  In many cases, it is possible to compile a word by 
using POSTPONE without resorting to the use of COMPILE,.  However, the use of POSTPONE requires 
that the name of the word must be known at compile time, whereas COMPILE, allows the word to be 
located at any time.  It is sometime possible to use EVALUATE to compile a word whose name is not 
known until run time.  This has two possible problems: 

– EVALUATE is slower than COMPILE, because a dictionary search is required. 
– The current search order affects the outcome of EVALUATE. 

In traditional threaded-code implementations, compilation is performed by , (comma).  This usage is not 
portable; it doesn’t work for subroutine-threaded, native code, or relocatable implementations.  Use of 
COMPILE, is portable. 

In most systems it is possible to implement COMPILE, so it will generate code that is optimized to the 
same extent as code that is generated by the normal compilation process.  However, in some 
implementations there are two different “tokens” corresponding to a particular definition name:  the normal 
“execution token” that is used while interpreting or with EXECUTE, and another “compilation token” that 
is used while compiling.  It is not always possible to obtain the compilation token from the execution token.  
In these implementations, COMPILE, might not generate code that is as efficient as normally compiled 
code. 

A.6.2.0970   CONVERT   

CONVERT may be defined as follows: 

: CONVERT   CHAR+ 65535 >NUMBER DROP ; 
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A.6.2.1342   ENDCASE   

Typical use: 

: X ... 
   CASE 
     test1 OF ... ENDOF 
     testn OF ... ENDOF 
     ... ( default ) 
   ENDCASE ...  
; 

A.6.2.1343   ENDOF   

Typical use: 

: X ... 
   CASE 
     test1 OF ... ENDOF 
     testn OF ... ENDOF 
     ... ( default ) 
   ENDCASE ...  
; 

A.6.2.1390   EXPECT   

Specification of positive integer counts (+n) for EXPECT allows some implementors to continue their 
practice of using a zero or negative value as a flag to trigger special behavior.  Insofar as such behavior is 
outside the Standard, Standard Programs cannot depend upon it, but the Technical Committee doesn’t wish 
to preclude it unnecessarily.  Since actual values are almost always small integers, no functionality is 
impaired by this restriction. 

A.6.2.1850   MARKER   

As dictionary implementations have gotten more elaborate and in some cases have used multiple address 
spaces, FORGET has become prohibitively difficult or impossible to implement on many Forth systems.  
MARKER greatly eases the problem by making it possible for the system to remember “landmark 
information” in advance that specifically marks the spots where the dictionary may at some future time 
have to be rearranged. 

A.6.2.1950   OF   

Typical use: 

: X ... 
   CASE 
     test1 OF ... ENDOF 
     testn OF ... ENDOF 
     ... ( default ) 
   ENDCASE ...  
; 

A.6.2.2000   PAD   

PAD has been available as scratch storage for strings since the earliest Forth implementations.  It was 
brought to our attention that many programmers are reluctant to use PAD, fearing incompatibilities with 
system uses.  PAD is specifically intended as a programmer convenience, however, which is why we 
documented the fact that no standard words use it. 
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A.6.2.2008   PARSE   

Typical use: char PARSE ccc<char> 

The traditional Forth word for parsing is WORD.  PARSE solves the following problems with WORD: 

a) WORD always skips leading delimiters.  This behavior is appropriate for use by the text interpreter, 
which looks for sequences of non-blank characters, but is inappropriate for use by words like ( , .( , 
and ." .  Consider the following (flawed) definition of .( : 

: .(   [CHAR] )  WORD COUNT TYPE ;  IMMEDIATE 

This works fine when used in a line like: 
.( HELLO)   5 . 

but consider what happens if the user enters an empty string: 
.( )   5 . 

The definition of .( shown above would treat the ) as a leading delimiter, skip it, and continue 
consuming characters until it located another ) that followed a non-) character, or until the parse area 
was empty.  In the example shown, the 5 . would be treated as part of the string to be printed. 
With PARSE, we could write a correct definition of .( : 

: .(   [CHAR] )  PARSE TYPE ;  IMMEDIATE 

This definition avoids the “empty string” anomaly. 
b) WORD returns its result as a counted string.  This has four bad effects: 

1) The characters accepted by WORD must be copied from the input buffer into a temporary buffer, in 
order to make room for the count character that must be at the beginning of the counted string.  The 
copy step is inefficient, compared to PARSE, which leaves the string in the input buffer and doesn’t 
need to copy it anywhere. 
2) WORD must be careful not to store too many characters into the temporary buffer, thus overwriting 
something beyond the end of the buffer.  This adds to the overhead of the copy step.  (WORD may have 
to scan a lot of characters before finding the trailing delimiter.) 
3) The count character limits the length of the string returned by WORD to 255 characters (longer 
strings can easily be stored in blocks!).  This limitation does not exist for PARSE. 
4) The temporary buffer is typically overwritten by the next use of WORD.  This introduces a 
temporal dependency; the value returned by WORD is only valid for a limited duration.  PARSE has a 
temporal dependency, too, related to the lifetime of the input buffer, but that is less severe in most 
cases than WORD’s temporal dependency. 

The behavior of WORD with respect to skipping leading delimiters is useful for parsing blank-delimited 
names.  Many system implementations include an additional word for this purpose, similar to PARSE with 
respect to the “c-addr u” return value, but without an explicit delimiter argument (the delimiter set is 
implicitly “white space”), and which does skip leading delimiters.  A common description for this word is: 

PARSE-WORD  ( “<spaces>name” -- c-addr u ) 
Skip leading spaces and parse name delimited by a space.  c-addr is the address within the input buffer 
and u is the length of the selected string.  If the parse area is empty, the resulting string has a zero 
length. 

If both PARSE and PARSE-WORD are present, the need for WORD is largely eliminated. 

A.6.2.2030   PICK   

0 PICK is equivalent to DUP and 1 PICK is equivalent to OVER. 
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A.6.2.2040   QUERY   

The function of QUERY may be performed with ACCEPT and EVALUATE. 

A.6.2.2125   REFILL   

This word is a useful generalization of QUERY.  Re-defining QUERY to meet this specification would have 
broken existing code.  REFILL is designed to behave reasonably for all possible input sources.  If the input 
source is coming from the user, as with QUERY, REFILL could still return a false value if, for instance, a 
communication channel closes so that the system knows that no more input will be available. 

A.6.2.2150   ROLL   

2 ROLL is equivalent to ROT, 1 ROLL is equivalent to SWAP and 0 ROLL is a null operation. 

A.6.2.2182   SAVE-INPUT   

SAVE-INPUT and RESTORE-INPUT allow the same degree of input source repositioning within a text 
file as is available with BLOCK input.  SAVE-INPUT and RESTORE-INPUT “hide the details” of the 
operations necessary to accomplish this repositioning, and are used the same way with all input sources.  
This makes it easier for programs to reposition the input source, because they do not have to inspect several 
variables and take different action depending on the values of those variables. 

SAVE-INPUT and RESTORE-INPUT are intended for repositioning within a single input source; for 
example, the following scenario is NOT allowed for a Standard Program: 

: XX 
   SAVE-INPUT  CREATE 
   S" RESTORE-INPUT" EVALUATE 
   ABORT" couldn't restore input" 
; 

This is incorrect because, at the time RESTORE-INPUT is executed, the input source is the string via 
EVALUATE, which is not the same input source that was in effect when SAVE-INPUT was executed.   

The following code is allowed: 

: XX 
   SAVE-INPUT  CREATE 
   S" .( Hello)" EVALUATE 
   RESTORE-INPUT ABORT" couldn't restore input" 
; 

After EVALUATE returns, the input source specification is restored to its previous state, thus SAVE-
INPUT and RESTORE-INPUT are called with the same input source in effect. 

In the above examples, the EVALUATE phrase could have been replaced by a phrase involving INCLUDE-
FILE and the same rules would apply. 

The Standard does not specify what happens if a program violates the above rules.  A Standard System 
might check for the violation and return an exception indication from RESTORE-INPUT, or it might fail in 
an unpredictable way. 

The return value from RESTORE-INPUT is primarily intended to report the case where the program 
attempts to restore the position of an input source whose position cannot be restored.  The keyboard might 
be such an input source. 
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Nesting of SAVE-INPUT and RESTORE-INPUT is allowed.  For example, the following situation works 
as expected: 

: XX 
   SAVE-INPUT 
      S" f1" INCLUDED 
      \ The file "f1" includes: 
      \   ... SAVE-INPUT ... RESTORE-INPUT ... 
      \ End of file "f1" 
   RESTORE-INPUT  ABORT" couldn't restore input" 
; 

In principle, RESTORE-INPUT could be implemented to “always fail”, e.g.: 

: RESTORE-INPUT  ( x1 ... xn n -- flag ) 
   0 ?DO DROP LOOP TRUE 
; 

Such an implementation would not be useful in most cases.  It would be preferable for a system to leave 
SAVE-INPUT and RESTORE-INPUT undefined, rather than to create a useless implementation.  In the 
absence of the words, the application programmer could choose whether or not to create “dummy” 
implementations or to work-around the problem in some other way. 

Examples of how an implementation might use the return values from SAVE-INPUT to accomplish the 
save/restore function: 

 
Input Source possible stack values 
block  >IN @  BLK @  2 
EVALUATE >IN @  1 
keyboard >IN @  1 
text file >IN @  lo-pos  hi-pos  3 

 
These are examples only; a Standard Program may not assume any particular meaning for the individual 
stack items returned by SAVE-INPUT. 

A.6.2.2290   TIB   

The function of TIB has been superseded by SOURCE. 

A.6.2.2295   TO   

Historically, some implementations of TO have not explicitly parsed.  Instead, they set a mode flag that is 
tested by the subsequent execution of name.  ANS Forth explicitly requires that TO must parse, so that TO’s 
effect will be predictable when it is used at the end of  the parse area. 

Typical use: x TO name 

A.6.2.2298   TRUE   

TRUE is equivalent to the phrase  0 0=. 

A.6.2.2405   VALUE   

Typical use: 

0 VALUE DATA 

: EXCHANGE ( n1 -- n2 ) DATA SWAP TO DATA ; 
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EXCHANGE leaves n1 in DATA and returns the prior value n2. 

A.6.2.2440   WITHIN   

We describe WITHIN without mentioning circular number spaces (an undefined term) or providing the 
code.  Here is a number line with the overflow point (o) at the far right and the underflow point (u) at the 
far left: 

u--------------------------------------------------------------o 

There are two cases to consider: either the n2|u2..n3|u3 range straddles the overflow/underflow points or it 
does not.  Lets examine the non-straddle case first: 

u-------------------[.....................)------------------------o 

The [ denotes n2|u2, the ) denotes n3|u3, and the dots and [ are numbers WITHIN the range.  n3|u3 is greater 
than n2|u2, so the following tests will determine if n1|u1 is WITHIN n2|u2 and n3|u3: 

n2|u2 ≤ n1|u1 and n1|u1 < n3|u3. 
In the case where the comparison range straddles the overflow/underflow points: 

u...............)-----------------------------[........................o 

n3|u3 is less than n2|u2 and the following tests will determine if n1|u1 is WITHIN n2|u2 and n3|u3: 

n2|u2 ≤ n1|u1 or n1|u1 < n3|u3. 
WITHIN must work for both signed and unsigned arguments.  One obvious implementation does not work:   

: WITHIN  ( test low high -- flag ) 
   >R  OVER < 0= ( test flag1 )  SWAP R> < ( flag1 flag2 ) AND 
; 

Assume two’s-complement arithmetic on a 16-bit machine, and consider the following test:   

33000  32000 34000  WITHIN 

The above implementation returns false for that test, even though the unsigned number 33000 is clearly 
within the range {{32000 .. 34000}}.   

The problem is that, in the incorrect implementation, the signed comparison < gives the wrong answer 
when 32000 is compared to 33000, because when those numbers are treated as signed numbers, 33000 is 
treated as negative 32536, while 32000 remains positive.   

Replacing < with U< in the above implementation makes it work with unsigned numbers, but causes 
problems with certain signed number ranges; in particular, the test:   

1  -5  5  WITHIN 

would give an incorrect answer.   

For two’s-complement machines that ignore arithmetic overflow (most machines), the following 
implementation works in all cases:   

:  WITHIN  ( test low high -- flag )   OVER - >R - R>  U<  ; 

A.6.2.2530   [COMPILE]   

Typical use: : name2 ... [COMPILE] name1 ... ;  IMMEDIATE 

A.6.2.2535   \   

Typical use: 5 CONSTANT THAT  \  THIS IS A COMMENT ABOUT THAT 
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A.7   The optional Block word set   
Early Forth systems ran stand-alone, with no host OS.  Blocks of 1024 bytes were designed as a convenient 
unit of disk, and most native Forth systems still use them.  It is relatively easy to write a native disk driver 
that maps head/track/sector addresses to block numbers.  Such disk drivers are extremely fast in 
comparison with conventional file-oriented operating systems, and security is high because there is no 
reliance on a disk map. 

Today many Forth implementations run under host operating systems, because the compatibility they offer 
the user outweighs the performance overhead.  Many people who use such systems prefer using host OS 
files only; however, people who use both native and non-native Forths need a compatible way of accessing 
disk.  The Block Word set includes the most common words for accessing program source and data on 
disk. 

In order to guarantee that Standard Programs that need access to mass storage have a mechanism 
appropriate for both native and non-native implementations, ANS Forth requires that the Block word set be 
available if any mass storage facilities are provided.  On non-native implementations, blocks normally 
reside in host OS files. 

A.7.2   Additional terms   
block   

Many Forth systems use blocks to contain program source.  Conventionally such blocks are formatted for 
editing as 16 lines of 64 characters.  Source blocks are often referred to as “screens”. 

A.7.6   Glossary   

A.7.6.2.2190   SCR   

SCR is short for screen. 

A.8   The optional Double-Number word set   
Forth systems on 8-bit and 16-bit processors often find it necessary to deal with double-length numbers.  
But many Forths on small embedded systems do not, and many users of Forth on systems with a cell size of 
32-bits or more find that the necessity for double-length numbers is much diminished.  Therefore, we have 
factored the words that manipulate double-length entities into this optional word set. 

Please note that the naming convention used in this word set conveys some important information: 

1. Words whose names are of the form 2xxx deal with cell pairs, where the relationship between the cells 
is unspecified.  They may be two-vectors, double-length numbers, or any pair of cells that it is 
convenient to manipulate together. 

2. Words with names of the form Dxxx deal specifically with double-length integers. 
3. Words with names of the form Mxxx deal with some combination of single and double integers.  The 

order in which these appear on the stack is determined by long-standing common practice. 

Refer to A.3.1 for a discussion of data types in Forth. 

A.8.6   Glossary   

A.8.6.1.0360   2CONSTANT   

Typical use: x1 x2 2CONSTANT name 

A.8.6.1.0390   2LITERAL   

Typical use: : X ... [ x1 x2 ] 2LITERAL ... ; 
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A.8.6.1.0440   2VARIABLE   

Typical use: 2VARIABLE name 

A.8.6.1.1070   D.R   

In D.R, the “R” is short for RIGHT. 

A.8.6.1.1090   D2*   

See: A.6.1.0320 2* for applicable discussion. 

A.8.6.1.1100   D2/   

See: A.6.1.0330 2/ for applicable discussion. 

A.8.6.1.1140   D>S   

There exist number representations, e.g., the sign-magnitude representation, where reduction from double- 
to single-precision cannot simply be done with DROP.  This word, equivalent to DROP on two’s 
complement systems, desensitizes application code to number representation and facilitates portability. 

A.8.6.1.1820   M*/   

M*/ was once described by Chuck Moore as the most useful arithmetic operator in Forth.  It is the main 
workhorse in most computations involving double-cell numbers.  Note that some systems allow signed 
divisors.  This can cost a lot in performance on some CPUs.  The requirement for a positive divisor has not 
proven to be a problem. 

A.8.6.1.1830   M+   

M+ is the classical method for integrating. 

A.9   The optional Exception word set   
CATCH and THROW provide a reliable mechanism for handling exceptions, without having to propagate 
exception flags through multiple levels of word nesting.  It is similar in spirit to the “non-local return” 
mechanisms of many other languages, such as C’s setjmp() and longjmp(), and LISP’s CATCH and 
THROW.  In the Forth context, THROW may be described as a “multi-level EXIT”, with CATCH marking a 
location to which a THROW may return. 

Several similar Forth “multi-level EXIT” exception-handling schemes have been described and used in 
past years.  It is not possible to implement such a scheme using only standard words (other than CATCH 
and THROW), because there is no portable way to “unwind” the return stack to a predetermined place. 

THROW also provides a convenient implementation technique for the standard words ABORT and ABORT", 
allowing an application to define, through the use of CATCH, the behavior in the event of a system ABORT. 

This sample implementation of CATCH and THROW uses the non-standard words described below.  They or 
their equivalents are available in many systems.  Other implementation strategies, including directly saving 
the value of DEPTH, are possible if such words are not available. 

SP@  ( -- addr )  returns the address corresponding to the top of data stack. 
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SP!  ( addr -- )  sets the stack pointer to addr, thus restoring the stack depth to the same depth that 
existed just before addr was acquired by executing SP@. 
RP@  ( -- addr )  returns the address corresponding to the top of return stack. 
RP!  ( addr -- )  sets the return stack pointer to addr, thus restoring the return stack depth to the same 
depth that existed just before addr was acquired by executing RP@. 
VARIABLE HANDLER   0 HANDLER !  \ last exception handler 

: CATCH  ( xt -- exception# | 0 ) \ return addr on stack 
 SP@ >R ( xt ) \ save data stack pointer 
 HANDLER @ >R ( xt ) \ and previous handler 
 RP@ HANDLER ! ( xt ) \ set current handler 
 EXECUTE ( ) \ execute returns if no THROW 
 R> HANDLER ! ( ) \ restore previous handler 
 R> DROP ( ) \ discard saved stack ptr 
 0 ( 0 ) \ normal completion 
; 

: THROW  ( ??? exception# -- ??? exception# ) 
 ?DUP IF ( exc# ) \ 0 THROW is no-op 
  HANDLER @ RP! ( exc# ) \ restore prev return stack 
  R> HANDLER ! ( exc# ) \ restore prev handler 
  R> SWAP >R ( saved-sp ) \ exc# on return stack 
  SP! DROP R> ( exc# ) \ restore stack 
  \ Return to the caller of CATCH because return 
  \ stack is restored to the state that existed 
  \ when CATCH began execution 
 THEN 
; 

In a multi-tasking system, the HANDLER variable should be in the per-task variable area (i.e., a user 
variable). 

This sample implementation does not explicitly handle the case in which CATCH has never been called 
(i.e., the ABORT behavior).  One solution is to add the following code after the IF in THROW: 

HANDLER @ 0= IF ( empty the stack ) QUIT THEN 

Another solution is to execute CATCH within QUIT, so that there is always an “exception handler of last 
resort” present.  For example: 

: QUIT 
 ( empty the return stack and ) 
 ( set the input source to the user input device ) 
 POSTPONE [ 
 BEGIN 
  REFILL 
 WHILE 
  ['] INTERPRET  CATCH 
  CASE 
   0 OF STATE @ 0= IF ." OK" THEN CR  ENDOF 
   -1 OF ( Aborted) ENDOF 
   -2 OF ( display  message from ABORT" ) ENDOF 
   ( default ) DUP ." Exception # "  . 
  ENDCASE 
 REPEAT BYE 
; 
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This example assumes the existance of a system-implementation word INTERPRET that embodies the text 
interpreter semantics described in 3.4 The Forth text interpreter.  Note that this implementation of QUIT 
automatically handles the emptying of the stack and return stack, due to THROW’s inherent restoration of 
the data and return stacks.  Given this definition of QUIT, it’s easy to define: 

: ABORT  -1 THROW ; 

In systems with other stacks in addition to the data and return stacks, the implementation of CATCH and 
THROW must save and restore those stack pointers as well.  Such an “extended version” can be built on top 
of this basic implementation.  For example, with another stack pointer accessed with FP@ and FP! only 
CATCH needs to be redefined: 

: CATCH  ( xt -- exception# | 0 ) 
   FP@ >R  CATCH  R> OVER IF FP! ELSE DROP THEN ; 

No change to THROW is necessary in this case.  Note that, as with all redefinitions, the redefined version of 
CATCH will only be available to definitions compiled after the redefinition of CATCH. 

CATCH and THROW provide a convenient way for an implementation to “clean up” the state of open files if 
an exception occurs during the text interpretation of a file with INCLUDE-FILE.  The implementation of 
INCLUDE-FILE may guard (with CATCH) the word that performs the text interpretation, and if CATCH 
returns an exception code, the file may be closed and the exception reTHROWn so that the files being 
included at an outer nesting level may be closed also.  Note that the Standard allows, but does not require, 
INCLUDE-FILE to close its open files if an exception occurs.  However, it does require INCLUDE-FILE 
to unnest the input source specification if an exception is THROWn. 

A.9.3   Additional usage requirements   
One important use of an exception handler is to maintain program control under many conditions which 
ABORT.  This is practicable only if a range of codes is reserved.  Note that an application may overload 
many standard words in such a way as to THROW ambiguous conditions not normally THROWn by a 
particular system. 

A.9.3.6   Exception handling   
The method of accomplishing this coupling is implementation dependent.  For example, LOAD could 
“know” about CATCH and THROW (by using CATCH itself, for example), or CATCH and THROW could 
“know” about LOAD (by maintaining input source nesting information in a data structure known to THROW, 
for example).  Under these circumstances it is not possible for a Standard Program to define words such as 
LOAD in a completely portable way. 

A.9.6   Glossary   

A.9.6.1.2275   THROW   

If THROW is executed with a non zero argument, the effect is as if the corresponding CATCH had returned 
it.  In that case, the stack depth is the same as it was just before CATCH began execution.  The values of the 
i*x stack arguments could have been modified arbitrarily during the execution of xt.  In general, nothing 
useful may be done with those stack items, but since their number is known (because the stack depth is 
deterministic), the application may DROP them to return to a predictable stack state. 
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Typical use: 

: could-fail ( -- char ) 
   KEY DUP [CHAR] Q =  IF  1 THROW THEN ; 

: do-it ( a b -- c)   2DROP could-fail ; 

: try-it ( --) 
   1 2 ['] do-it  CATCH  IF 
     ( x1 x2 ) 2DROP ." There was an exception" CR 
   ELSE ." The character was " EMIT CR 
   THEN 
; 

: retry-it ( -- ) 
   BEGIN  1 2 ['] do-it CATCH  WHILE 
     ( x1 x2) 2DROP  ." Exception, keep trying" CR 
   REPEAT ( char ) 
   ." The character was " EMIT CR 
; 

A.10   The optional Facility word set   

A.10.6   Glossary   

A.10.6.1.0742   AT-XY   

Most implementors supply a method of positioning a cursor on a CRT screen, but there is great variance in 
names and stack arguments.  This version is supported by at least one major vendor. 

A.10.6.1.1755   KEY?   

The Technical Committee has gone around several times on the stack effects.  Whatever is decided will 
violate somebody’s practice and penalize some machine.  This way doesn’t interfere with type-ahead on 
some systems, while requiring the implementation of a single-character buffer on machines where polling 
the keyboard inevitably results in the destruction of the character. 

Use of KEY or KEY? indicates that the application does not wish to bother with non-character events, so 
they are discarded, in anticipation of eventually receiving a valid character.  Applications wishing to handle 
non-character events must use EKEY and EKEY?.  It is possible to mix uses of KEY? / KEY and EKEY? / 
EKEY within a single application, but the application must use KEY? and KEY only when it wishes to 
discard non-character events until a valid character is received. 

A.10.6.2.1305   EKEY   

EKEY provides a standard word to access a system-dependent set of “raw” keyboard events, including 
events corresponding to members of the standard character set, events corresponding to other members of 
the implementation-defined character set, and keystrokes that do not correspond to members of the 
character set. 

EKEY assumes no particular numerical correspondence between particular event code values and the values 
representing standard characters.  On some systems, this may allow two separate keys that correspond to 
the same standard character to be distinguished from one another. 

In systems that combine both keyboard and mouse events into a single “event stream”, the single number 
returned by EKEY may be inadequate to represent the full range of input possibilities.  In such systems, a 
single “event record” may include a time stamp, the x,y coordinates of the mouse position, the keyboard 
state, and the state of the mouse buttons.  In such systems, it might be appropriate for EKEY to return  the 
address of an “event record” from which the other information could be extracted. 
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Also, consider a hypothetical Forth system running under MS-DOS on a PC-compatible computer.  
Assume that the implementation-defined character set is the “normal” 8-bit PC character set.  In that 
character set, the codes from 0 to 127 correspond to ASCII characters.  The codes from 128 to 255 
represent characters from various non-English languages, mathematical symbols, and some graphical 
symbols used for line drawing. In addition to those characters, the keyboard can generate various other 
“scan codes”, representing such non-character events as arrow keys and function keys. 

There may be multiple keys, with different scan codes, corresponding to the same standard character.  For 
example, the character representing the number “1” often appears both in the row of number keys above 
the alphabetic keys, and also in the separate numeric keypad. 

When a program asks the MS-DOS operating system for a keyboard event, it receives either a single non-
zero byte, representing a character, or a zero byte followed by a “scan code” byte, representing a non-
character keyboard event (e.g., a function key). 

EKEY represents each keyboard event as a single number, rather than as a sequence of numbers.  For the 
system described above, the following would be a reasonable implementation of EKEY and related words: 

The MAX-CHAR environmental query would return 255. 
Assume the existence of a word DOS-KEY ( -- char )  which executes the MS-DOS “Direct STDIN 
Input” system call (Interrupt 21h, Function 07h) and a word DOS-KEY? ( -- flag) which executes the 
MS-DOS “Check STDIN Status” system call (Interrupt 21h, Function 0Bh). 
: EKEY?  ( -- flag )  DOS-KEY?  0<>  ; 

: EKEY  ( -- u )  DOS-KEY  ?DUP 0= IF  DOS-KEY 256 +  THEN ; 

: EKEY>CHAR  ( u -- u false | char true ) 
 DUP 255 > IF ( u ) 
  DUP 259 = IF \ 259 is Ctrl-@ (ASCII NUL) 
   DROP 0 TRUE EXIT \ so replace with character 
  THEN FALSE EXIT \ otherwise extended character 
 THEN  TRUE \ normal extended ASCII char. 
; 

VARIABLE PENDING-CHAR   -1 PENDING-CHAR ! 

: KEY?  ( -- flag ) 
 PENDING-CHAR @ 0< IF 
  BEGIN  EKEY? WHILE 
   EKEY EKEY>CHAR IF 
    PENDING-CHAR !  TRUE EXIT 
   THEN DROP 
  REPEAT  FALSE EXIT 
 THEN  TRUE 
; 

: KEY  ( -- char ) 
 PENDING-CHAR @ 0< IF 
  BEGIN  EKEY  EKEY>CHAR 0= WHILE 
   DROP 
  REPEAT  EXIT 
 THEN  PENDING-CHAR @  -1 PENDING-CHAR ! 
; 

This is a full-featured implementation, providing the application program with an easy way to either handle 
non-character events (with EKEY), or to ignore them and to only consider “real” characters (with KEY). 

Note that EKEY maps scan codes from 0 to 255 into numbers from 256 to 511.  EKEY maps the number 
259, representing the keyboard combination Ctrl-Shift-@, to the character whose numerical value is 0 
(ASCII NUL).  Many ASCII keyboards generate ASCII NUL for Ctrl-Shift-@, so we use that key 
combination for ASCII NUL (which is otherwise unavailable from MS-DOS, because the zero byte 
signifies that another scan-code byte follows). 
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One consequence of using the “Direct STDIN Input” system call (function 7) instead of the “STDIN Input” 
system call (function 8) is that the normal DOS “Ctrl-C interrupt” behavior is disabled when the system is 
waiting for input (Ctrl-C would still cause an interrupt while characters are being output).  On the other 
hand, if the “STDIN Input” system call (function 8) were used to implement EKEY, Ctrl-C interrupts would 
be enabled, but Ctrl-Shift-@ would also cause an interrupt, because the operating system would treat the 
second byte of the 0,3 sequence as a Ctrl-C, even though the 3 is really a scan code and not a character.  
One “best of both worlds” solution is to use function 8 for the first byte received by EKEY, and function 7 
for the scan code byte.  For example: 

: EKEY  ( -- u ) 
   DOS-KEY-FUNCTION-8  ?DUP  0=  IF 
     DOS-KEY-FUNCTION-7  DUP 3  =  IF 
       DROP 0  ELSE  256 + 
     THEN 
   THEN 
; 

Of course, if the Forth implementor chooses to pass Ctrl-C through to the program, without using it for its 
usual interrupt function, then DOS function 7 is appropriate in both cases (and some additional care must 
be taken to prevent a typed-ahead Ctrl-C from interrupting the Forth system during output operations). 

A Forth system might also choose a simpler implementation of KEY, without implementing EKEY, as 
follows: 

: KEY   ( -- char )  DOS-KEY  ; 

: KEY?  ( -- flag )  DOS-KEY? 0<>  ; 

The disadvantages of the simpler version are: 

a) An application program that uses KEY, expecting to receive only valid characters, might receive a 
sequence of bytes (e.g., a zero byte followed by a byte with the same numerical value as the letter “A”) 
that appears to contain a valid character, even though the user pressed a key (e.g., function key 4) that 
does not correspond to any valid character. 
b) An application program that wishes to handle non-character events will have to execute KEY twice 
if it returns zero the first time.  This might appear to be a reasonable and easy thing to do.  However, 
such code is not portable to other systems that do not use a zero byte as an “escape” code.  Using the 
EKEY approach, the algorithm for handling keyboard events can be the same for all systems; the 
system dependencies can be reduced to a table or set of constants listing the system-dependent key 
codes used to access particular application functions.  Without EKEY, the algorithm, not just the table, 
is likely to be system dependent. 

Another approach to EKEY on MS-DOS is to use the BIOS “Read Keyboard Status” function (Interrupt 
16h, Function 01h) or the related “Check Keyboard” function (Interrupt 16h, Function 11h).  The 
advantage of this function is that it allows the program to distinguish between different keys that 
correspond to the same character (e.g. the two “1” keys).  The disadvantage is that the BIOS keyboard 
functions read only the keyboard.  They cannot be “redirected” to another “standard input” source, as can 
the DOS STDIN Input functions. 

A.10.6.2.1306   EKEY>CHAR   

EKEY>CHAR translates a keyboard event into the corresponding member of the character set, if such a 
correspondence exists for that event. 

It is possible that several different keyboard events may correspond to the same character, and other 
keyboard events may correspond to no character. 

A.10.6.2.1325   EMIT?   

An indefinite delay is a device related condition, such as printer off-line, that requires operator intervention 
before the device will accept new data. 
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A.10.6.2.1905   MS   

Although their frequencies vary, every system has a clock.  Since many programs need to time intervals, 
this word is offered.  Use of milliseconds as an internal unit of time is a practical “least common 
denominator” external unit.  It is assumed implementors will use “clock ticks” (whatever size they are) as 
an internal unit and convert as appropriate. 

A.10.6.2.2292   TIME&DATE   

Most systems have a real-time clock/calendar.  This word gives portable access to it. 

A.11   The optional File-Access word set   
Many Forth systems support access to a host file system, and many of these support interpretation of Forth 
from source text files.  The Forth-83 Standard did not address host OS files.  Nevertheless, a degree of 
similarity exists among modern implementations. 

For example, files must be opened and closed, created and deleted.  Forth file-system implementations 
differ mostly in the treatment and disposition of the exception codes, and in the format of the file-
identification strings.  The underlying mechanism for creating file-control blocks might or might not be 
visible.  We have chosen to keep it invisible. 

Files must also be read and written.  Text files, if supported, must be read and written one line at a time.  
Interpretation of text files implies that they are somehow integrated into the text interpreter input 
mechanism.  These and other requirements have shaped the file-access extensions word set. 

Most of the existing implementations studied use simple English words for common host file functions:  
OPEN, CLOSE, READ, etc.  Although we would have preferred to do likewise, there were so many minor 
variations in implementation of these words that adopting any particular meaning would have broken much 
existing code.  We have used names with a suffix -FILE for most of these words.  We encourage 
implementors to conform their single-word primitives to the ANS behaviors, and hope that if this is done 
on a widespread basis we can adopt better definition names in a future standard. 

Specific rationales for members of this word set follow. 

A.11.3   Additional usage requirements   

A.11.3.2   Blocks in files   

Many systems reuse file identifiers; when a file is closed, a subsequently opened file may be given the 
same identifier.  If the original file has blocks still in block buffers, these will be incorrectly associated with 
the newly opened file with disastrous results.  The block buffer system must be flushed to avoid this. 

A.11.6   Glossary   

A.11.6.1.0765   BIN   

Some operating systems require that files be opened in a different mode to access their contents as an 
unstructured stream of binary data rather than as a sequence of lines. 

The arguments to READ-FILE and WRITE-FILE are arrays of character storage elements, each 
element consisting of at least 8 bits. The Technical Committee intends that, in BIN mode, the contents of 
these storage elements can be written to a file and later read back without alteration.  The Technical  
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Committee has declined to address issues regarding the impact of “wide” characters on the File and Block 
word sets. 

A.11.6.1.1010   CREATE-FILE   

Typical use: 

: X .. S" TEST.FTH" R/W CREATE-FILE  ABORT" CREATE-FILE FAILED" ... ; 

A.11.6.1.1717   INCLUDE-FILE   

Here are two implementation alternatives for saving the input source specification in the presence of text 
file input: 

1) Save the file position (as returned by FILE-POSITION) of the beginning of the line being 
interpreted.  To restore the input source specification, seek to that position and re-read the line into the 
input buffer. 
2) Allocate a separate line buffer for each active text input file, using that buffer as the input buffer.  
This method avoids the “seek and reread” step, and allows the use of “pseudo-files” such as pipes and 
other sequential-access-only communication channels. 

A.11.6.1.1718   INCLUDED   

Typical use:  ... S" filename" INCLUDED ... 

A.11.6.1.1970   OPEN-FILE   

Typical use: 

: X .. S" TEST.FTH" R/W OPEN-FILE  ABORT" OPEN-FILE FAILED" ... ; 

A.11.6.1.2080   READ-FILE   

A typical sequential file-processing algorithm might look like: 

BEGIN       (  ) 
 ... READ-FILE THROW ( length ) 
?DUP WHILE     ( length ) 
 ...      (  ) 
REPEAT      (  ) 

In this example, THROW is used to handle (unexpected) exception conditions, which are reported as non-
zero values of the ior return value from READ-FILE.  End-of-file is reported as a zero value of the 
“length” return value. 

A.11.6.1.2090   READ-LINE   

Implementations are allowed to store the line terminator in the memory buffer in order to allow the use of 
line reading functions provided by host operating systems, some of which store the terminator.  Without 
this provision, a temporary buffer might be needed.  The two-character limitation is sufficient for the vast 
majority of existing operating systems.  Implementations on host operating systems whose line terminator 
sequence is longer than two characters may have to take special action to prevent the storage of more than 
two terminator characters.   

Standard Programs may not depend on the presence of any such terminator sequence in the buffer.   
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A typical line-oriented sequential file-processing algorithm might look like: 

BEGIN     (  ) 
 . . . READ-LINE  THROW ( length not-eof-flag ) 
WHILE     ( length ) 
 . . .    (  ) 
REPEAT DROP    (  ) 

In this example, THROW is used to handle (unexpected) I/O exception condition, which are reported as non-
zero values of the “ior” return value from READ-LINE. 

READ-LINE needs a separate end-of-file flag because empty (zero-length) lines are a routine occurrence, 
so a zero-length line cannot be used to signify end-of-file. 

A.11.6.1.2165   S"   

Typical use: ... S" ccc" ... 

The interpretation semantics for S" are intended to provide a simple mechanism for entering a string in the 
interpretation state.  Since an implementation may choose to provide only one buffer for interpreted strings, 
an interpreted string is subject to being overwritten by the next execution of S" in interpretation state.  It is 
intended that no standard words other than S" should in themselves cause the interpreted string to be 
overwritten.  However, since words such as EVALUATE, LOAD, INCLUDE-FILE and INCLUDED can 
result in the interpretation of arbitrary text, possibly including instances of S", the interpreted string may 
be invalidated by some uses of these words. 

When the possibility of overwriting a string can arise, it is prudent to copy the string to a “safe” buffer 
allocated by the application. 

Programs wishing to parse in the fashion of S" are advised to use PARSE or WORD COUNT instead of S", 
preventing the overwriting of the interpreted string buffer. 

A.12   The optional Floating-Point word set   
The Technical Committee has considered many proposals dealing with the inclusion and makeup of the 
Floating-Point Word Sets in ANS Forth.  Although it has been argued that ANS Forth should not address 
floating-point arithmetic and numerous Forth applications do not need floating-point, there are a growing 
number of important Forth applications from spread sheets to scientific computations that require the use of 
floating-point arithmetic.  Initially the Technical Committee adopted proposals that made the Forth 
Vendors Group Floating-Point Standard, first published in 1984, the framework for inclusion of Floating-
Point in ANS Forth.  There is substantial common practice and experience with the Forth Vendors Group 
Floating-Point Standard.  Subsequently the Technical Committee adopted proposals that placed the basic 
floating-point arithmetic, stack and support words in the Floating-Point word set and the floating-point 
transcendental functions in the Floating-Point Extensions word set.  The Technical Committee also adopted 
proposals that: 

– changed names for clarity and consistency;  e.g., REALS to FLOATS, and REAL+ to FLOAT+ . 
– removed words; e.g., FPICK . 
– added words for completeness and increased functionality; e.g., FSINCOS, F~, DF@, DF!, SF@ and 

SF! 
Several issues concerning the Floating-Point word set were resolved by consensus in the Technical 
Committee: 

Floating-point stack:  By default the floating-point stack is separate from the data and return stacks; 
however, an implementation may keep floating-point numbers on the data stack. A program can 
determine whether floating-point numbers are kept on the data stack by passing the string 
FLOATING-STACK to ENVIRONMENT?  It is the experience of several members of the Technical  
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Committee that with proper coding practices it is possible to write floating-point code that will run 
identically on systems with a separate floating-point stack and with floating-point numbers kept on the 
data stack. 

Floating-point input:  The current base must be DECIMAL.  Floating-point input is not allowed in an 
arbitrary base.  All floating-point numbers to be interpreted by an ANS Forth system must contain the 
exponent indicator “E” (see 12.3.7 Text interpreter input number conversion).  Consensus in the 
Technical Committee deemed this form of floating-point input to be in more common use than the 
alternative that would have a floating-point input mode that would allow numbers with embedded 
decimal points to be treated as floating-point numbers. 

Floating-point representation:  Although the format and precision of the significand and the format and 
range of the exponent of a floating-point number are implementation defined in ANS Forth, the 
Floating-Point Extensions word set contains the words DF@, SF@, DF!, and SF! for fetching and 
storing double- and single-precision IEEE floating-point-format numbers to memory.  The IEEE 
floating-point format is commonly used by numeric math co-processors and for exchange of floating-
point data between programs and systems. 

A.12.3   Additional usage requirements   

A.12.3.5   Address alignment   

In defining custom floating-point data structures, be aware that CREATE doesn’t necessarily leave the data 
space pointer aligned for various floating-point data types.  Programs may comply with the requirement for 
the various kinds of floating-point alignment by specifying the appropriate alignment both at compile-time 
and execution time.  For example: 

: FCONSTANT ( F:  r -- ) 
   CREATE FALIGN  HERE  1 FLOATS ALLOT  F! 
   DOES> ( F:  -- r )  FALIGNED F@ ; 

A.12.3.7   Text interpreter input number conversion   

The Technical Committee has more than once received the suggestion that the text interpreter in Standard 
Forth systems should treat numbers that have an embedded decimal point, but no exponent, as floating-
point numbers rather than double cell numbers.  This suggestion, although it has merit, has always been 
voted down because it would break too much existing code; many existing implementations put the full 
digit string on the stack as a double number and use other means to inform the application of the location of 
the decimal point. 

A.12.6   Glossary   

A.12.6.1.0558   >FLOAT   

>FLOAT enables programs to read floating-point data in legible ASCII format.  It accepts a much broader 
syntax than does the text interpreter since the latter defines rules for composing source programs whereas 
>FLOAT defines rules for accepting data.  >FLOAT is defined as broadly as is feasible to permit input of 
data from ANS Forth systems as well as other widely used standard programming environments. 

This is a synthesis of common FORTRAN practice.  Embedded spaces are explicitly forbidden in much 
scientific usage, as are other field separators such as comma or slash. 

While >FLOAT is not required to treat a string of blanks as zero, this behavior is strongly encouraged, 
since a future version of ANS Forth may include such a requirement. 

A.12.6.1.1427   F.   

For example, 1E3 F. displays 1000. . 
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A.12.6.1.1492   FCONSTANT   

Typical use: r FCONSTANT name 

A.12.6.1.1552   FLITERAL   

Typical use: : X ... [ ... ( r ) ] FLITERAL ... ; 

A.12.6.1.1630   FVARIABLE   

Typical use: FVARIABLE name 

A.12.6.1.2143   REPRESENT   

This word provides a primitive for floating-point display.  Some floating-point formats, including those 
specified by IEEE-754, allow representations of numbers outside of an implementation-defined range.  
These include plus and minus infinities, denormalized numbers, and others.  In these cases we expect that 
REPRESENT will usually be implemented to return appropriate character strings, such as “+infinity” or 
“nan”, possibly truncated. 

A.12.6.2.1489   FATAN2   

FSINCOS and FATAN2 are a complementary pair of operators which convert angles to 2-vectors and vice-
versa.  They are essential to most geometric and physical applications since they correctly and 
unambiguously handle this conversion in all cases except null vectors, even when the tangent of the angle 
would be infinite. 

FSINCOS returns a Cartesian unit vector in the direction of the given angle, measured counter-clockwise 
from the positive X-axis.  The order of results on the stack, namely y underneath x, permits the 2-vector 
data type to be additionally viewed and used as a ratio approximating the tangent of the angle.  Thus the 
phrase FSINCOS F/ is functionally equivalent to FTAN, but is useful over only a limited and 
discontinuous range of angles, whereas FSINCOS and FATAN2 are useful for all angles.  This ordering has 
been found convenient for nearly two decades, and has the added benefit of being easy to remember.  A 
corollary to this observation is that vectors in general should appear on the stack in this order. 

The argument order for FATAN2 is the same, converting a vector in the conventional representation to a 
scalar angle.  Thus, for all angles, FSINCOS FATAN2 is an identity within the accuracy of the arithmetic 
and the argument range of FSINCOS.  Note that while FSINCOS always returns a valid unit vector, 
FATAN2 will accept any non-null vector.  An ambiguous condition exists if the vector argument to 
FATAN2 has zero magnitude. 

A.12.6.2.1516   FEXPM1   

This function allows accurate computation when its arguments are close to zero, and provides a useful base 
for the standard exponential functions.  Hyperbolic functions such as cosh(x) can be efficiently and 
accurately implemented by using FEXPM1; accuracy is lost in this function for small values of x if the word 
FEXP is used. 

An important application of this word is in finance; say a loan is repaid at 15% per year; what is the daily 
rate?  On a computer with single precision (six decimal digit) accuracy: 

1.  Using FLN and FEXP: 

FLN of 1.15 = 0.139762, 
divide by 365 = 3.82910E-4, 
form the exponent using FEXP = 1.00038, and 
subtract one (1) and convert to percentage = 0.038%. 

Thus we only have two digit accuracy. 
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2.  Using FLNP1 and FEXPM1: 

FLNP1 of 0.15 = 0.139762, (this is the same value as in the first example, although with the argument 
closer to zero it may not be so) 
divide by 365 = 3.82910E-4, 
form the exponent and subtract one (1) using FEXPM1 = 3.82983E-4, and 
convert to percentage = 0.0382983%. 

This is full six digit accuracy. 

The presence of this word allows the hyperbolic functions to be computed with usable accuracy.  For 
example, the hyperbolic sine can be defined as: 

: FSINH  ( r1 -- r2 ) 
   FEXPM1  FDUP  FDUP 1.0E0 F+  F/  F+  2.0E0 F/ ; 

A.12.6.2.1554   FLNP1   

This function allows accurate compilation when its arguments are close to zero, and provides a useful base 
for the standard logarithmic functions.  For example, FLN can be implemented as: 

: FLN   1.0E0 F-  FLNP1 ; 

See: A.12.6.2.1516 FEXPM1. 

A.12.6.2.1616   FSINCOS   

See:  A.12.6.2.1489 FATAN2. 

A.12.6.2.1640   F~   

This provides the three types of “floating point equality” in common use -- “close” in absolute terms, exact 
equality as represented, and “relatively close”. 

A.13   The optional Locals word set   
The Technical Committee has had a problem with locals.  It has been argued forcefully that ANS Forth 
should say nothing about locals since: 

– there is no clear accepted practice in this area; 
– not all Forth programmers use them or even know what they are; and 
– few implementations use the same syntax, let alone the same broad usage rules and general 

approaches. 

It has also been argued, it would seem equally forcefully, that the lack of any standard approach to locals is 
precisely the reason for this lack of accepted practice since locals are at best non-trivial to implement in a 
portable and useful way.  It has been further argued that users who have elected to become dependent on 
locals tend to be locked into a single vendor and have little motivation to join the group that it is hoped will 
“broadly accept” ANS Forth unless the Standard addresses their problems. 

Since the Technical Committee has been unable to reach a strong consensus on either leaving locals out or 
on adopting any particular vendor’s syntax, it has sought some way to deal with an issue that it has been 
unable to simply dismiss.  Realizing that no single mechanism or syntax can simultaneously meet the 
desires expressed in all the locals proposals that have been received, it has simplified the problem statement 
to be to define a locals mechanism that: 

– is independent of any particular syntax; 
– is user extensible; 
– enables use of arbitrary identifiers, local in scope to a single definition; 
– supports the fundamental cell size data types of Forth; and 
– works consistently, especially with respect to re-entrancy and recursion. 
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This appears to the Technical Committee to be what most of those who actively use locals are trying to 
achieve with them, and it is at present the consensus of the Technical Committee that if ANS Forth has 
anything to say on the subject this is an acceptable thing for it to say.  

This approach, defining (LOCAL), is proposed as one that can be used with a small amount of user coding 
to implement some, but not all, of the locals schemes in use.  The following coding examples illustrate how 
it can be used to implement two syntaxes. 

– The syntax defined by this Standard and used in the systems of Creative Solutions, Inc.: 

: LOCALS|  ( "name...name |" -- ) 
   BEGIN 
      BL WORD   COUNT OVER C@ 
      [CHAR] | - OVER 1 - OR  WHILE 
      (LOCAL) 
   REPEAT 2DROP   0 0 (LOCAL) 
;  IMMEDIATE 

: EXAMPLE  ( n -- n**2 n**3 ) 
   LOCALS| N |   N  DUP N *  DUP N * ; 

– A proposed syntax:  ( LOCAL name ) with additional usage rules: 

: LOCAL  ( "name" -- )  BL WORD COUNT (LOCAL) ;  IMMEDIATE 

: END-LOCALS  ( -- )  0 0 (LOCAL) ;  IMMEDIATE 

: EXAMPLE  ( n -- n n**2 n**3 ) 
   LOCAL N  END-LOCALS   N  DUP N *  DUP N * ; 

Other syntaxes can be implemented, although some will admittedly require considerably greater effort or in 
some cases program conversion.  Yet other approaches to locals are completely incompatible due to gross 
differences in usage rules and in some cases even scope identifiers.  For example, the complete local 
scheme in use at Johns Hopkins had elaborate semantics that cannot be duplicated in terms of this model. 

To reinforce the intent of section 13, here are two examples of actual use of locals.  The first illustrates 
correct usage: 

a) : {  ( "name ... }" - ) 
   BEGIN  BL WORD COUNT 
      OVER C@ [CHAR] } -  OVER 1 -  OR WHILE 
      (LOCAL) 
   REPEAT 2DROP 0 0 (LOCAL) 
;  IMMEDIATE 

b) : JOE  ( a b c -- n ) 
   >R 2* R> 2DUP + 0  
   { ANS 2B+C C 2B A } 
   2 0 DO  1 ANS + I + TO ANS  ANS . CR  LOOP 
   ANS . 2B+C . C . 2B . A . CR  ANS 
; 

c) 100 300 10 JOE . 

The word { at a) defines a local declaration syntax that surrounds the list of locals with braces.  It doesn’t 
do anything fancy, such as reordering locals or providing initial values for some of them, so locals are 
initialized from the stack in the default order.  The definition of JOE at b) illustrates a use of this syntax.  
Note that work is performed at execution time in that definition before locals are declared.  It’s OK to use 
the return stack as long as whatever is placed there is removed before the declarations begin. 

Note that before declaring locals, B is doubled, a subexpression (2B+C) is computed, and an initial value 
(zero) for ANS is provided.  After locals have been declared, JOE proceeds to use them.  Note that locals  
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may be accessed and updated within do-loops.  The effect of interpreting line c) is to display the following 
values: 

1 (ANS the first time through the loop), 
3 (ANS the second time), 
3 (ANS), 610 (2B+C), 10 (C), 600 (2B), 100 (A), and 
3 (ANS left on the stack by JOE). 

The names of the locals vanish after JOE has been compiled.  The storage and meaning of locals appear 
when JOE’s locals are declared and vanish as JOE returns to its caller at ; (semicolon). 

A second set of examples illustrates various things that break the rules.  We assume that the definitions of 
LOCAL and END-LOCALS above are present, along with { from the preceding example. 

d) : ZERO   0 POSTPONE LITERAL POSTPONE LOCAL ; IMMEDIATE 

e) : MOE  ( a b ) 
   ZERO TEMP  LOCAL B  1+ LOCAL A+  ZERO ANSWER ; 

f) : BOB  ( a b c d )  { D C }  { B A } ; 

Here are two definitions with various violations of rule 13.3.3.2a.  In e) the declaration of TEMP is legal 
and creates a local whose initial value is zero.  It’s OK because the executable code that ZERO generates 
precedes the first use of (LOCAL) in the definition.  However, the 1+ preceding the declaration of A+ is 
illegal.  Likewise the use of ZERO to define ANSWER is illegal because it generates executable code 
between uses of (LOCAL).  Finally, MOE terminates illegally (no END-LOCALS).  BOB inf) violates the 
rule against declaring two sets of locals. 

g) : ANN  ( a b  -- b )  DUP >R  DUP IF { B A } THEN  R> ; 

h) : JANE  ( a b -- n )  { B A }  A B + >R  A B -  R> / ; 

ANN in g) violates two rules.  The IF ... THEN around the declaration of its locals violates 13.3.3.2b, and 
the copy of B left on the return stack before declaring locals violates 13.3.3.2c.  JANE in h) violates 
13.3.3.2d by accessing locals after placing the sum of A and B on the return stack without first removing 
that sum. 

i) : CHRIS  ( a b) 
   { B A }  ['] A EXECUTE  5 ['] B >BODY !  [ ' A ] LITERAL LEE ; 

CHRIS in i) illustrates three violations of 13.3.3.2e.  The attempt to EXECUTE the local called A is 
inconsistent with some implementations.  The store into B via >BODY is likely to cause tragic results with 
many implementations; moreover, if locals are in registers they can’t be addressed as memory no matter 
what is written. 

The third violation, in which an execution token for a definition’s local is passed as an argument to the 
word LEE, would, if allowed, have the unpleasant implication that LEE could EXECUTE the token and 
obtain a value for A from the particular execution of CHRIS that called LEE this time. 

A.13.3   Additional usage requirements   
Rule 13.3.3.2d could be relaxed without affecting the integrity of the rest of this structure.  13.3.3.2c could 
not be. 

13.3.3.2b forbids the use of the data stack for local storage because no usage rules have been articulated for 
programmer users in such a case.  Of course, if the data stack is somehow employed in such a way that 
there are no usage rules, then the locals are invisible to the programmer, are logically not on the stack, and 
the implementation conforms. 

The minimum required number of locals can (and should) be adjusted to minimize the cost of compliance 
for existing users of locals. 
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Access to previously declared local variables is prohibited by Section 13.3.3.2d until any data placed onto 
the return stack by the application has been removed, due to the possible use of the return stack for storage 
of locals. 

Authorization for a Standard Program to manipulate the return stack (e.g., via >R R>) while local 
variables are active overly constrains implementation possibilities.  The consensus of users of locals was 
that Local facilities represent an effective functional replacement for return stack manipulation, and 
restriction of standard usage to only one method was reasonable. 

Access to Locals within DO..LOOPs is expressly permitted as an additional requirement of conforming 
systems by Section 13.3.3.2g.  Although words, such as (LOCALS), written by a System Implementor, 
may require inside knowledge of the internal structure of the return stack, such knowledge is not required 
of a user of compliant Forth systems. 

A.13.6   Glossary   

A.13.6.1.2295   TO   

Typical use: x TO name 

See:  A.6.2.2295 TO. 

A.13.6.2.1795   LOCALS|   

A possible implementation of this word and an example of usage is given in A.13, above.  It is intended as 
an example only; any implementation yielding the described semantics is acceptable. 

A.14   The optional Memory-Allocation word set   
The Memory-Allocation word set provides a means for acquiring memory other than the contiguous data 
space that is allocated by ALLOT.  In many operating system environments it is inappropriate for a process 
to pre-allocate large amounts of contiguous memory (as would be necessary for the use of ALLOT).  The 
Memory-Allocation word set can acquire memory from the system at any time, without knowing in 
advance the address of the memory that will be acquired. 

A.15   The optional Programming-Tools word set   
These words have been in widespread common use since the earliest Forth systems.   

Although there are environmental dependencies intrinsic to programs using an assembler, virtually all Forth 
systems provide such a capability.  Insofar as many Forth programs are intended for real-time applications 
and are intrinsically non-portable for this reason, the Technical Committee believes that providing a 
standard window into assemblers is a useful contribution to Forth programmers. 

Similarly, the programming aids DUMP, etc., are valuable tools even though their specific formats will 
differ between CPUs and Forth implementations.  These words are primarily intended for use by the 
programmer, and are rarely invoked in programs. 

One of the original aims of Forth was to erase the boundary between “user” and “programmer” – to give all 
possible power to anyone who had occasion to use a computer.  Nothing in the above labeling or remarks 
should be construed to mean that this goal has been abandoned. 

A.15.6   Glossary   

A.15.6.1.0220   .S   

.S is a debugging convenience found on almost all Forth systems.  It is universally mentioned in Forth 
texts. 
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A.15.6.1.2194   SEE   

SEE acts as an on-line form of documentation of words, allowing modification of words by decompiling 
and regenerating with appropriate changes. 

A.15.6.1.2465   WORDS   

WORDS is a debugging convenience found on almost all Forth systems.  It is universally referred to in Forth 
texts. 

A.15.6.2.0470   ;CODE   

Typical use: : namex ... <create> ... ;CODE ... 

where namex is a defining word, and <create> is CREATE or any user defined word that calls CREATE. 

A.15.6.2.0930   CODE   

Some Forth systems implement the assembly function by adding an ASSEMBLER word list to the search 
order, using the text interpreter to parse a postfix assembly language with lexical characteristics similar to 
Forth source code. Typically, in such systems, assembly ends when a word END-CODE is interpreted. 

A.15.6.2.1015   CS-PICK   

The intent is to reiterate a dest on the control-flow stack so that it can be resolved more than once.  For 
example: 

\ Conditionally transfer control to beginning of loop 
\ This is similar in spirit to C's "continue" statement. 

: ?REPEAT  ( dest -- dest ) \ Compilation 
           ( flag -- )      \ Execution 
   0 CS-PICK   POSTPONE UNTIL 
; IMMEDIATE 

: XX  ( -- ) \ Example use of ?REPEAT 
   BEGIN 
     ... 
   flag ?REPEAT  ( Go back to BEGIN if flag is false ) 
     ... 
   flag ?REPEAT  ( Go back to BEGIN if flag is false ) 
     ... 
   flag UNTIL    ( Go back to BEGIN if flag is false ) 
   ...   
; 

A.15.6.2.1020   CS-ROLL   

The intent is to modify the order in which the origs and dests on the control-flow stack are to be resolved 
by subsequent control-flow words.  For example, WHILE could be implemented in terms of IF and CS-
ROLL, as follows: 

: WHILE  ( dest -- orig dest ) 
   POSTPONE IF  1 CS-ROLL 
; IMMEDIATE 

A.15.6.2.1580   FORGET   

Typical use:  ... FORGET name ... 
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FORGET assumes that all the information needed to restore the dictionary to its previous state is inferable 
somehow from the forgotten word.  While this may be true in simple linear dictionary models, it is difficult 
to implement in other Forth systems; e.g., those with multiple address spaces.  For example, if Forth is 
embedded in ROM, how does FORGET know how much RAM to recover when an array is forgotten?  A 
general and preferred solution is provided by MARKER. 

A.15.6.2.2531   [ELSE]   

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ... 

A.15.6.2.2532   [IF]   

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ... 

A.15.6.2.2533   [THEN]   

Typical use: ... flag [IF] ... [ELSE] ... [THEN] ... 

Software that runs in several system environments often contains some source code that is environmentally 
dependent.  Conditional compilation – the selective inclusion or exclusion of portions of the source code at 
compile time – is one technique that is often used to assist in the maintenance of such source code. 

Conditional compilation is sometimes done with “smart comments” – definitions that either skip or do not 
skip the remainder of the line based on some test.  For example: 

\ If 16-Bit? contains TRUE, lines preceded by 16BIT\ 
\ will be skipped.  Otherwise, they will not be skipped. 

VARIABLE 16-BIT? 

: 16BIT\  ( -- )  16-BIT? @  IF  POSTPONE \  THEN 
;  IMMEDIATE 

This technique works on a line by line basis, and is good for short, isolated variant code sequences. 

More complicated conditional compilation problems suggest a nestable method that can encompass more 
than one source line at a time.  The words included in the ANS Forth optional Programming tools 
extensions word set are useful for this purpose.  The implementation given below works with any input 
source (keyboard, EVALUATE, BLOCK, or text file). 

: [ELSE]  ( -- ) 
 1 BEGIN \ level 
 BEGIN  BL WORD COUNT  DUP  WHILE \ level adr len 
 2DUP  S" [IF]"  COMPARE 0= IF \ level adr len 
 2DROP 1+ \ level' 
 ELSE \ level adr len 
 2DUP S" [ELSE]" COMPARE 0= IF \ level adr len 
 2DROP 1- DUP IF 1+ THEN \ level' 
 ELSE \ level adr len 
 S" [THEN]"  COMPARE 0= IF \ level 
 1- \ level' 
 THEN 
 THEN 
 THEN ?DUP 0=  IF EXIT THEN \ level' 
 REPEAT  2DROP \ level 
 REFILL 0= UNTIL \ level 
 DROP 
; IMMEDIATE 
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: [IF]  ( flag -- ) 
   0= IF POSTPONE [ELSE] THEN 
;  IMMEDIATE 

: [THEN]  ( -- )  ;  IMMEDIATE 

A.16   The optional Search-Order word set   
Search-order specification and control mechanisms vary widely.  The FIG-Forth, Forth-79, polyFORTH, 
and Forth-83 vocabulary and search order mechanisms are all mutually incompatible.  The complete list of 
incompatible mechanisms, in use or proposed, is much longer.  The ALSO/ONLY scheme described in a 
Forth-83 Experimental Proposal has substantial community support.  However, many consider it to be 
fundamentally flawed, and oppose it vigorously. 

Recognizing this variation, this Standard specifies a new “primitive” set of tools from which various 
schemes may be constructed.  This primitive search-order word set is intended to be a portable 
“construction set” from which search-order words may be built, rather than a user interface.  ALSO/ONLY 
or the various “vocabulary” schemes supported by the major Forth vendors can be defined in terms of the 
primitive search-order word set. 

The encoding for word list identifiers wid might be a small-integer index into an array of word-list 
definition records, the data-space address of such a record, a user-area offset, the execution token of a 
Forth-83 style sealed vocabulary, the link-field address of the first definition in a word list, or anything 
else.  It is entirely up to the system implementor. 

In some systems the interpretation of numeric literals is controlled by including “pseudo word lists” that 
recognize numbers at the end of the search order.  This technique is accommodated by the “default search 
order” behavior of SET-ORDER when given an argument of -1.  In a system using the traditional 
implementation of ALSO/ONLY , the minimum search order would be equivalent to the word ONLY. 

There has never been a portable way to restore a saved search order.  F83 (not Forth 83) introduced the 
word PREVIOUS , which almost made it possible to “unload” the search order by repeatedly executing the 
phrase CONTEXT @ PREVIOUS.  The search order could be “reloaded” by repeating ALSO CONTEXT 
!.  Unfortunately there was no portable way to determine how many word lists were in the search order. 

ANS Forth has removed the word CONTEXT because in many systems its contents refer to more than one 
word list, compounding portability problems. 

Note that : (colon) no longer affects the search order.  The previous behavior, where the compilation word 
list replaces the first word list of the search order, can be emulated with the following redefinition of : 
(colon). 

: :  GET-ORDER SWAP DROP  GET-CURRENT  SWAP SET-ORDER  : ; 

A.16.2   Additional terms   
search order   

Note that the use of the term “list” does not necessarily imply implementation as a linked list. 

A.16.3.3   Finding definition names   

In other words, the following is not guaranteed to work: 

: FOO  ... [ ... SET-CURRENT ] ... RECURSE ... 
;  IMMEDIATE 

RECURSE, ; (semicolon), and IMMEDIATE may or may not need information stored in the compilation 
word list. 
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A.16.6   Glossary   

A.16.6.1.2192   SEARCH-WORDLIST   

The string argument to SEARCH-WORDLIST is represented by c-addr u, rather than by just c-addr as with 
FIND.  The committee wishes to establish c-addr u as the preferred representation of a string on the stack, 
and has adopted that representation for all new functions that accept string arguments.  While this decision 
may cause the implementation of SEARCH-WORDLIST to be somewhat more difficult in existing systems, 
the committee feels that the additional difficulty is minor. 

When SEARCH-WORDLIST fails to find the word, it does not return the string, as does FIND.  This is in 
accordance with the general principle that Forth words consume their arguments. 

A.16.6.2.0715   ALSO   

Here is an implementation of ALSO/ONLY in terms of the primitive search-order word set. 

WORDLIST CONSTANT ROOT   ROOT SET-CURRENT 

: DO-VOCABULARY  ( -- ) \ Implementation factor 
  DOES>  @ >R           (  ) ( R: widnew ) 
   GET-ORDER  SWAP DROP ( wid1 ... widn-1 n ) 
   R> SWAP SET-ORDER 
; 

: DISCARD  ( x1 .. xu u - ) \ Implementation factor 
   0 ?DO DROP LOOP          \ DROP u+1 stack items 
; 

CREATE FORTH  FORTH-WORDLIST , DO-VOCABULARY 

: VOCABULARY  ( name -- )  WORDLIST CREATE ,  DO-VOCABULARY ; 

: ALSO  ( -- )  GET-ORDER  OVER SWAP 1+ SET-ORDER ; 

: PREVIOUS  ( --  )  GET-ORDER  SWAP DROP 1- SET-ORDER ; 

: DEFINITIONS  ( -- )  GET-ORDER  OVER SET-CURRENT DISCARD ; 

: ONLY ( -- )  ROOT ROOT  2 SET-ORDER ; 

\ Forth-83 version; just removes ONLY  
: SEAL  ( -- )  GET-ORDER 1- SET-ORDER DROP ; 

\ F83 and F-PC version; leaves only CONTEXT 
: SEAL  ( -- )  GET-ORDER OVER 1 SET-ORDER DISCARD ; 

The preceding definition of ONLY in terms of a “ROOT” word list follows F83 usage, and assumes that the 
default search order just includes ROOT and FORTH.  A more portable definition of FORTH and ONLY, 
without the assumptions, is: 

<omit the  ... WORDLIST CONSTANT ROOT ... line> 

CREATE FORTH GET-ORDER OVER , DISCARD DO-VOCABULARY 

: ONLY  ( -- )  -1 SET-ORDER ; 

Here is a simple implementation of GET-ORDER and SET-ORDER, including a corresponding definition 
of FIND.  The implementations of WORDLIST, SEARCH-WORDLIST, GET-CURRENT and SET-
CURRENT depend on system details and are not given here. 

16 CONSTANT #VOCS 

VARIABLE #ORDER 

CREATE CONTEXT  #VOCS CELLS ALLOT 
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: GET-ORDER  ( -- wid1 .. widn n ) 
   #ORDER @ 0 ?DO 
     #ORDER @  I - 1- CELLS CONTEXT + @ 
   LOOP 
   #ORDER @ 
; 

: SET-ORDER  ( wid1 .. widn n -- ) 
   DUP -1 = IF 
     DROP  <push system default word lists and n> 
   THEN 
   DUP #ORDER ! 
   0 ?DO  I CELLS CONTEXT + ! LOOP 
; 

: FIND  ( c-addr -- c-addr 0 | w 1 | w -1 ) 
 0    ( c-addr 0 ) 
 #ORDER @ 0 ?DO 
  OVER COUNT ( c-addr 0 c-addr' u ) 
  I CELLS CONTEXT + @ ( c-addr 0 c-addr' u wid) 
  SEARCH-WORDLIST ( c-addr 0; 0 | w 1 | w -1 ) 
  ?DUP IF ( c-addr 0; w 1 | w -1 ) 
   2SWAP 2DROP LEAVE ( w 1 | w -1 ) 
  THEN  ( c-addr 0 ) 
 LOOP   ( c-addr 0 | w 1 | w -1 ) 
; 

In an implementation where the dictionary search mechanism uses a hash table or lookup cache to reduce 
the search time, SET-ORDER might need to reconstruct the hash table or flush the cache. 

A.17   The optional String word set   

A.17.6   Glossary   

A.17.6.1.0245   /STRING   

/STRING is used to remove or add characters relative to the “left” end of the character string.  Positive 
values of n will exclude characters from the string while negative values of n will include characters to the 
left of the string.  /STRING is a natural factor of WORD and commonly available. 

A.17.6.1.0910   CMOVE   

If c-addr2 lies within the source region (i.e., when c-addr2 is not less than c-addr1 and c-addr2 is less than 
the quantity c-addr1 u CHARS +), memory propagation occurs. 

Typical use: Assume a character string at address 100: “ABCD”.  Then after 
 100 DUP  CHAR+  3 CMOVE the string at address 100 is “AAAA”. 

Rationale for CMOVE and CMOVE> follows MOVE. 

A.17.6.1.0920   CMOVE>   

If c-addr1 lies within the destination region (i.e., when c-addr1 is greater than or equal to c-addr2 and c-
addr2 is less than the quantity c-addr1 u CHARS +), memory propagation occurs.  

Typical use: Assume a character string at address 100: “ABCD”.  Then after 
 100 DUP CHAR+ SWAP 3 CMOVE> the string at address 100 is “DDDD”. 
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A.17.6.1.0935   COMPARE   

Existing Forth systems perform string comparison operations using words that differ in spelling, input and 
output arguments, and case sensitivity.  One in widespread use was chosen. 

A.17.6.1.2191   SEARCH   

Existing Forth systems perform string searching operations using words that differ in spelling, input and 
output arguments, and case sensitivity.  One in widespread use was chosen. 

A.17.6.1.2212   SLITERAL   

The current functionality of 6.1.2165 S" may be provided by the following definition: 

: S" ( "ccc<quote>" -- ) 
   [CHAR] " PARSE   POSTPONE SLITERAL 
; IMMEDIATE 
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C.   Perspective (informative annex)   

The purpose of this section is to provide an informal overview of Forth as a language, illustrating its 
history, most prominent features, usage, and common implementation techniques.  Nothing in this section 
should be considered as binding upon either implementors or users.  A list of books and articles is given in 
Annex B for those interested in learning more about Forth. 

C.1   Features of Forth   
Forth provides an interactive programming environment.  Its primary uses have been in scientific and 
industrial applications such as instrumentation, robotics, process control, graphics and image processing, 
artificial intelligence and business applications.  The principal advantages of Forth include rapid, 
interactive software development and efficient use of computer hardware. 

Forth is often spoken of as a language because that is its most visible aspect.  But in fact, Forth is both 
more and less than a conventional programming language:  more in that all the capabilities normally 
associated with a large portfolio of separate programs (compilers, editors, etc.) are included within its range 
and less in that it lacks (deliberately) the complex syntax characteristic of most high-level languages. 

The original implementations of Forth were stand-alone systems that included functions normally 
performed by separate operating systems, editors, compilers, assemblers, debuggers and other utilities.  A 
single simple, consistent set of rules governed this entire range of capabilities.  Today, although very fast 
stand-alone versions are still marketed for many processors, there are also many versions that run co-
resident with conventional operating systems such as MS-DOS and UNIX. 

Forth is not derived from any other language.  As a result, its appearance and internal characteristics may 
seem unfamiliar to new users.  But Forth’s simplicity, extreme modularity, and interactive nature offset the 
initial strangeness, making it easy to learn and use.  A new Forth programmer must invest some time 
mastering its large command repertoire.  After a month or so of full-time use of Forth, that programmer 
could understand more of its internal working than is possible with conventional operating systems and 
compilers. 

The most unconventional feature of Forth is its extensibility.  The programming process in Forth consists of 
defining new “words” – actually new commands in the language.  These may be defined in terms of 
previously defined words, much as one teaches a child concepts by explaining them in terms of previously 
understood concepts.  Such words are called “high-level definitions”. Alternatively, new words may also be 
defined in assembly code, since most Forth implementations include an assembler for the host processor. 

This extensibility facilitates the development of special application languages for particular problem areas 
or disciplines. 

Forth’s extensibility goes beyond just adding new commands to the language.  With equivalent ease, one 
can also add new kinds of words.  That is, one may create a word which itself will define words.  In 
creating such a defining word the programmer may specify a specialized behavior for the words it will 
create which will be effective at compile time, at run-time, or both.  This capability allows one to define 
specialized data types, with complete control over both structure and behavior.  Since the run-time behavior 
of such words may be defined either in high-level or in code, the words created by this new defining word 
are equivalent to all other kinds of Forth words in performance.  Moreover, it is even easy to add new 
compiler directives to implement special kinds of loops or other control structures. 

Most professional implementations of Forth are written in Forth.  Many Forth systems include a “meta-
compiler” which allows the user to modify the internal structure of the Forth system itself. 
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C.2   History of Forth   
Forth was invented by Charles H. Moore.  A direct outgrowth of Moore’s work in the 1960’s, the first 
program to be called Forth was written in about 1970.  The first complete implementation was used in 1971 
at the National Radio Astronomy Observatory’s 11-meter radio telescope in Arizona.  This system was 
responsible for pointing and tracking the telescope, collecting data and recording it on magnetic tape, and 
supporting an interactive graphics terminal on which an astronomer could analyze previously recorded 
data.  The multi-tasking nature of the system allowed all these functions to be performed concurrently, 
without timing conflicts or other interference – a very advanced concept for that time. 

The system was so useful that astronomers from all over the world began asking for copies.  Its use spread 
rapidly, and in 1976 Forth was adopted as a standard language by the International Astronomical Union. 

In 1973, Moore and colleagues formed FORTH, Inc. to explore commercial uses of the language.  FORTH, 
Inc. developed multi-user versions of Forth on minicomputers for diverse projects ranging from data bases 
to scientific applications such as image processing.  In 1977, FORTH, Inc. developed a version for the 
newly introduced 8-bit microprocessors called “microFORTH”, which was successfully used in embedded 
microprocessor applications in the United States, Britain and Japan. 

Stimulated by the volume marketing of microFORTH, a group of computer hobbyists in Northern 
California became interested in Forth, and in 1978 formed the Forth Interest Group (FIG).  They developed 
a simplified model which they implemented on several microprocessors and published listings and disks at 
very low cost.  Interest in Forth spread rapidly, and today there are chapters of the Forth Interest Group 
throughout the U.S. and in over fifteen countries. 

By 1980, a number of new Forth vendors had entered the market with versions of Forth based upon the 
FIG model.  Primarily designed for personal computers, these relatively inexpensive Forth systems have 
been distributed very widely. 

C.3   Hardware implementations of Forth   
The internal architecture of Forth simulates a computer with two stacks, a set of registers, and other 
standardized features.  As a result, it was almost inevitable that someone would attempt to build a hardware 
representation of an actual Forth computer. 

In the early 1980’s, Rockwell produced a 6502-variant with Forth primitives in on-board ROM, the 
Rockwell 65F11.  This chip has been used successfully in many embedded microprocessor applications.  In 
the mid-1980’s Zilog developed the z8800 (Super8) which offered ENTER (nest), EXIT (unnest) and 
NEXT in microcode. 

In 1981, Moore undertook to design a chip-level implementation of the Forth virtual machine.  Working 
first at FORTH, Inc. and subsequently with the start-up company NOVIX, formed to develop the chip, 
Moore completed the design in 1984, and the first prototypes were produced in early 1985.  More recently, 
Forth processors have been developed by Harris Semiconductor Corp., Johns Hopkins University, and 
others. 

C.4   Standardization efforts   
The first major effort to standardize Forth was a meeting in Utrecht in 1977.  The attendees produced a 
preliminary standard, and agreed to meet the following year.  The 1978 meeting was also attended by 
members of the newly formed Forth Interest Group.  In 1979 and 1980 a series of meetings attended by 
both users and vendors produced a more comprehensive standard called Forth 79. 

Although Forth 79 was very influential, many Forth users and vendors found serious flaws in it, and in 
1983 a new standard called Forth 83 was released. 

Encouraged by the widespread acceptance of Forth 83, a group of users and vendors met in 1986 to 
investigate the feasibility of an American National Standard.  The X3J14 Technical Committee for ANS 
Forth held its first meeting in 1987.  This Standard is the result. 
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C.5   Programming in Forth   
Forth is an English-like language whose elements (called “words”) are named data items, procedures, and 
defining words capable of creating data items with customized characteristics.  Procedures and defining 
words may be defined in terms of previously defined words or in machine code, using an embedded 
assembler. 

Forth “words” are functionally analogous to subroutines in other languages.  They are also equivalent to 
commands in other languages – Forth blurs the distinction between linguistic elements and functional 
elements. 

Words are referred to either from the keyboard or in program source by name.  As a result, the term “word” 
is applied both to program (and linguistic) units and to their text names.  In parsing text, Forth considers a 
word to be any string of characters bounded by spaces.  There are a few special characters that cannot be 
included in a word or start a word:  space (the universal delimiter), CR (which ends terminal input), and 
backspace or DEL (for backspacing during keyboard input).  Many groups adopt naming conventions to 
improve readability.  Words encountered in text fall into three categories:  defined words (i.e., Forth 
routines), numbers, and undefined words.  For example, here are four words: 

HERE      DOES>      !      8493 

The first three are standard-defined words.  This means that they have entries in Forth’s dictionary, 
described below, explaining what Forth is to do when these words are encountered.  The number “8493” 
will presumably not be found in the dictionary, and Forth will convert it to binary and place it on its push-
down stack for parameters.  When Forth encounters an undefined word and cannot convert it to a number, 
the word is returned to the user with an exception message. 

Architecturally, Forth words adhere strictly to the principles of “structured programming”: 

– Words must be defined before they are used. 
– Logical flow is restricted to sequential, conditional, and iterative patterns.  Words are included to 

implement the most useful program control structures. 
– The programmer works with many small, independent modules (words) for maximum testability and 

reliability. 

Forth is characterized by five major elements:  a dictionary, two push-down stacks, interpreters, an 
assembler, and virtual storage.  Although each of these may be found in other systems, the combination 
produces a synergy that yields a powerful and flexible system. 

C.5.1   The Forth dictionary   
A Forth program is organized into a dictionary that occupies most of the memory used by the system.  This 
dictionary is a threaded list of variable-length items, each of which defines a word.  The content of each 
definition depends upon the type of word (data item, constant, sequence of operations, etc.).  The 
dictionary is extensible, usually growing toward high memory.  On some multi-user systems individual 
users have private dictionaries, each of which is connected to a shared system dictionary. 

Words are added to the dictionary by “defining words”, of which the most commonly used is : (colon).  
When : is executed, it constructs a definition for the word that follows it.  In classical implementations2, 
the content of this definition is a string of addresses of previously defined words which will be executed in 
turn whenever the word being defined is invoked.  The definition is terminated by ; (semicolon).  For 
example, here is a definition: 

: RECEIVE  ( -- addr n )  PAD DUP 32 ACCEPT ; 

The name of the new word is RECEIVE.  The comment (in parentheses) indicates that it requires no 
parameters and will return an address and count on the data stack.  When RECEIVE is executed, it will 
                                                           
2  Other common implementation techniques include direct translation to code and other types of tokens. 
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perform the words in the remainder of the definition in sequence.  The word PAD places on the stack the 
address of a scratch pad used to handle strings.  DUP duplicates the top stack item, so we now have two 
copies of the address.  The number 32 is also placed on the stack.  The word ACCEPT takes an address 
(provided by PAD) and length (32) on the stack, accepts from the keyboard a string of up to 32 characters 
which will be placed at the specified address, and returns the number of characters received.  The copy of 
the scratch-pad address remains on the stack below the count so that the routine that called RECEIVE can 
use it to pick up the received string. 

C.5.2   Push-down stacks   
The example above illustrates the use of push-down stacks for passing parameters between Forth words.  
Forth maintains two push-down stacks, or LIFO lists.  These provide communication between Forth words 
plus an efficient mechanism for controlling logical flow.  A stack contains 16-bit items on 8-bit and 16-bit 
computers, and 32-bit items on 32-bit processors.  Double-cell numbers occupy two stack positions, with 
the most-significant part on top.  Items on either stack may be addresses or data items of various kinds.  
Stacks are of indefinite size, and usually grow towards low memory. 

Although the structure of both stacks is the same, they have very different uses.  The user interacts most 
directly with the Data Stack, which contains arguments passed between words.  This function replaces the 
calling sequences used by conventional languages.  It is efficient internally, and makes routines 
intrinsically re-entrant.  The second stack is called the Return Stack, as its main function is to hold return 
addresses for nested definitions, although other kinds of data are sometimes kept there temporarily. 

The use of the Data Stack (often called just “the stack”) leads to a notation in which operands precede 
operators.  The word ACCEPT in the example above took an address and count from the stack and left 
another address there.  Similarly, a word called BLANK expects an address and count, and will place the 
specified number of space characters (20H) in the region starting at that address.  Thus, 

PAD 25 BLANK 

will fill the scratch region whose address is pushed on the stack by PAD with 25 spaces.  Application words 
are usually defined to work similarly.  For example, 

100 SAMPLES 

might be defined to record 100 measurements in a data array. 

Arithmetic operators also expect values and leave results on the stack.  For example, + adds the top two 
numbers on the stack, replacing them both by their sum.  Since results of operations are left on the stack, 
operations may be strung together without a need to define variables to use for temporary storage. 

C.5.3   Interpreters   
Forth is traditionally an interpretive system, in that program execution is controlled by data items rather 
than machine code.  Interpreters can be slow, but Forth maintains the high speed required of real-time 
applications by having two levels of interpretation. 

The first is the text interpreter, which parses strings from the terminal or mass storage and looks each word 
up in the dictionary.  When a word is found it is executed by invoking the second level, the address 
interpreter. 

The second is an “address interpreter”.  Although not all Forth systems are implemented in this way, it was 
the first and is still the primary implementation technology.  For a small cost in performance, an address 
interpreter can yield a very compact object program, which has been a major factor in Forth’s wide 
acceptance in embedded systems and other applications where small object size is desirable. 

The address interpreter processes strings of addresses or tokens compiled in definitions created by : 
(colon), by executing the definition pointed to by each.  The content of most definitions is a sequence of 
addresses of previously defined words, which will be executed by the address interpreter in turn.  Thus, 
when the word RECEIVE (defined above) is executed, the word PAD, the word DUP, the literal 32, and the 
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word ACCEPT will be executed in sequence.  The process is terminated by the semicolon.  This execution 
requires no dictionary searches, parsing, or other logic, because when RECEIVE was compiled the 
dictionary was searched for each word, and its address (or other token) was placed in the next successive 
cell of the entry.  The text was not stored in memory, not even in condensed form. 

The address interpreter has two important properties.  First, it is fast.  Although the actual speed depends 
upon the specific implementation, professional implementations are highly optimized, often requiring only 
one or two machine instructions per address.  On most benchmarks, a good Forth implementation 
substantially out-performs interpretive languages such as BASIC or LISP, and will compare favorably with 
other compiled high-level languages. 

Second, the address interpreter makes Forth definitions extremely compact, as each reference requires only 
one cell.  In comparison, a subroutine call constructed by most compilers involves instructions for handling 
the calling sequence (unnecessary in Forth because of the stack) before and after a CALL or JSR 
instruction and address. 

Most of the words in a Forth dictionary will be defined by : (colon) and interpreted by the address 
interpreter.  Most of Forth itself is defined this way. 

C.5.4   Assembler   
Most implementations of Forth include a macro assembler for the CPU on which they run.  By using the 
defining word CODE the programmer can create a definition whose behavior will consist of executing 
actual machine instructions.  CODE definitions may be used to do I/O, implement arithmetic primitives, and 
do other machine-dependent or time-critical processing.  When using CODE the programmer has full 
control over the CPU, as with any other assembler, and CODE definitions run at full machine speed. 

This is an important feature of Forth.  It permits explicit computer-dependent code in manageable pieces 
with specific interfacing conventions that are machine-independent.  To move an application to a different 
processor requires re-coding only the CODE words, which will interact with other Forth words in exactly 
the same manner. 

Forth assemblers are so compact (typically a few Kbytes) that they can be resident in the system (as are the 
compiler, editor, and other programming tools).  This means that the programmer can type in short CODE 
definitions and execute them immediately.  This capability is especially valuable in testing custom 
hardware. 

C.5.5   Virtual memory   
The final unique element of Forth is its way of using disk or other mass storage as a form of “virtual 
memory” for data and program source.  As in the case of the address interpreter, this approach is 
historically characteristic of Forth, but is by no means universal.  Disk is divided into 1024-byte blocks.  
Two or more buffers are provided in memory, into which blocks are read automatically when referred to.  
Each block has a fixed block number, which in native systems is a direct function of its physical location.  
If a block is changed in memory, it will be automatically written out when its buffer must be reused.  
Explicit reads and writes are not needed; the program will find the data in memory whenever it accesses it. 

Block-oriented disk handling is efficient and easy for native Forth systems to implement.  As a result, 
blocks provide a completely transportable mechanism for handling program source and data across both 
native and co-resident versions of Forth on different host operating systems. 

Definitions in program source blocks are compiled into memory by the word LOAD.  Most implementations 
include an editor, which formats a block for display into 16 lines of 64 characters each, and provides 
commands modifying the source.  An example of a Forth source block is given in Fig. C.1 below. 

Source blocks have historically been an important element in Forth style.  Just as Forth definitions may be 
considered the linguistic equivalent of sentences in natural languages, a block is analogous to a paragraph.  
A block normally contains definitions related to a common theme, such as “vector arithmetic”.  A comment 
on the top line of the block identifies this theme.  An application may selectively load the blocks it needs. 
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Blocks are also used to store data.  Small records can be combined into a block, or large records spread 
over several blocks.  The programmer may allocate blocks in whatever way suits the application, and on 
native systems can increase performance by organizing data to minimize disk head motion.  Several Forth 
vendors have developed sophisticated file and data base systems based on Forth blocks. 

Versions of Forth that run co-resident with a host OS often implement blocks in host OS files.  Others use 
the host files exclusively.  The Standard requires that blocks be available on systems providing any disk 
access method, as they are the only means of referencing disk that can be transportable across both native 
and co-resident implementations. 

C.5.6   Programming environment   
Although this Standard does not require it, most Forth systems include a resident editor.  This enables a 
programmer to edit source and recompile it into executable form without leaving the Forth environment.  
As it is easy to organize an application into layers, it is often possible to recompile only the topmost layer 
(which is usually the one currently under development), a process which rarely takes more than a few 
seconds.   

Most Forth systems also provide resident interactive debugging aids, not only including words such as 
those in 15. The optional Programming-Tools word set, but also having the ability to examine and 
change the contents of VARIABLEs and other data items and to execute from the keyboard most of the 
component words in both the underlying Forth system and the application under development.   

The combination of resident editor, integrated debugging tools, and direct executability of most defined 
words leads to a very interactive programming style, which has been shown to shorten development time. 

C.5.7   Advanced programming features   
One of the unusual characteristics of Forth is that the words the programmer defines in building an 
application become integral elements of the language itself, adding more and more powerful application-
oriented features. 

For example, Forth includes the words VARIABLE and 2VARIABLE to name locations in which data may 
be stored, as well as CONSTANT and 2CONSTANT to name single and double-cell values.  Suppose a 
programmer finds that an application needs arrays that would be automatically indexed through a number 
of two-cell items.  Such an array might be called 2ARRAY.  The prefix “2” in the name indicates that each 
element in this array will occupy two cells (as would the contents of a 2VARIABLE or 2CONSTANT).  The 
prefix “2”, however, has significance only to a human and is no more significant to the text interpreter than 
any other character that may be used in a definition name.  

Such a definition has two parts, as there are two “behaviors” associated with this new word 2ARRAY, one 
at compile time, and one at run or execute time.  These are best understood if we look at how 2ARRAY is 
used to define its arrays, and then how the array might be used in an application.  In fact, this is how one 
would design and implement this word. 

Beginning the top-down design process, here’s how we would like to use 2ARRAY: 

100 2ARRAY RAW   50 2ARRAY REFINED 

In the first case, we are defining an array 100 elements long, whose name is RAW.  In the second, the array 
is 50 elements long, and is named REFINED.  In each case, a size parameter is supplied to 2ARRAY on the 
data stack (Forth’s text interpreter automatically puts numbers there when it encounters them), and the 
name of the word immediately follows.  This order is typical of Forth defining words. 

When we use RAW or REFINED, we would like to supply on the stack the index of the element we want, 
and get back the address of that element on the stack.  Such a reference would characteristically take place 
in a loop.  Here’s a representative loop that accepts a two-cell value from a hypothetical application word 
DATA and stores it in the next element of RAW: 

: ACQUIRE   100 0 DO DATA  I RAW 2!  LOOP ; 
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The name of this definition is ACQUIRE.  The loop begins with DO, ends with LOOP, and will execute with 
index values running from 0 through 99.  Within the loop, DATA gets a value.  The word I returns the 
current value of the loop index, which is the argument to RAW.  The address of the selected element, 
returned by RAW, and the value, which has remained on the stack since DATA, are passed to the word 2! 
(pronounced “two-store”), which stores two stack items in the address. 

Now that we have specified exactly what 2ARRAY does and how the words it defines are to behave, we are 
ready to write the two parts of its definition: 

: 2ARRAY  ( n -- ) 
   CREATE  2* CELLS ALLOT 
   DOES>  ( i a -- a')  SWAP  2* CELLS + ; 

The part of the definition before the word DOES> specifies the “compile-time” behavior, that is, what the 
2ARRAY will do when it us used to define a word such as RAW.  The comment indicates that this part 
expects a number on the stack, which is the size parameter.  The word CREATE constructs the definition 
for the new word.  The phrase 2* CELLS converts the size parameter from two-cell units to the internal 
addressing units of the system (normally characters).  ALLOT then allocates the specified amount of 
memory to contain the data to be associated with the newly defined array. 

The second line defines the “run-time” behavior that will be shared by all words defined by 2ARRAY, such 
as RAW and REFINED.  The word DOES> terminates the first part of the definition and begins the second 
part.  A second comment here indicates that this code expects an index and an address on the stack, and 
will return a different address.  The index is supplied on the stack by the caller (of RAW in the example), 
while the address of the content of a word defined in this way (the ALLOTted region) is automatically 
pushed on top of the stack before this section of the code is to be executed.  This code works as follows:  
SWAP reverses the order of the two stack items, to get the index on top.  2* CELLS converts the index to 
the internal addressing units as in the compile-time section, to yield an offset from the beginning of the 
array.  The word + then adds the offset to the address of the start of the array to give the effective address, 
which is the desired result. 

Given this basic definition, one could easily modify it to do more sophisticated things.  For example, the 
compile-time code could be changed to initialize the array to zeros, spaces, or any other desired initial 
value.  The size of the array could be compiled at its beginning, so that the run-time code could compare 
the index against it to ensure it is within range, or the entire array could be made to reside on disk instead 
of main memory.  None of these changes would affect the run-time usage we have specified in any way.  
This illustrates a little of the flexibility available with these defining words. 

C.5.8   A programming example   
Figure C.1 contains a typical block of Forth source.  It represents a portion of an application that controls a 
bank of eight LEDs used as indicator lamps on an instrument, and indicates some of the ways in which 
Forth definitions of various kinds combine in an application environment.  This example was coded for a 
STD-bus system with an 8088 processor and a millisecond clock, which is also used in the example. 

The LEDs are interfaced through a single 8-bit port whose address is 40H.  This location is defined as a 
CONSTANT on Line 1, so that it may be referred to by name; should the address change, one need only 
adjust the value of this constant.  The word LIGHTS returns this address on the stack.  The definition 
LIGHT takes a value on the stack and sends it to the device.  The nature of this value is a bit mask, whose 
bits correspond directly to the individual lights.   

Thus, the command  255 LIGHT  will turn on all lights, while  0 LIGHT  will turn them all off. 
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Block 180 
 0. ( LED control ) 
 1. HEX 40 CONSTANT LIGHTS   DECIMAL 
 2. : LIGHT ( n -- )  LIGHTS OUTPUT ; 
 3. 
 4. VARIABLE DELAY 
 5. : SLOW  500 DELAY ! ; 
 6. : FAST  100 DELAY ! ; 
 7. : COUNTS 256 0 DO I LIGHT  DELAY @ MS  LOOP ; 
 8. 
 9. : LAMP ( n -  )  CREATE ,  DOES> ( a -- n )   @ ; 
10. 1 LAMP POWER       2 LAMP HV     4 LAMP TORCH 
11. 8 LAMP SAMPLING   16 LAMP IDLING 
12. 
13. VARIABLE LAMPS 
14. : TOGGLE ( n -- ) LAMPS @ XOR DUP LAMPS ! LIGHT ; 
15. 

Figure C.1 – Forth source block containing words that control a set of LEDs. 

Lines 4 - 7 contain a simple diagnostic of the sort one might type in from the terminal to confirm that 
everything is working.  The variable DELAY contains a delay time in milliseconds – execution of the word 
DELAY returns the address of this variable.  Two values of DELAY are set by the definitions SLOW and 
FAST, using the Forth operator ! (pronounced “store”) which takes a value and an address, and stores the 
value in the address.  The definition COUNTS runs a loop from 0 through 255 (Forth loops of this type are 
exclusive at the upper end of the range), sending each value to the lights and then waiting for the period 
specified by DELAY.  The word @ (pronounced “fetch”) fetches a value from an address, in this case the 
address supplied by DELAY.  This value is passed to MS, which waits the specified number of milliseconds.  
The result of executing COUNTS is that the lights will count from 0 to 255 at the desired rate.  To run this, 
one would type: 

SLOW COUNTS   or   FAST COUNTS 
at the terminal. 

Line 9 provides the capability of naming individual lamps.  In this application they are being used as 
indicator lights.  The word LAMP is a defining word which takes as an argument a mask which represents a 
particular lamp, and compiles it as a named entity.  Lines 10 and 11 contain five uses of LAMP to name 
particular indicators.  When one of these words such as POWER is executed, the mask is returned on the 
stack.  In fact, the behavior of defining a value such that when the word is invoked the value is returned, is 
identical to the behavior of a Forth CONSTANT.  We created a new defining word here, however, to 
illustrate how this would be done. 

Finally, on lines 13 and 14, we have the words that will control the light panel.  LAMPS is a variable that 
contains the current state of the lamps.  The word TOGGLE takes a mask (which might be supplied by one 
of the LAMP words) and changes the state of that particular lamp, saving the result in LAMPS. 

In the remainder of the application, the lamp names and TOGGLE are probably the only words that will be 
executed directly.  The usage there will be, for example: 

POWER TOGGLE   or   SAMPLING TOGGLE 
as appropriate, whenever the system indicators need to be changed. 

The time to compile this block of code on that system was about half a second, including the time to fetch it 
from disk.  So it is quite practical (and normal practice) for a programmer to simply type in a definition and 
try it immediately. 

In addition, one always has the capability of communicating with external devices directly.  The first thing 
one would do when told about the lamps would be to type: 

HEX FF 40 OUTPUT 
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and see if all the lamps come on.  If not, the presumption is that something is amiss with the hardware, 
since this phrase directly transmits the “all ones” mask to the device.  This type of direct interaction is 
useful in applications involving custom hardware, as it reduces hardware debugging time. 

C.6   Multiprogrammed systems   
Multiprogrammed Forth systems have existed since about 1970.  The earliest public Forth systems 
propagated the “hooks” for this capability despite the fact that many did not use them.  Nevertheless the 
underlying assumptions have been common knowledge in the community, and there exists considerable 
common ground among these multiprogrammed systems.  These systems are not just language processors, 
but contain operating system characteristics as well.  Many of these integrated systems run entirely stand-
alone, performing all necessary operating system functions. 

Some Forth systems are very fast, and can support both multi-tasking and multi-user operation even on 
computers whose hardware is usually thought incapable of such advanced operation.  For example, one 
producer of telephone switchboards is running over 50 tasks on a Z80.  There are several multiprogrammed 
products for PC’s, some of which even support multiple users.  Even on computers that are commonly used 
in multi-user operations, the number of users that can be supported may be much larger than expected.  
One large data-base application running on a single 68000 has over 100 terminals updating and querying its 
data-base, with no significant degradation. 

Multi-user systems may also support multiple programmers, each of which has a private dictionary, stacks, 
and a set of variables controlling that task.  The private dictionary is linked to a shared, re-entrant 
dictionary containing all the standard Forth functions.  The private dictionary can be used to develop 
application code which may later be integrated into the shared dictionary.  It may also be used to perform 
functions requiring text interpretation, including compilation and execution of source code. 

C.7   Design and management considerations   
Just as the choice of building materials has a strong effect on the design and construction of a building, the 
choice of language and operating system will affect both application design and project management 
decisions. 

Conventionally, software projects progress through four stages:  analysis, design, coding, and testing.  A 
Forth project necessarily incorporates these activities as well.  Forth is optimized for a project-management 
methodology featuring small teams of skilled professionals.  Forth encourages an iterative process of 
“successive prototyping” wherein high-level Forth is used as an executable design tool, with “stubs” 
replacing lower-level routines as necessary (e.g., for hardware that isn’t built yet). 

In many cases successive prototyping can produce a sounder, more useful product.  As the project 
progresses, implementors learn things that could lead to a better design.  Wiser decisions can be made if 
true relative costs are known, and often this isn’t possible until prototype code can be written and tried. 

Using Forth can shorten the time required for software development, and reduce the level of effort required 
for maintenance and modifications during the life of the product as well. 

C.8   Conclusion   
Forth has produced some remarkable achievements in a variety of application areas.  In the last few years 
its acceptance has grown rapidly, particularly among programmers looking for ways to improve their 
productivity and managers looking for ways to simplify new software-development projects. 
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D.   Compatibility analysis of ANS Forth (informative annex)   

Prior to ANS Forth, there were several industry standards for Forth.  The most influential are listed here in 
chronological order, along with the major differences between ANS Forth and the most recent, Forth 83. 

D.1   FIG Forth (circa 1978)   
FIG Forth was a “model” implementation of the Forth language developed by the Forth Interest Group 
(FIG).  In FIG Forth, a relatively small number of words were implemented in processor-dependent 
machine language and the rest of the words were implemented in Forth.  The FIG model was placed in the 
public domain, and was ported to a wide variety of computer systems.  Because the bulk of the FIG Forth 
implementation was the same across all machines, programs written in FIG Forth enjoyed a substantial 
degree of portability, even for “system-level” programs that directly manipulate the internals of the Forth 
system implementation. 

FIG Forth implementations were influential in increasing the number of people interested in using Forth.  
Many people associate the implementation techniques embodied in the FIG Forth model with “the nature of 
Forth”. 

However, FIG Forth was not necessarily representative of commercial Forth implementations of the same 
era.  Some of the most successful commercial Forth systems used implementation techniques different from 
the FIG Forth “model”. 

D.2   Forth 79   
The Forth-79 Standard resulted from a series of meetings from 1978 to 1980, by the Forth Standards Team, 
an international group of Forth users and vendors (interim versions known as Forth 77 and Forth 78 were 
also released by the group). 

Forth 79 described a set of words defined on a 16-bit, twos-complement, unaligned, linear byte-addressing 
virtual machine.  It prescribed an implementation technique known as “indirect threaded code”, and used 
the ASCII character set. 

The Forth-79 Standard served as the basis for several public domain and commercial implementations, 
some of which are still available and supported today. 

D.3   Forth 83   
The Forth-83 Standard, also by the Forth Standards Team, was released in 1983.  Forth 83 attempted to fix 
some of the deficiencies of Forth 79. 

Forth 83 was similar to Forth 79 in most respects.  However, Forth 83 changed the definition of several 
well-defined features of Forth 79.  For example, the rounding behavior of integer division, the base value 
of the operands of PICK and ROLL, the meaning of the address returned by ', the compilation behavior of 
', the value of a “true” flag, the meaning of NOT, and the “chaining” behavior of words defined by 
VOCABULARY were all changed.  Forth 83 relaxed the implementation restrictions of Forth 79 to allow any 
kind of threaded code, but it did not fully allow compilation to native machine code (this was not 
specifically prohibited, but rather was an indirect consequence of another provision). 

Many new Forth implementations were based on the Forth-83 Standard, but few “strictly compliant” 
Forth-83 implementations exist. 

Although the incompatibilities resulting from the changes between Forth 79 and Forth 83 were usually 
relatively easy to fix, a number of successful Forth vendors did not convert their implementations to be 
Forth 83 compliant.  For example, the most successful commercial Forth for Apple Macintosh computers is 
based on Forth 79. 
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D.4   Recent developments   
Since the Forth-83 Standard was published, the computer industry has undergone rapid and profound 
changes.  The speed, memory capacity, and disk capacity of affordable personal computers have increased 
by factors of more than 100.  8-bit processors have given way to 16-bit processors, and now 32-bit 
processors are commonplace. 

The operating systems and programming-language environments of small systems are much more powerful 
than they were in the early 80’s.   

The personal-computer marketplace has changed from a predominantly “hobbyist” market to a mature 
business and commercial market.   

Improved technology for designing custom microprocessors has resulted in the design of numerous “Forth 
chips”, computers optimized for the execution of the Forth language. 

The market for ROM-based embedded control computers has grown substantially. 

In order to take full advantage of this evolving technology, and to better compete with other programming 
languages, many recent Forth implementations have ignored some of the “rules” of previous Forth 
standards.  In particular: 

– 32-bit Forth implementations are now common. 
– Some Forth systems adopt the address-alignment restrictions of the hardware on which they run. 
– Some Forth systems use native-code generation, microcode generation, and optimization techniques, 

rather than the traditional “threaded code”. 
– Some Forth systems exploit segmented addressing architectures, placing portions of the Forth 

“dictionary” in different segments. 
– More and more Forth systems now run in the environment of another “standard” operating system, 

using OS text files for source code, rather than the traditional Forth “blocks”. 
– Some Forth systems allow external operating system software, windowing software, terminal 

concentrators, or communications channels to handle or preprocess user input, resulting in deviations 
from the input editing, character set availability, and screen management behavior prescribed by 
Forth 83. 

Competitive pressure from other programming languages (predominantly “C”) and from other Forth 
vendors have led Forth vendors to optimizations that do not fit in well with the “virtual machine model” 
implied by existing Forth standards. 

D.5   ANS Forth approach   
The ANS Forth committee addressed the serious fragmentation of the Forth community caused by the 
differences between Forth 79 and Forth 83, and the divergence from either of these two industry standards 
caused by marketplace pressures. 

Consequently, the committee has chosen to base its compatibility decisions not upon a strict comparison 
with the Forth-83 Standard, but instead upon consideration of the variety of existing implementations, 
especially those with substantial user bases and/or considerable success in the marketplace. 

The committee feels that, if ANS Forth prescribes stringent requirements upon the virtual machine model, 
as did the previous standards, then many implementors will chose not to comply with ANS Forth.  The 
committee hopes that ANS Forth will serve to unify rather than to further divide the Forth community, and 
thus has chosen to encompass rather than invalidate popular implementation techniques. 

Many of the changes from Forth 83 are justified by this rationale.  Most fall into the category that “an ANS 
Forth Standard Program may not assume x”, where “x” is an entitlement resulting from the virtual machine 
model prescribed by the Forth-83 Standard.  The committee feels that these restrictions are reasonable, 
especially considering that a substantial number of existing Forth implementations do not correctly 
implement the Forth-83 virtual model, thus the Forth-83 entitlements exist “in theory” but not “in practice”. 
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Another way of looking at this is that while ANS Forth acknowledges the diversity of current Forth 
practice, it attempts to document the similarity therein.  In some sense, ANS Forth is thus a “description of 
reality” rather than a “prescription for a particular virtual machine”. 

Since there is no previous American National Standard for Forth, the action requirements prescribed by 
section 3.4 of X3/SD-9, “Policy and Guidelines”, regarding previous standards do not apply. 

The following discussion describes differences between ANS Forth and Forth 83.  In most cases, Forth 83 
is representative of Forth 79 and FIG Forth for the purposes of this discussion.  In many of these cases, 
however, ANS Forth is more representative of the existing state of the Forth industry than the previously-
published standards. 

D.6   Differences from Forth 83 

D.6.1   Stack width   
Forth 83 specifies that stack items occupy 16 bits.  This includes addresses, flags, and numbers.  ANS 
Forth specifies that stack items are at least 16 bits; the actual size must be documented by the 
implementation. 

Words affected:   all arithmetic, logical and addressing operators 

Reason:     32-bit machines are becoming commonplace.  A 16-bit Forth system on a 32-bit 
machine is not competitive. 

Impact:     Programs that assume 16-bit stack width will continue to run on 16-bit 
machines; ANS Forth does not require a different stack width, but simply allows it.  Many programs will be 
unaffected (but see “address unit”). 

Transition/Conversion: Programs which use bit masks with the high bits set may have to be changed, 
substituting either an implementation-defined bit-mask constant, or a procedure to calculate a bit mask in a 
stack-width-independent way.  Here are some procedures for constructing width-independent bit masks: 

1 CONSTANT LO-BIT 

TRUE 1 RSHIFT  INVERT  CONSTANT HI-BIT 

: LO-BITS ( n -- mask )  0 SWAP  0 ?DO  1 LSHIFT  LO-BIT OR  LOOP ; 

: HI-BITS ( n -- mask )  0 SWAP  0 ?DO  1 RSHIFT  HI-BIT OR  LOOP ; 

Programs that depend upon the “modulo 65536” behavior implicit in 16-bit arithmetic operations will need 
to be rewritten to explicitly perform the modulus operation in the appropriate places.  The committee 
believes that such assumptions occur infrequently.  Examples: some checksum or CRC calculations, some 
random number generators and most fixed-point fractional math. 

D.6.2   Number representation   
Forth 83 specifies two’s-complement number representation and arithmetic. ANS Forth also allows one’s-
complement and signed-magnitude. 
Words affected:   all arithmetic and logical operators, LOOP, +LOOP 
Reason:     Some computers use one’s-complement or signed-magnitude.  The committee 
did not wish to force Forth implementations for those machines to emulate two’s-complement arithmetic, 
and thus incur severe performance penalties.  The experience of some committee members with such 
machines indicates that the usage restrictions necessary to support their number representations are not 
overly burdensome. 
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Impact:     An ANS Forth Standard Program may declare an “environmental dependency 
on two’s-complement arithmetic”.  This means that the otherwise-Standard Program is only guaranteed to 
work on two’s-complement machines.  Effectively, this is not a severe restriction, because the 
overwhelming majority of current computers use two’s-complement.  The committee knows of no Forth-83 
compliant implementations for non-two’s-complement machines at present, so existing Forth-83 programs 
will still work on the same class of machines on which they currently work. 

Transition/Conversion: Existing programs wishing to take advantage of the possibility of ANS Forth 
Standard Systems on non-two’s-complement machines may do so by eliminating the use of arithmetic 
operators to perform logical functions, by deriving bit-mask constants from bit operations as described in 
the section about stack width, by restricting the usage range of unsigned numbers to the range of positive 
numbers, and by using the provided operators for conversion from single numbers to double numbers. 

D.6.3   Address units   
Forth 83 specifies that each unique address refers to an 8-bit byte in memory.  ANS Forth specifies that the 
size of the item referred to by each unique address is implementation-defined, but, by default, is the size of 
one character.  Forth 83 describes many memory operations in terms of a number of bytes.  ANS Forth 
describes those operations in terms of a number of either characters or address units. 

Words affected:   those with “address unit” arguments 

Reason:     Some machines, including the most popular Forth chip, address 16-bit memory 
locations instead of 8-bit bytes. 

Impact:     Programs may choose to declare an environmental dependency on byte 
addressing, and will continue to work on the class of machines for which they now work.  In order for a 
Forth implementation on a word-addressed machine to be Forth 83 compliant, it would have to simulate 
byte addressing at considerable cost in speed and memory efficiency.  The committee knows of no such 
Forth-83 implementations for such machines, thus an environmental dependency on byte addressing does 
not restrict a Standard Program beyond its current de facto restrictions. 

Transition/Conversion: The new CHARS and CHAR+ address arithmetic operators should be used for 
programs that require portability to non-byte-addressed machines.  The places where such conversion is 
necessary may be identified by searching for occurrences of words that accept a number of address units as 
an argument (e.g., MOVE , ALLOT). 

D.6.4   Address increment for a cell is no longer two   
As a consequence of Forth-83’s simultaneous specification of 16-bit stack width and byte addressing, the 
number two could reliably be used in address calculations involving memory arrays containing items from 
the stack.  Since ANS Forth requires neither 16-bit stack width nor byte addressing, the number two is no 
longer necessarily appropriate for such calculations. 

Words affected:   @ ! +! 2+ 2* 2- +LOOP 

Reason:     See reasons for “Address Units” and “Stack Width” 

Impact:     In this respect, existing programs will continue to work on machines where a 
stack cell occupies two address units when stored in memory.  This includes most machines for which 
Forth 83 compliant implementations currently exist.  In principle, it would also include 16-bit-word-
addressed machines with 32-bit stack width, but the committee knows of no examples of such machines. 

Transition/Conversion: The new CELLS and CELL+ address arithmetic operators should be used for 
portable programs.  The places where such conversion is necessary may be identified by searching for the 
character “2” and determining whether or not it is used as part of an address calculation.  The following 
substitutions are appropriate within address calculations: 
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 Old   New 
2+  or  2 +  CELL+ 
2*  or  2 *  CELLS 
2-  or  2 -  1 CELLS - 
2/  or  2 /  1 CELLS / 
2    1 CELLS 

 
The number “2” by itself is sometimes used for address calculations as an argument to +LOOP, when the 
loop index is an address.  When converting the word 2/ which operates on negative dividends, one should 
be cognizant of the rounding method used. 

D.6.5   Address alignment   
Forth 83 imposes no restriction upon the alignment of addresses to any boundary.  ANS Forth specifies that 
a Standard System may require alignment of addresses for use with various “@” and “!” operators. 

Words Affected:   ! +! 2! 2@ @ ? , 

Reason:     Many computers have hardware restrictions that favor the use of aligned 
addresses.  On some machines, the native memory-access instructions will cause an exception trap if used 
with an unaligned address.  Even on machines where unaligned accesses do not cause exception traps, 
aligned accesses are usually faster. 

Impact:     All of the ANS Forth words that return addresses suitable for use with aligned 
“@” and “!” words must return aligned addresses.  In most cases, there will be no problem.  Problems can 
arise from the use of user-defined data structures containing a mixture of character data and cell-sized data. 

Many existing Forth systems, especially those currently in use on computers with strong alignment 
requirements, already require alignment.  Much existing Forth code that is currently in use on such 
machines has already been converted for use in an aligned environment. 

Transition/Conversion: There are two possible approaches to conversion of programs for use on a 
system requiring address alignment. 

The easiest approach is to redefine the system’s aligned “@” and “!” operators so that they do not require 
alignment.  For example, on a 16-bit little-endian byte-addressed machine, unaligned “@” and “!” could be 
defined: 

: @  ( addr -- x )  DUP C@ SWAP CHAR+ C@ 8 LSHIFT OR  ; 

: !  ( x addr -- )  OVER 8 RSHIFT OVER CHAR+ C! C!  ; 

These definitions, and similar ones for “+!”, “2@”, “2!”, “,”, and “?” as needed, can be compiled before 
an unaligned application, which will then work as expected. 

This approach may conserve memory if the application uses substantial numbers of data structures 
containing unaligned fields. 

Another approach is to modify the application’s source code to eliminate unaligned data fields.  The ANS 
Forth words ALIGN and ALIGNED may be used to force alignment of data fields.  The places where such 
alignment is needed may be determined by inspecting the parts of the application where data structures 
(other than simple variables) are defined, or by “smart compiler” techniques (see the “Smart Compiler” 
discussion below). 

This approach will probably result in faster application execution speed, at the possible expense of 
increased memory utilization for data structures. 
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Finally, it is possible to combine the preceding techniques by identifying exactly those data fields that are 
unaligned, and using “unaligned” versions of the memory access operators for only those fields.  This 
“hybrid” approach affects a compromise between execution speed and memory utilization. 

D.6.6   Division/modulus rounding direction   
Forth 79 specifies that division rounds toward 0 and the remainder carries the sign of the dividend.  
Forth 83 specifies that division rounds toward negative infinity and the remainder carries the sign of the 
divisor.  ANS Forth allows either behavior for the division operators listed below, at the discretion of the 
implementor, and provides a pair of division primitives to allow the user to synthesize either explicit 
behavior. 

Words Affected:   / MOD /MOD */MOD */ 

Reason:     The difference between the division behaviors in Forth 79 and Forth 83 was a 
point of much contention, and many Forth implementations did not switch to the Forth 83 behavior.  Both 
variants have vocal proponents, citing both application requirements and execution efficiency arguments on 
both sides.  After extensive debate spanning many meetings, the committee was unable to reach a 
consensus for choosing one behavior over the other, and chose to allow either behavior as the default, 
while providing a means for the user to explicitly use both behaviors as needed.  Since implementors are 
allowed to choose either behavior, they are not required to change the behavior exhibited by their current 
systems, thus preserving correct functioning of existing programs that run on those systems and depend on 
a particular behavior.  New implementations could choose to supply the behavior that is supported by the 
native CPU instruction set, thus maximizing execution speed, or could choose the behavior that is most 
appropriate for the intended application domain of the system. 

Impact:     The issue only affects programs that use a negative dividend with a positive 
divisor, or a positive dividend with a negative divisor.  The vast majority of uses of division occur with 
both a positive dividend and a positive divisor; in that case, the results are the same for both allowed 
division behaviors. 

Transition/Conversion: For programs that require a specific rounding behavior with division operands 
of mixed sign, the division operators used by the program may be redefined in terms of one of the new 
ANS Forth division primitives SM/REM (symmetrical division, i.e., round toward zero) or FM/MOD 
(floored division, i.e., round toward negative infinity).  Then the program may be recompiled without 
change.  For example, the Forth 83 style division operators may be defined by: 

: /MOD  ( n1 n2 -- n3 n4 )  >R S>D R> FM/MOD  ; 

: MOD   ( n1 n2 -- n3 )  /MOD DROP  ; 

: /     ( n1 n2 -- n3 )  /MOD SWAP DROP   ; 

: */MOD ( n1 n2 n3 -- n4 n5 )  >R M* R> FM/MOD  ; 

: */    ( n1 n2 n3 -- n4 n5 )  */MOD SWAP DROP  ; 

D.6.7   Immediacy   
Forth 83 specified that a number of “compiling words” are “immediate”, meaning that they are executed 
instead of compiled during compilation.  ANS Forth is less specific about most of these words, stating that 
their behavior is only defined during compilation, and specifying their results rather than their specific 
compile-time actions. 

To force the compilation of a word that would normally be executed, Forth 83 provided the words 
COMPILE , used with non-immediate words, and [COMPILE] , used with immediate words.  ANS Forth 
provides the single word POSTPONE , which is used with both immediate and non-immediate words, 
automatically selecting the appropriate behavior. 
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Words Affected:   COMPILE [COMPILE] ['] ' 

Reason:     The designation of particular words as either immediate or not depends upon the 
implementation technique chosen for the Forth system.  With traditional “threaded code” implementations, 
the choice was generally quite clear (with the single exception of the word LEAVE), and the standard could 
specify which words should be immediate.  However, some of the currently popular implementation 
techniques, such as native-code generation with optimization, require the immediacy attribute on a different 
set of words than the set of immediate words of a threaded code implementation.  ANS Forth, 
acknowledging the validity of these other implementation techniques, specifies the immediacy attribute in 
as few cases as possible. 

When the membership of the set of immediate words is unclear, the decision about whether to use 
COMPILE or [COMPILE] becomes unclear.  Consequently, ANS Forth provides a “general purpose” 
replacement word POSTPONE that serves the purpose of the vast majority of uses of both COMPILE and 
[COMPILE], without requiring that the user know whether or not the “postponed” word is immediate. 

Similarly, the use of ' and ['] with compiling words is unclear if the precise compilation behavior of 
those words is not specified, so ANS Forth does not permit a Standard Program to use ' or ['] with 
compiling words. 

The traditional (non-immediate) definition of the word COMPILE has an additional problem.  Its traditional 
definition assumes a threaded code implementation technique, and its behavior can only be properly 
described in that context.  In the context of ANS Forth, which permits other implementation techniques in 
addition to threaded code, it is very difficult, if not impossible, to describe the behavior of the traditional 
COMPILE.  Rather than changing its behavior, and thus breaking existing code, ANS Forth does not 
include the word COMPILE.  This allows existing implementations to continue to supply the word 
COMPILE with its traditional behavior, if that is appropriate for the implementation. 

Impact:     [COMPILE] remains in ANS Forth, since its proper use does not depend on 
knowledge of whether or not a word is immediate (Use of [COMPILE] with a non-immediate word is and 
has always been a no-op).  Whether or not you need to use [COMPILE] requires knowledge of whether or 
not its target word is immediate, but it is always safe to use [COMPILE].  [COMPILE] is no longer in the 
(required) core word set, having been moved to the Core Extensions word set, but the committee 
anticipates that most vendors will supply it anyway. 

In nearly all cases, it is correct to replace both [COMPILE] and COMPILE with POSTPONE.  Uses of 
[COMPILE] and COMPILE that are not suitable for “mindless” replacement by POSTPONE are quite 
infrequent, and fall into the following two categories: 

a) Use of [COMPILE] with non-immediate words.  This is sometimes done with the words ' (tick, 
which was immediate in Forth 79 but not in Forth 83) and LEAVE (which was immediate in Forth 83 
but not in Forth 79), in order to force the compilation of those words without regard to whether you are 
using a Forth 79 or Forth 83 system. 

b) Use of the phrase  COMPILE [COMPILE] <immediate word>  to “doubly postpone” an 
immediate word. 

Transition/Conversion: Many ANS Forth implementations will continue to implement both 
[COMPILE] and COMPILE in forms compatible with existing usage.  In those environments, no 
conversion is necessary. 

For complete portability, uses of COMPILE and [COMPILE] should be changed to POSTPONE , except in 
the rare cases indicated above.  Uses of [COMPILE] with non-immediate words may be left as-is, and the 
program may declare a requirement for the word [COMPILE] from the Core Extensions word set, or the 
[COMPILE] before the non-immediate word may be simply deleted if the target word is known to be non-
immediate. 
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Uses of the phrase  COMPILE [COMPILE] <immediate-word>  may be handled by introducing an 
“intermediate word” (XX in the example below) and then postponing that word.  For example: 

: ABC  COMPILE [COMPILE] IF  ; 

changes to: 

: XX  POSTPONE IF  ; 

: ABC  POSTPONE XX  ; 

A non-standard case can occur with programs that “switch out of compilation state” to explicitly compile a 
thread in the dictionary following a COMPILE .  For example: 

: XYZ  COMPILE  [ ' ABC , ]  ; 

This depends heavily on knowledge of exactly how COMPILE and the threaded-code implementation 
works.  Cases like this cannot be handled mechanically; they must be translated by understanding exactly 
what the code is doing, and rewriting that section according to ANS Forth restrictions. 

Use the phrase POSTPONE [COMPILE] to replace [COMPILE] [COMPILE]. 

D.6.8   Input character set   
Forth 83 specifies that the full 7-bit ASCII character set is available through KEY .  ANS Forth restricts it 
to the graphic characters of the ASCII set, with codes from hex 20 to hex 7E inclusive. 

Words Affected:   KEY 

Reason:     Many system environments “consume” certain control characters for such 
purposes as input editing, job control, or flow control.  A Forth implementation cannot always control this 
system behavior. 

Impact:     Standard Programs which require the ability to receive particular control 
characters through KEY must declare an environmental dependency on the input character set. 

Transition/Conversion: For maximum portability, programs should restrict their required input character 
set to only the graphic characters.  Control characters may be handled if available, but complete program 
functionality should be accessible using only graphic characters. 

As stated above, an environmental dependency on the input character set may be declared.  Even so, it is 
recommended that the program should avoid the requirement for particularly-troublesome control 
characters, such as control-S and control-Q (often used for flow control, sometimes by communication 
hardware whose presence may be difficult to detect), ASCII NUL (difficult to type on many keyboards), 
and the distinction between carriage return and line feed (some systems translate carriage returns into line 
feeds, or vice versa). 

D.6.9   Shifting with UM/MOD   
Given Forth-83’s two’s-complement nature, and its requirement for floored (round toward minus infinity) 
division, shifting is equivalent to division.  Also, two’s-complement representation implies that unsigned 
division by a power of two is equivalent to logical right-shifting, so UM/MOD could be used to perform a 
logical right-shift. 

Words Affected:   UM/MOD 

Reason:     The problem with UM/MOD is a result of allowing non-two’s-complement 
number representations, as already described. 

ANS Forth provides the words LSHIFT and RSHIFT to perform logical shifts.  This is usually more 
efficient, and certainly more descriptive, than the use of UM/MOD for logical shifting. 

Impact:     Programs running on ANS Forth systems with two’s-complement arithmetic (the 
majority of machines), will not experience any incompatibility with UM/MOD .  Existing Forth-83 Standard 
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programs intended to run on non-two’s-complement machines will not be able to use UM/MOD for shifting 
on a non-two’s-complement ANS Forth system.  This should not affect a significant number of existing 
programs (perhaps none at all), since the committee knows of no existing Forth-83 implementations on 
non-two’s-complement machines. 

Transition/Conversion: A program that requires UM/MOD to behave as a shift operation may declare an 
environmental dependency on two’s-complement arithmetic. 

A program that cannot declare an environmental dependency on two’s-complement arithmetic may require 
editing to replace incompatible uses of UM/MOD with other operators defined within the application. 

D.6.10   Vocabularies / wordlists   
ANS Forth does not define the words VOCABULARY, CONTEXT, and CURRENT , which were present in 
Forth 83.  Instead, ANS Forth defines a primitive word set for search order specification and control, 
including words which have not existed in any previous standard. 

Forth-83’s “ALSO/ONLY” experimental search order word set is specified for the most part as the extension 
portion of the ANS Forth Search Order word set. 

Words Affected:   VOCABULARY CONTEXT CURRENT 

Reason:     Vocabularies are an area of much divergence among existing systems.  
Considering major vendors’ systems and previous standards, there are at least 5 different and mutually 
incompatible behaviors of words defined by VOCABULARY.  Forth 83 took a step in the direction of “run-
time search-order specification” by declining to specify a specific relationship between the hierarchy of 
compiled vocabularies and the run-time search order.  Forth 83 also specified an experimental mechanism 
for run-time search-order specification, the ALSO/ONLY scheme.  ALSO/ONLY was implemented in 
numerous systems, and has achieved some measure of popularity in the Forth community.   

However, several vendors refuse to implement it, citing technical limitations.  In an effort to address those 
limitations and thus hopefully make ALSO/ONLY more palatable to its critics, the committee specified a 
simple “primitive word set” that not only fixes some of the objections to ALSO/ONLY, but also provides 
sufficient power to implement ALSO/ONLY and all of the other search-order word sets that are currently 
popular. 

The Forth 83 ALSO/ONLY word set is provided as an optional extension to the search-order word set.  This 
allows implementors that are so inclined to provide this word set, with well-defined standard behavior, but 
does not compel implementors to do so.  Some vendors have publicly stated that they will not implement 
ALSO/ONLY, no matter what, and one major vendor stated an unwillingness to implement ANS Forth at all 
if ALSO/ONLY is mandated.  The committee feels that its actions are prudent, specifying ALSO/ONLY to the 
extent possible without mandating its inclusion in all systems, and also providing a primitive search-order 
word set that vendors may be more likely to implement, and which can be used to synthesize ALSO/ONLY. 

Transition/Conversion: Since Forth 83 did not mandate precise semantics for VOCABULARY, existing 
Forth-83 Standard programs cannot use it except in a trivial way.  Programs can declare a dependency on 
the existence of the Search Order word set, and can implement whatever semantics are required using that 
word set’s primitives.  Forth 83 programs that need ALSO/ONLY can declare a dependency on the Search 
Order Extensions word set, or can implement the extensions in terms of the Search Order word set itself. 

D.6.11   Multiprogramming impact   
Forth 83 marked words with “multiprogramming impact” by the letter “M” in the first lines of their 
descriptions.  ANS Forth has removed the “M” designation from the word descriptions, moving the 
discussion of multiprogramming impact to this non-normative annex. 

Words affected:   none 

Reason:     The meaning of “multiprogramming impact” is precise only in the context of a 
specific model for multiprogramming.  Although many Forth systems do provide multiprogramming 
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capabilities using a particular round-robin, cooperative, block-buffer sharing model, that model is not 
universal.  Even assuming the classical model, the “M” designations did not contain enough information to 
enable writing of applications that interacted in a multiprogrammed system. 

Practically speaking, the “M” designations in Forth 83 served to document usage rules for block buffer 
addresses in multiprogrammed systems.  These addresses often become meaningless after a task has 
relinquished the CPU for any reason, most often for the purposes of performing I/O, awaiting an event, or 
voluntarily sharing CPU resources using the word PAUSE.  It was essential that portable applications 
respect those usage rules to make it practical to run them on multiprogrammed systems; failure to adhere to 
the rules could easily compromise the integrity of other applications running on those systems as well as 
the applications actually in error.  Thus, “M” appeared on all words that by design gave up the CPU, with 
the understanding that other words NEVER gave it up. 

These usage rules have been explicitly documented in the Block word set where they are relevant.  The 
“M” designations have been removed entirely. 

Impact:     In practice, none. 

In the sense that any application that depends on multiprogramming must consist of at least two tasks that 
share some resource(s) and communicate between themselves, Forth 83 did not contain enough information 
to enable writing of a standard program that DEPENDED on multiprogramming.  This is also true of ANS 
Forth. 

Non-multiprogrammed applications in Forth 83 were required to respect usage rules for BLOCK so that 
they could be run properly on multiprogrammed systems.  The same is true of ANS Forth. 

The only difference is the documentation method used to define the BLOCK usage rules.  The Technical 
Committee believes that the current method is clearer than the concept of “multiprogramming impact”. 

Transition/Conversion: none needed. 

D.6.12   Words not provided in executable form   
ANS Forth allows an implementation to supply some words in source code or “load as needed” form, 
rather than requiring all supplied words to be available with no additional programmer action. 

Words affected:   all 

Reason:     Forth systems are often used in environments where memory space is at a 
premium.  Every word included in the system in executable form consumes memory space.  The committee 
believes that allowing standard words to be provided in source form will increase the probability that 
implementors will provide complete ANS Forth implementations even in systems designed for use in 
constrained environments. 

Impact:     In order to use a Standard Program with a given ANS Forth implementation, it 
may be necessary to precede the program with an implementation-dependent “preface” to make “source 
form” words executable.  This is similar to the methods that other computer languages require for selecting 
the library routines needed by a particular application. 

In languages like C, the goal of eliminating unnecessary routines from the memory image of an application 
is usually accomplished by providing libraries of routines, using a “linker” program to incorporate only the 
necessary routines into an executable application.  The method of invoking and controlling the linker is 
outside the scope of the language definition. 

Transition/Conversion: Before compiling a program, the programmer may need to perform some action 
to make the words required by that program available for execution. 
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E.   ANS Forth portability guide (informative annex)   

E.1   Introduction   
The most popular architectures used to implement Forth have had byte-addressed memory, 16-bit 
operations, and two’s-complement number representation.  The Forth-83 Standard dictates that these 
particular features must be present in a Forth-83 Standard system and that Forth-83 programs may exploit 
these features freely. 

However, there are many beasts in the architectural jungle that are bit addressed or cell addressed, or prefer 
32-bit operations, or represent numbers in one’s complement.  Since one of Forth’s strengths is its 
usefulness in “strange” environments on “unusual” hardware with “peculiar” features, it is important that a 
Standard Forth run on these machines too. 

A primary goal of the ANS Forth Standard is to increase the types of machines that can support a Standard 
Forth.  This is accomplished by allowing some key Forth terms to be implementation-defined (e.g., how big 
is a cell?) and by providing Forth operators (words) that conceal the implementation.  This frees the 
implementor to produce the Forth system that most effectively utilizes the native hardware.  The machine 
independent operators, together with some programmer discipline, enable a programmer to write Forth 
programs that work on a wide variety of machines. 

The remainder of this Annex provides guidelines for writing portable ANS Forth programs.  The first 
section describes ways to make a program hardware independent.  It is difficult for someone familiar with 
only one machine architecture to imagine the problems caused by transporting programs between dissimilar 
machines.  Consequently, examples of specific architectures with their respective problems are given.  The 
second section describes assumptions about Forth implementations that many programmers make, but can’t 
be relied upon in a portable program. 

E.2   Hardware peculiarities   

E.2.1   Data/memory abstraction   
Data and memory are the stones and mortar of program construction.  Unfortunately, each computer treats 
data and memory differently.  The ANS Forth Systems Standard gives definitions of data and memory that 
apply to a wide variety of computers.  These definitions give us a way to talk about the common elements 
of data and memory while ignoring the details of specific hardware.  Similarly, ANS Forth programs that 
use data and memory in ways that conform to these definitions can also ignore hardware details.  The 
following sections discuss the definitions and describe how to write programs that are independent of the 
data/memory peculiarities of different computers.  

E.2.2   Definitions   
Three terms defined by ANS Forth are address unit, cell, and character.  The address space of an ANS 
Forth system is divided into an array of address units; an address unit is the smallest collection of bits that 
can be addressed.  In other words, an address unit is the number of bits spanned by the addresses addr and 
addr+1.  The most prevalent machines use 8-bit address units.  Such “byte addressed” machines include the 
Intel 8086 and Motorola 68000 families.  However, other address unit sizes exist.  There are machines that 
are bit addressed and machines that are 4-bit nibble addressed.  There are also machines with address units 
larger than 8-bits.  For example, several Forth-in-hardware computers are cell addressed.  

The cell is the fundamental data type of a Forth system.  A cell can be a single-cell integer or a memory 
address.  Forth’s parameter and return stacks are stacks of cells.  Forth 83 specifies that a cell is 16-bits.  In 
ANS Forth the size of a cell is an implementation-defined number of address units.  Thus, an ANS Forth 
implemented on a 16-bit microprocessor could use a 16-bit cell and an implementation on a 32-bit machine 
could use a 32-bit cell.  Also 18-bit machines, 36-bit machines, etc., could support ANS Forth systems with 
18 or 36-bit cells respectively.  In all of these systems, DUP does the same thing:  it duplicates the top of 
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the data stack.  ! (store) behaves consistently too:  given two cells on the data stack it stores the second cell 
in the memory location designated by the top cell. 

Similarly, the definition of a character has been generalized to be an implementation-defined number of 
address units (but at least eight bits).  This removes the need for a Forth implementor to provide 8-bit 
characters on processors where it is inappropriate.  For example, on an 18-bit machine with a 9-bit address 
unit, a 9-bit character would be most convenient.  Since, by definition, you can’t address anything smaller 
than an address unit, a character must be at least as big as an address unit.  This will result in big characters 
on machines with large address units.  An example is a 16-bit cell addressed machine where a 16-bit 
character makes the most sense. 

E.2.3   Addressing memory   
ANS Forth eliminates many portability problems by using the above definitions.  One of the most common 
portability problems is addressing successive cells in memory.  Given the memory address of a cell, how do 
you find the address of the next cell?  In Forth 83 this is easy:  2 + .  This code assumes that memory is 
addressed in 8-bit units (bytes) and a cell is 16-bits wide.  On a byte-addressed machine with 32-bit cells 
the code to find the next cell would be 4 + .  The code would be 1+ on a cell-addressed processor and 16 
+ on a bit-addressed processor with 16-bit cells.  ANS Forth provides a next-cell operator named CELL+ 
that can be used in all of these cases.  Given an address, CELL+ adjusts the address by the size of a cell 
(measured in address units).  A related problem is that of addressing an array of cells in an arbitrary order.  
A defining word to create an array of cells using Forth 83 would be: 

: ARRAY   CREATE  2* ALLOT  DOES> SWAP 2* + ; 

Use of 2* to scale the array index assumes byte addressing and 16-bit cells again.  As in the example 
above, different versions of the code would be needed for different machines.  ANS Forth provides a 
portable scaling operator named CELLS.  Given a number n, CELLS returns the number of address units 
needed to hold n cells.  A portable definition of array is: 

: ARRAY   CREATE  CELLS ALLOT 
   DOES> SWAP CELLS + ; 

There are also portability problems with addressing arrays of characters.  In Forth 83 (and in the most 
common ANS Forth implementations), the size of a character will equal the size of an address unit.  
Consequently addresses of successive characters in memory can be found using 1+ and scaling indices into 
a character array is a no-op (i.e., 1 *).  However, there are cases where a character is larger than an 
address unit.  Examples include (1) systems with small address units (e.g., bit- and nibble-addressed 
systems), and (2) systems with large character sets (e.g., 16-bit characters on a byte-addressed machine).  
CHAR+ and CHARS operators, analogous to CELL+ and CELLS are available to allow maximum 
portability.  

ANS Forth generalizes the definition of some Forth words that operate on chunks of memory to use 
address units.  One example is ALLOT.  By prefixing ALLOT with the appropriate scaling operator 
(CELLS, CHARS, etc.), space for any desired data structure can be allocated (see definition of array above).  
For example: 

CREATE ABUFFER 5 CHARS ALLOT ( allot 5 character buffer) 

The memory-block-move word also uses address units: 

source destination 8 CELLS MOVE  (  move 8 cells) 

E.2.4   Alignment problems   
Not all addresses are created equal.  Many processors have restrictions on the addresses that can be used by 
memory access instructions.  This Standard does not require an implementor of an ANS Forth to make 
alignment transparent; on the contrary, it requires (in Section 3.3.3.1 Address alignment) that an ANS 
Forth program assume that character and cell alignment may be required. 
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One of the most common problems caused by alignment restrictions is in creating tables containing both 
characters and cells.  When , (comma) or C, is used to initialize a table, data is stored at the data-space 
pointer.  Consequently, it must be suitably aligned.  For example, a non-portable table definition would be: 

CREATE ATABLE   1 C,  X ,  2 C,  Y , 

On a machine that restricts 16-bit fetches to even addresses, CREATE would leave the data space pointer at 
an even address, the 1 C, would make the data space pointer odd, and , (comma) would violate the 
address restriction by storing X at an odd address.  A portable way to create the table is: 

CREATE ATABLE   1 C,  ALIGN X ,  2 C,  ALIGN Y , 

ALIGN adjusts the data space pointer to the first aligned address greater than or equal to its current address.  
An aligned address is suitable for storing or fetching characters, cells, cell pairs, or double-cell numbers. 

After initializing the table, we would also like to read values from the table.  For example, assume we want 
to fetch the first cell, X, from the table.  ATABLE CHAR+ gives the address of the first thing after the 
character.  However this may not be the address of X since we aligned the dictionary pointer between the 
C, and the ,.  The portable way to get the address of X is: 

ATABLE CHAR+ ALIGNED 

ALIGNED adjusts the address on top of the stack to the first aligned address greater than or equal to its 
current value.   

E.3   Number representation   
Different computers represent numbers in different ways.  An awareness of these differences can help a 
programmer avoid writing a program that depends on a particular representation.  

E.3.1   Big endian vs. little endian   
The constituent bits of a number in memory are kept in different orders on different machines.  Some 
machines place the most-significant part of a number at an address in memory with less-significant parts 
following it at higher addresses.  Other machines do the opposite — the least-significant part is stored at 
the lowest address.  For example, the following code for a 16-bit 8086 “little endian” Forth would produce 
the answer 34 (hex): 

VARIABLE FOO   HEX 1234 FOO !   FOO C@ 

The same code on a 16-bit 68000 “big endian” Forth would produce the answer 12 (hex).  A portable 
program cannot exploit the representation of a number in memory.  

A related issue is the representation of cell pairs and double-cell numbers in memory.  When a cell pair is 
moved from the stack to memory with 2!, the cell that was on top of the stack is placed at the lower 
memory address.  It is useful and reasonable to manipulate the individual cells when they are in memory.   

E.3.2   ALU organization   
Different computers use different bit patterns to represent integers.  Possibilities include binary 
representations (two’s complement, one’s complement, sign magnitude, etc.) and decimal representations 
(BCD, etc.).  Each of these formats creates advantages and disadvantages in the design of a computer’s 
arithmetic logic unit (ALU).  The most commonly used representation, two’s complement, is popular 
because of the simplicity of its addition and subtraction algorithms.  

Programmers who have grown up on two’s complement machines tend to become intimate with their 
representation of numbers and take some properties of that representation for granted.  For example, a trick 
to find the remainder of a number divided by a power of two is to mask off some bits with AND.  A 
common application of this trick is to test a number for oddness using 1 AND.  However, this will not 
work on a one’s complement machine if the number is negative (a portable technique is 2 MOD).  
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The remainder of this section is a (non-exhaustive) list of things to watch for when portability between 
machines with binary representations other than two’s complement is desired.  

To convert a single-cell number to a double-cell number, ANS Forth provides the operator S>D.  To 
convert a double-cell number to single-cell, Forth programmers have traditionally used DROP.  However, 
this trick doesn’t work on sign-magnitude machines.  For portability a D>S operator is available.  
Converting an unsigned single-cell number to a double-cell number can be done portably by pushing a zero 
on the stack. 

E.4   Forth system implementation   
During Forth’s history, an amazing variety of implementation techniques have been developed.  The ANS 
Forth Standard encourages this diversity and consequently restricts the assumptions a user can make about 
the underlying implementation of an ANS Forth system.  Users of a particular Forth implementation 
frequently become accustomed to aspects of the implementation and assume they are common to all Forths.  
This section points out many of these incorrect assumptions.  

E.4.1   Definitions   
Traditionally, Forth definitions have consisted of the name of the Forth word, a dictionary search link, data 
describing how to execute the definition, and parameters describing the definition itself.  These 
components are called the name, link, code, and parameter fields3.  No method for accessing these fields 
has been found that works across all of the Forth implementations currently in use.  Therefore, ANS Forth 
severely restricts how the fields may be used.  Specifically, a portable ANS Forth program may not use the 
name, link, or code field in any way.  Use of the parameter field (renamed to data field for clarity) is 
limited to the operations described below.  

Only words defined with CREATE or with other defining words that call CREATE have data fields.  The 
other defining words in the Standard (VARIABLE, CONSTANT, :, etc.) might not be implemented with 
CREATE.  Consequently, a Standard Program must assume that words defined by VARIABLE, 
CONSTANT, : , etc., may have no data fields.  There is no way for a Standard Program to modify the value 
of a constant or to change the meaning of a colon definition.  The DOES> part of a defining word operates 
on a data field.  Since only CREATEd words have data fields, DOES> can only be paired with CREATE or 
words that call CREATE.  

In ANS Forth, FIND, ['] and ' (tick) return an unspecified entity called an “execution token”.  There are 
only a few things that may be done with an execution token.  The token may be passed to EXECUTE to 
execute the word ticked or compiled into the current definition with COMPILE,.  The token can also be 
stored in a variable and used later.  Finally, if the word ticked was defined via CREATE, >BODY converts 
the execution token into the word’s data-field address. 

One thing that definitely cannot be done with an execution token is use ! or , to store it into the object 
code of a Forth definition.  This technique is sometimes used in implementations where the object code is a 
list of addresses (threaded code) and an execution token is also an address.  However, ANS Forth permits 
native code implementations where this will not work. 

E.4.2   Stacks   
In some Forth implementations, it is possible to find the address of a stack in memory and manipulate the 
stack as an array of cells.  This technique is not portable, however.  On some systems, especially Forth-in-
hardware systems, the stacks might be in a part of memory that can’t be addressed by the program or might 
not be in memory at all.  Forth’s parameter and return stacks must be treated as stacks.  

A Standard Program may use the return stack directly only for temporarily storing values.  Every value 
examined or removed from the return stack using R@, R>, or 2R> must have been put on the stack 
                                                           
3These terms are not defined in the Standard.  They are mentioned here for historical continuity. 
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explicitly using >R or 2>R.  Even this must be done carefully since the system may use the return stack to 
hold return addresses and loop-control parameters.  Section 3.2.3.3 Return stack of the Standard has a list 
of restrictions.  

E.5   ROMed application disciplines and conventions   
When a Standard System provides a data space which is uniformly readable and writeable we may term 
this environment “RAM-only”. 

Programs designed for ROMed application must divide data space into at least two parts: a writeable and 
readable uninitialized part, called “RAM”, and a read-only initialized part, called “ROM”.  A third 
possibility, a writeable and readable initialized part, normally called “initialized RAM”, is not addressed by 
this discipline.  A Standard Program must explicitly initialize the RAM data space as needed. 

The separation of data space into RAM and ROM is meaningful only during the generation of the ROMed 
program.  If the ROMed program is itself a standard development system, it has the same taxonomy as an 
ordinary RAM-only system. 

The words affected by conversion from a RAM-only to a mixed RAM and ROM environment are: 

, (comma)  ALIGN  ALIGNED  ALLOT  C,  CREATE  HERE  UNUSED 
(VARIABLE always accesses the RAM data space.) 

With the exception of , (comma) and C, these words are meaningful in both RAM and ROM data space.   

To select the data space, these words could be preceded by selectors RAM and ROM.  For example: 

ROM  CREATE ONES  32 ALLOT  ONES 32 1 FILL  RAM 

would create a table of ones in the ROM data space.  The storage of data into RAM data space when 
generating a program for ROM would be an ambiguous condition. 

A straightforward implementation of these selectors would maintain separate address counters for each 
space.  A counter value would be returned by HERE and altered by , (comma), C,, ALIGN, and ALLOT, 
with RAM and ROM simply selecting the appropriate address counter.  This technique could be extended to 
additional partitions of the data space. 

E.6   Summary   
The ANS Forth Standard cannot and should not force anyone to write a portable program.  In situations 
where performance is paramount, the programmer is encouraged to use every trick in the book.  On the 
other hand, if portability to a wide variety of systems is needed, ANS Forth provides the tools to 
accomplish this.  There is probably no such thing as a completely portable program.  A programmer, using 
this guide, should intelligently weigh the tradeoffs of providing portability to specific machines.  For 
example, machines that use sign-magnitude numbers are rare and probably don’t deserve much thought.  
But, systems with different cell sizes will certainly be encountered and should be provided for.  In general, 
making a program portable clarifies both the programmer’s thinking process and the final program. 
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F.   Alphabetic list of words (informative annex)   

In the following list, the last, four-digit, part of the reference number establishes a sequence corresponding 
to the alphabetic ordering of all standard words.  The first two or three parts indicate the word set and 
glossary section in which the word is defined. 

 
 .6.1.0010 !  ............................................... “store”................................................................. CORE........  25 
 .6.1.0030 #  ............................................... “number-sign” .................................................... CORE........  25 
 .6.1.0040 #>  ............................................ “number-sign-greater” ........................................ CORE........  25 
 .6.1.0050 #S  ............................................ “number-sign-s”.................................................. CORE........  25 
 .6.2.0060 #TIB  ........................................ “number-t-i-b” ............................................CORE EXT........  49 
 .6.1.0070 '  ............................................... “tick”................................................................... CORE........  25 
 .6.1.0080 (  ............................................... “paren”................................................................ CORE........  26 
 11.6.1.0080 (  ............................................... “paren”...................................................................FILE........  80 
 13.6.1.0086 (LOCAL)  ................................ “paren-local-paren” ..........................................LOCAL......  105 
 .6.1.0090 *  ............................................... “star”................................................................... CORE........  26 
 .6.1.0100 */  ............................................ “star-slash” ......................................................... CORE........  26 
 .6.1.0110 */MOD  ..................................... “star-slash-mod” ................................................. CORE........  26 
 .6.1.0120 +  ............................................... “plus”.................................................................. CORE........  26 
 .6.1.0130 +!  ............................................ “plus-store”......................................................... CORE........  27 
 .6.1.0140 +LOOP  ..................................... “plus-loop” ......................................................... CORE........  27 
 .6.1.0150 ,  ............................................... “comma”............................................................. CORE........  27 
 .6.1.0160 -  ............................................... “minus”............................................................... CORE........  27 
 17.6.1.0170 -TRAILING  ............................ “dash-trailing” .................................................STRING......  122 
 .6.1.0180 .  ................................................ “dot” ................................................................... CORE........  27 
 .6.1.0190 ."  .............................................. “dot-quote” ......................................................... CORE........  28 
 .6.2.0200 .(  .............................................. “dot-paren” .................................................CORE EXT........  49 
 .6.2.0210 .R  .............................................. “dot-r”.........................................................CORE EXT........  49 
 15.6.1.0220 .S  .............................................. “dot-s”............................................................... TOOLS......  112 
 .6.1.0230 /  ............................................... “slash”................................................................. CORE........  28 
 .6.1.0240 /MOD  ........................................ “slash-mod” ........................................................ CORE........  28 
 17.6.1.0245 /STRING  ................................ “slash-string” ...................................................STRING......  123 
 .6.1.0250 0<  ............................................ “zero-less” .......................................................... CORE........  28 
 .6.2.0260 0<>  .......................................... “zero-not-equals”........................................CORE EXT........  49 
 .6.1.0270 0=  ............................................ “zero-equals” ...................................................... CORE........  28 
 .6.2.0280 0>  ............................................ “zero-greater” .............................................CORE EXT........  50 
 .6.1.0290 1+  ............................................ “one-plus”........................................................... CORE........  28 
 .6.1.0300 1-  ............................................ “one-minus”........................................................ CORE........  29 
 .6.1.0310 2!  ............................................ “two-store” ......................................................... CORE........  29 
 .6.1.0320 2*  ............................................ “two-star” ........................................................... CORE........  29 
 .6.1.0330 2/  ............................................ “two-slash” ......................................................... CORE........  29 
 .6.2.0340 2>R  .......................................... “two-to-r” ...................................................CORE EXT........  50 
 .6.1.0350 2@  ............................................ “two-fetch” ......................................................... CORE........  29 
 8.6.1.0360 2CONSTANT  ............................ “two-constant” ...............................................DOUBLE........  66 
 .6.1.0370 2DROP  ..................................... “two-drop”.......................................................... CORE........  29 
 .6.1.0380 2DUP  ........................................ “two-dupe” ......................................................... CORE........  29 
 8.6.1.0390 2LITERAL  .............................. “two-literal” ...................................................DOUBLE........  66 
 .6.1.0400 2OVER  ..................................... “two-over” .......................................................... CORE........  29 
 .6.2.0410 2R>  .......................................... “two-r-from”...............................................CORE EXT........  50 
 .6.2.0415 2R@  .......................................... “two-r-fetch”...............................................CORE EXT........  50 
 8.6.2.0420 2ROT  ........................................ “two-rote” ............................................. DOUBLE EXT........  69 
 .6.1.0430 2SWAP  ..................................... “two-swap” ......................................................... CORE........  30 
 8.6.1.0440 2VARIABLE  ............................ “two-variable” ...............................................DOUBLE........  67 
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 .6.1.0450 :  ...............................................“colon” ................................................................ CORE ........  30 
 .6.2.0455 :NONAME  .................................“colon-no-name”........................................ CORE EXT ........  51 
 .6.1.0460 ;  ...............................................“semicolon”......................................................... CORE ........  30 
 15.6.2.0470 ;CODE  ......................................“semicolon-code”..................................... TOOLS EXT ......  113 
 .6.1.0480 <  ...............................................“less-than”........................................................... CORE ........  30 
 .6.1.0490 <#  .............................................“less-number-sign”.............................................. CORE ........  31 
 .6.2.0500 <>  .............................................“not-equals” ............................................... CORE EXT ........  50 
 .6.1.0530 =  ...............................................“equals”............................................................... CORE ........  31 
 .6.1.0540 >  ...............................................“greater-than”...................................................... CORE ........  31 
 .6.1.0550 >BODY  ......................................“to-body”............................................................. CORE ........  31 
 12.6.1.0558 >FLOAT  ...................................“to-float” ....................................................FLOATING ........  91 
 .6.1.0560 >IN  ..........................................“to-in” ................................................................. CORE ........  31 
 .6.1.0570 >NUMBER  .................................“to-number” .......................................................  CORE ........  31 
 .6.1.0580 >R  .............................................“to-r” ................................................................... CORE ........  32 
 15.6.1.0600 ?  ...............................................“question” .........................................................TOOLS ......  112 
 .6.2.0620 ?DO  ..........................................“question-do” ............................................. CORE EXT ........  51 
 .6.1.0630 ?DUP  ........................................“question-dupe” .................................................. CORE ........  32 
 .6.1.0650 @  ...............................................“fetch” ................................................................. CORE ........  32 
 .6.1.0670 ABORT  ...................................... ............................................................................ CORE ........  32 
 9.6.2.0670 ABORT  ...................................... ........................................................EXCEPTION EXT ........  73 
 .6.1.0680 ABORT"  ...................................“abort-quote”....................................................... CORE ........  32 
 9.6.2.0680 ABORT"  ...................................“abort-quote”...................................EXCEPTION EXT ........  73 
 .6.1.0690 ABS  ..........................................“abs”.................................................................... CORE ........  32 
 .6.1.0695 ACCEPT  ................................... ............................................................................ CORE ........  33 
 .6.2.0700 AGAIN  ...................................... .................................................................. CORE EXT ........  51 
 15.6.2.0702 AHEAD  ...................................... ................................................................. TOOLS EXT ......  113 
 .6.1.0705 ALIGN  ...................................... ............................................................................ CORE ........  33 
 .6.1.0706 ALIGNED  ................................. ............................................................................ CORE ........  33 
 14.6.1.0707 ALLOCATE  .............................. .....................................................................MEMORY ......  109 
 .6.1.0710 ALLOT  ...................................... ............................................................................ CORE ........  33 
 16.6.2.0715 ALSO  ........................................ .............................................................. SEARCH EXT ......  120 
 .6.1.0720 AND  .......................................... ............................................................................ CORE ........  33 
 15.6.2.0740 ASSEMBLER  ............................ ................................................................. TOOLS EXT ......  114 
 10.6.1.0742 AT-XY  ......................................“at-x-y” ........................................................FACILITY ........  75 
 .6.1.0750 BASE  ........................................ ............................................................................ CORE ........  34 
 .6.1.0760 BEGIN  ...................................... ............................................................................ CORE ........  34 
 11.6.1.0765 BIN  .......................................... .............................................................................. FILE ........  80 
 .6.1.0770 BL  .............................................“b-l”..................................................................... CORE ........  34 
 17.6.1.0780 BLANK  ...................................... ........................................................................ STRING ......  123 
 7.6.1.0790 BLK  ..........................................“b-l-k” .............................................................. BLOCK ........  62 
 7.6.1.0800 BLOCK  ...................................... ......................................................................... BLOCK ........  62 
 7.6.1.0820 BUFFER  ................................... ......................................................................... BLOCK ........  62 
 15.6.2.0830 BYE  .......................................... ................................................................. TOOLS EXT ......  114 
 .6.1.0850 C!  .............................................“c-store” .............................................................. CORE ........  34 
 .6.2.0855 C"  .............................................“c-quote” .................................................... CORE EXT ........  52 
 .6.1.0860 C,  .............................................“c-comma” .......................................................... CORE ........  34 
 .6.1.0870 C@  .............................................“c-fetch”.............................................................. CORE ........  34 
 .6.2.0873 CASE  ........................................ ................................................................... CORE EXT ........  52 
 9.6.1.0875 CATCH  ...................................... .................................................................EXCEPTION ........  72 
 .6.1.0880 CELL+  ......................................“cell-plus” ........................................................... CORE ........  35 
 .6.1.0890 CELLS  ...................................... ............................................................................ CORE ........  35 
 .6.1.0895 CHAR  ........................................“char” .................................................................. CORE ........  35 
 .6.1.0897 CHAR+  ......................................“char-plus” .......................................................... CORE ........  35 
 .6.1.0898 CHARS  ......................................“chars”................................................................. CORE ........  35 
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 11.6.1.0900 CLOSE-FILE  ......................... ...............................................................................FILE........  80 
 17.6.1.0910 CMOVE  ..................................... “c-move”..........................................................STRING......  123 
 17.6.1.0920 CMOVE>  ................................... “c-move-up” ....................................................STRING......  123 
 15.6.2.0930 CODE  ........................................ ..................................................................TOOLS EXT......  114 
 17.6.1.0935 COMPARE  ................................ .........................................................................STRING......  124 
 .6.2.0945 COMPILE,  .............................. “compile-comma”.......................................CORE EXT........  52 
 .6.1.0950 CONSTANT  .............................. ............................................................................ CORE........  35 
 .6.2.0970 CONVERT  ................................ ....................................................................CORE EXT........  52 
 .6.1.0980 COUNT  ..................................... ............................................................................ CORE........  36 
 .6.1.0990 CR  ............................................ “c-r” .................................................................... CORE........  36 
 .6.1.1000 CREATE  ................................... ............................................................................ CORE........  36 
 11.6.1.1010 CREATE-FILE  ....................... ...............................................................................FILE........  81 
 15.6.2.1015 CS-PICK  ................................ “c-s-pick”..................................................TOOLS EXT......  114 
 15.6.2.1020 CS-ROLL  ................................ “c-s-roll” ...................................................TOOLS EXT......  115 
 8.6.1.1040 D+  ............................................ “d-plus”..........................................................DOUBLE........  67 
 8.6.1.1050 D-  ............................................ “d-minus” ......................................................DOUBLE........  67 
 8.6.1.1060 D.  ............................................ “d-dot” ...........................................................DOUBLE........  67 
 8.6.1.1070 D.R  .......................................... “d-dot-r” ........................................................DOUBLE........  67 
 8.6.1.1075 D0<  .......................................... “d-zero-less” ..................................................DOUBLE........  67 
 8.6.1.1080 D0=  .......................................... “d-zero-equals”..............................................DOUBLE........  67 
 8.6.1.1090 D2*  .......................................... “d-two-star” ...................................................DOUBLE........  68 
 8.6.1.1100 D2/  .......................................... “d-two-slash”.................................................DOUBLE........  68 
 8.6.1.1110 D<  ............................................ “d-less-than” ..................................................DOUBLE........  68 
 8.6.1.1120 D=  ............................................ “d-equals” ......................................................DOUBLE........  68 
 12.6.1.1130 D>F  .......................................... “d-to-f” ...................................................... FLOATING........  91 
 8.6.1.1140 D>S  .......................................... “d-to-s” ..........................................................DOUBLE........  68 
 8.6.1.1160 DABS  ........................................ “d-abs”...........................................................DOUBLE........  68 
 .6.1.1170 DECIMAL  ................................ ............................................................................ CORE........  36 
 16.6.1.1180 DEFINITIONS  ....................... ....................................................................... SEARCH......  119 
 11.6.1.1190 DELETE-FILE  ....................... ...............................................................................FILE........  81 
 .6.1.1200 DEPTH  ..................................... ............................................................................ CORE........  36 
 12.6.2.1203 DF!  .......................................... “d-f-store”......................................... FLOATING EXT........  95 
 12.6.2.1204 DF@  .......................................... “d-f-fetch”......................................... FLOATING EXT........  96 
 12.6.2.1205 DFALIGN  ................................ “d-f-align”......................................... FLOATING EXT........  96 
 12.6.2.1207 DFALIGNED  ............................ “d-f-aligned”..................................... FLOATING EXT........  96 
 12.6.2.1208 DFLOAT+  ................................ “d-float-plus” .................................... FLOATING EXT........  96 
 12.6.2.1209 DFLOATS  ................................ “d-floats” .......................................... FLOATING EXT........  96 
 8.6.1.1210 DMAX  ........................................ “d-max” .........................................................DOUBLE........  68 
 8.6.1.1220 DMIN  ........................................ “d-min” ..........................................................DOUBLE........  69 
 8.6.1.1230 DNEGATE  ................................ “d-negate”......................................................DOUBLE........  69 
 .6.1.1240 DO  ............................................ ............................................................................ CORE........  36 
 .6.1.1250 DOES>  ..................................... “does” ................................................................. CORE........  37 
 .6.1.1260 DROP  ........................................ ............................................................................ CORE........  37 
 8.6.2.1270 DU<  .......................................... “d-u-less”.............................................. DOUBLE EXT........  69 
 15.6.1.1280 DUMP  ........................................ .......................................................................... TOOLS......  112 
 .6.1.1290 DUP  .......................................... “dupe”................................................................. CORE........  37 
 15.6.2.1300 EDITOR  ................................... ..................................................................TOOLS EXT......  115 
 10.6.2.1305 EKEY  ........................................ “e-key”................................................ FACILITY EXT........  76 
 10.6.2.1306 EKEY>CHAR  ............................ “e-key-to-char” ................................... FACILITY EXT........  76 
 10.6.2.1307 EKEY?  ..................................... “e-key-question”................................. FACILITY EXT........  76 
 .6.1.1310 ELSE  ........................................ ............................................................................ CORE........  37 
 .6.1.1320 EMIT  ........................................ ............................................................................ CORE........  38 
 10.6.2.1325 EMIT?  ..................................... “emit-question”................................... FACILITY EXT........  76 
 7.6.2.1330 EMPTY-BUFFERS  .................. .................................................................BLOCK EXT........  63 
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 .6.2.1342 ENDCASE  .................................“end-case” .................................................. CORE EXT ........  53 
 .6.2.1343 ENDOF  ......................................“end-of”...................................................... CORE EXT ........  53 
 .6.1.1345 ENVIRONMENT?  .....................“environment-query” .......................................... CORE ........  38 
 .6.2.1350 ERASE  ...................................... ................................................................... CORE EXT ........  53 
 .6.1.1360 EVALUATE  .............................. ............................................................................ CORE ........  38 
 7.6.1.1360 EVALUATE  .............................. ......................................................................... BLOCK ........  63 
 .6.1.1370 EXECUTE  ................................. ............................................................................ CORE ........  38 
 .6.1.1380 EXIT  ........................................ ............................................................................ CORE ........  38 
 .6.2.1390 EXPECT  ................................... ................................................................... CORE EXT ........  53 
 12.6.1.1400 F!  .............................................“f-store”......................................................FLOATING ........  91 
 12.6.1.1410 F*  .............................................“f-star”........................................................FLOATING ........  91 
 12.6.2.1415 F**  ..........................................“f-star-star” ....................................... FLOATING EXT ........  96 
 12.6.1.1420 F+  .............................................“f-plus”.......................................................FLOATING ........  91 
 12.6.1.1425 F-  .............................................“f-minus”....................................................FLOATING ........  91 
 12.6.2.1427 F.  .............................................“f-dot” ............................................... FLOATING EXT ........  97 
 12.6.1.1430 F/  .............................................“f-slash” .....................................................FLOATING ........  92 
 12.6.1.1440 F0<  ..........................................“f-zero-less-than” .......................................FLOATING ........  92 
 12.6.1.1450 F0=  ..........................................“f-zero-equals” ...........................................FLOATING ........  92 
 12.6.1.1460 F<  .............................................“f-less-than” ...............................................FLOATING ........  92 
 12.6.1.1470 F>D  ..........................................“f-to-d”.......................................................FLOATING ........  92 
 12.6.1.1472 F@  .............................................“f-fetch” .....................................................FLOATING ........  92 
 12.6.2.1474 FABS  ........................................“f-abs” ............................................... FLOATING EXT ........  97 
 12.6.2.1476 FACOS  ......................................“f-a-cos”............................................ FLOATING EXT ........  97 
 12.6.2.1477 FACOSH  ...................................“f-a-cosh”.......................................... FLOATING EXT ........  97 
 12.6.1.1479 FALIGN  ...................................“f-align” .....................................................FLOATING ........  92 
 12.6.1.1483 FALIGNED  ..............................“f-aligned”..................................................FLOATING ........  92 
 12.6.2.1484 FALOG  ......................................“f-a-log” ............................................ FLOATING EXT ........  97 
 .6.2.1485 FALSE  ...................................... ................................................................... CORE EXT ........  54 
 12.6.2.1486 FASIN  ......................................“f-a-sine”........................................... FLOATING EXT ........  97 
 12.6.2.1487 FASINH  ...................................“f-a-cinch”......................................... FLOATING EXT ........  97 
 12.6.2.1488 FATAN  ......................................“f-a-tan” ............................................ FLOATING EXT ........  98 
 12.6.2.1489 FATAN2  ...................................“f-a-tan-two” ..................................... FLOATING EXT ........  98 
 12.6.2.1491 FATANH  ...................................“f-a-tan-h” ......................................... FLOATING EXT ........  98 
 12.6.1.1492 FCONSTANT  ............................“f-constant” ................................................FLOATING ........  93 
 12.6.2.1493 FCOS  ........................................“f-cos” ............................................... FLOATING EXT ........  98 
 12.6.2.1494 FCOSH  ......................................“f-cosh” ............................................. FLOATING EXT ........  98 
 12.6.1.1497 FDEPTH  ...................................“f-depth” ....................................................FLOATING ........  93 
 12.6.1.1500 FDROP  ......................................“f-drop” ......................................................FLOATING ........  93 
 12.6.1.1510 FDUP  ........................................“f-dupe”......................................................FLOATING ........  93 
 12.6.2.1513 FE.  ..........................................“f-e-dot” ............................................ FLOATING EXT ........  98 
 12.6.2.1515 FEXP  ........................................“f-e-x-p”............................................ FLOATING EXT ........  98 
 12.6.2.1516 FEXPM1  ...................................“f-e-x-p-m-one” ................................ FLOATING EXT ........  99 
 11.6.1.1520 FILE-POSITION  ................... .............................................................................. FILE ........  81 
 11.6.1.1522 FILE-SIZE  ............................ .............................................................................. FILE ........  81 
 11.6.2.1524 FILE-STATUS  ....................... ......................................................................FILE EXT ........  85 
 .6.1.1540 FILL  ........................................ ............................................................................ CORE ........  39 
 .6.1.1550 FIND  ........................................ ............................................................................ CORE ........  39 
 16.6.1.1550 FIND  ........................................ .......................................................................SEARCH ......  119 
 12.6.1.1552 FLITERAL  ..............................“f-literal” ....................................................FLOATING ........  93 
 12.6.2.1553 FLN  ..........................................“f-l-n”................................................ FLOATING EXT ........  99 
 12.6.2.1554 FLNP1  ......................................“f-l-n-p-one” ..................................... FLOATING EXT ........  99 
 12.6.1.1555 FLOAT+  ...................................“float-plus”.................................................FLOATING ........  93 
 12.6.1.1556 FLOATS  ................................... ...................................................................FLOATING ........  94 
 12.6.2.1557 FLOG  ........................................“f-log” ............................................... FLOATING EXT ........  99 
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 12.6.1.1558 FLOOR  ..................................... ................................................................... FLOATING........  94 
 7.6.1.1559 FLUSH  ..................................... ..........................................................................BLOCK........  63 
 11.6.2.1560 FLUSH-FILE  ......................... ......................................................................FILE EXT........  85 
 .6.1.1561 FM/MOD  ................................... “f-m-slash-mod” ................................................. CORE........  39 
 12.6.1.1562 FMAX  ........................................ “f-max” ...................................................... FLOATING........  94 
 12.6.1.1565 FMIN  ........................................ “f-min”....................................................... FLOATING........  94 
 12.6.1.1567 FNEGATE  ................................ “f-negate” .................................................. FLOATING........  94 
 15.6.2.1580 FORGET  ................................... ..................................................................TOOLS EXT......  115 
 16.6.2.1590 FORTH  ..................................... ...............................................................SEARCH EXT......  120 
 16.6.1.1595 FORTH-WORDLIST  ................ ....................................................................... SEARCH......  119 
 12.6.1.1600 FOVER  ..................................... “f-over”...................................................... FLOATING........  94 
 14.6.1.1605 FREE  ........................................ ..................................................................... MEMORY......  109 
 12.6.1.1610 FROT  ........................................ “f-rote”....................................................... FLOATING........  94 
 12.6.1.1612 FROUND  ................................... “f-round”.................................................... FLOATING........  94 
 12.6.2.1613 FS.  .......................................... “f-s-dot”............................................ FLOATING EXT........  99 
 12.6.2.1614 FSIN  ........................................ “f-sine” ............................................. FLOATING EXT........  99 
 12.6.2.1616 FSINCOS  ................................ “f-sine-cos”....................................... FLOATING EXT......  100 
 12.6.2.1617 FSINH  ..................................... “f-cinch” ........................................... FLOATING EXT......  100 
 12.6.2.1618 FSQRT  ..................................... “f-square-root”.................................. FLOATING EXT......  100 
 12.6.1.1620 FSWAP  ..................................... “f-swap”..................................................... FLOATING........  94 
 12.6.2.1625 FTAN  ........................................ “f-tan” ............................................... FLOATING EXT......  100 
 12.6.2.1626 FTANH  ..................................... “f-tan-h”............................................ FLOATING EXT......  100 
 12.6.1.1630 FVARIABLE  ............................ “f-variable” ................................................ FLOATING........  95 
 12.6.2.1640 F~  ............................................ “f-proximate”.................................... FLOATING EXT......  100 
 16.6.1.1643 GET-CURRENT  ....................... ....................................................................... SEARCH......  119 
 16.6.1.1647 GET-ORDER  ............................ ....................................................................... SEARCH......  119 
 .6.1.1650 HERE  ........................................ ............................................................................ CORE........  39 
 .6.2.1660 HEX  .......................................... ....................................................................CORE EXT........  54 
 .6.1.1670 HOLD  ........................................ ............................................................................ CORE........  39 
 .6.1.1680 I  ............................................... ............................................................................ CORE........  39 
 .6.1.1700 IF  ............................................ ............................................................................ CORE........  40 
 .6.1.1710 IMMEDIATE  ............................ ............................................................................ CORE........  40 
 11.6.1.1717 INCLUDE-FILE  .................... ...............................................................................FILE........  81 
 11.6.1.1718 INCLUDED  .............................. ...............................................................................FILE........  82 
 .6.1.1720 INVERT  ................................... ............................................................................ CORE........  40 
 .6.1.1730 J  ............................................... ............................................................................ CORE........  40 
 .6.1.1750 KEY  .......................................... ............................................................................ CORE........  40 
 10.6.1.1755 KEY?  ........................................ “key-question” .............................................FACILITY........  75 
 .6.1.1760 LEAVE  ..................................... ............................................................................ CORE........  41 
 7.6.2.1770 LIST  ........................................ .................................................................BLOCK EXT........  64 
 .6.1.1780 LITERAL  ................................ ............................................................................ CORE........  41 
 7.6.1.1790 LOAD  ........................................ ..........................................................................BLOCK........  63 
 13.6.2.1795 LOCALS|  ................................ “locals-bar”.............................................. LOCAL EXT......  106 
 .6.1.1800 LOOP  ........................................ ............................................................................ CORE........  41 
 .6.1.1805 LSHIFT  ................................... “l-shift” ............................................................... CORE........  41 
 .6.1.1810 M*  ............................................ “m-star” .............................................................. CORE........  41 
 8.6.1.1820 M*/  .......................................... “m-star-slash” ................................................DOUBLE........  69 
 8.6.1.1830 M+  ............................................ “m-plus” ........................................................DOUBLE........  69 
 .6.2.1850 MARKER  ................................... ....................................................................CORE EXT........  54 
 .6.1.1870 MAX  .......................................... ............................................................................ CORE........  42 
 .6.1.1880 MIN  .......................................... ............................................................................ CORE........  42 
 .6.1.1890 MOD  .......................................... ............................................................................ CORE........  42 
 .6.1.1900 MOVE  ........................................ ............................................................................ CORE........  42 
 10.6.2.1905 MS  ............................................ ............................................................ FACILITY EXT........  76 
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 .6.1.1910 NEGATE  ................................... ............................................................................ CORE ........  42 
 .6.2.1930 NIP  .......................................... ................................................................... CORE EXT ........  54 
 .6.2.1950 OF  ............................................. ................................................................... CORE EXT ........  54 
 16.6.2.1965 ONLY  ........................................ .............................................................. SEARCH EXT ......  121 
 11.6.1.1970 OPEN-FILE  ............................ .............................................................................. FILE ........  82 
 .6.1.1980 OR  ............................................. ............................................................................ CORE ........  42 
 16.6.2.1985 ORDER  ...................................... .............................................................. SEARCH EXT ......  121 
 .6.1.1990 OVER  ........................................ ............................................................................ CORE ........  42 
 .6.2.2000 PAD  .......................................... ................................................................... CORE EXT ........  55 
 10.6.1.2005 PAGE  ........................................ .....................................................................FACILITY ........  75 
 .6.2.2008 PARSE  ...................................... ................................................................... CORE EXT ........  55 
 .6.2.2030 PICK  ........................................ ................................................................... CORE EXT ........  55 
 .6.1.2033 POSTPONE  .............................. ............................................................................ CORE ........  43 
 12.6.2.2035 PRECISION  ............................ .......................................................... FLOATING EXT ......  100 
 16.6.2.2037 PREVIOUS  .............................. .............................................................. SEARCH EXT ......  121 
 .6.2.2040 QUERY  ...................................... ................................................................... CORE EXT ........  55 
 .6.1.2050 QUIT  ........................................ ............................................................................ CORE ........  43 
 11.6.1.2054 R/O  ..........................................“r-o” ...................................................................... FILE ........  82 
 11.6.1.2056 R/W  ..........................................“r-w” ..................................................................... FILE ........  83 
 .6.1.2060 R>  .............................................“r-from”............................................................... CORE ........  43 
 .6.1.2070 R@  .............................................“r-fetch” .............................................................. CORE ........  43 
 11.6.1.2080 READ-FILE  ............................ .............................................................................. FILE ........  83 
 11.6.1.2090 READ-LINE  ............................ .............................................................................. FILE ........  83 
 .6.1.2120 RECURSE  ................................. ............................................................................ CORE ........  43 
 .6.2.2125 REFILL  ................................... ................................................................... CORE EXT ........  55 
 7.6.2.2125 REFILL  ................................... ................................................................ BLOCK EXT ........  64 
 11.6.2.2125 REFILL  ................................... ......................................................................FILE EXT ........  86 
 11.6.2.2130 RENAME-FILE  ....................... ......................................................................FILE EXT ........  86 
 .6.1.2140 REPEAT  ................................... ............................................................................ CORE ........  44 
 11.6.1.2142 REPOSITION-FILE  .............. .............................................................................. FILE ........  84 
 12.6.1.2143 REPRESENT  ............................ ...................................................................FLOATING ........  95 
 14.6.1.2145 RESIZE  ................................... .....................................................................MEMORY ......  109 
 11.6.1.2147 RESIZE-FILE  ....................... .............................................................................. FILE ........  84 
 .6.2.2148 RESTORE-INPUT  ................... ................................................................... CORE EXT ........  56 
 .6.2.2150 ROLL  ........................................ ................................................................... CORE EXT ........  56 
 .6.1.2160 ROT  ..........................................“rote”................................................................... CORE ........  44 
 .6.1.2162 RSHIFT  ...................................“r-shift” ............................................................... CORE ........  44 
 .6.1.2165 S"  .............................................“s-quote” ............................................................. CORE ........  44 
 11.6.1.2165 S"  .............................................“s-quote” ............................................................... FILE ........  84 
 .6.1.2170 S>D  ..........................................“s-to-d”................................................................ CORE ........  44 
 7.6.1.2180 SAVE-BUFFERS  ..................... ......................................................................... BLOCK ........  63 
 .6.2.2182 SAVE-INPUT  .......................... ................................................................... CORE EXT ........  56 
 7.6.2.2190 SCR  ..........................................“s-c-r”...................................................... BLOCK EXT ........  64 
 17.6.1.2191 SEARCH  ................................... ........................................................................ STRING ......  124 
 16.6.1.2192 SEARCH-WORDLIST  .............. .......................................................................SEARCH ......  120 
 15.6.1.2194 SEE  .......................................... ..........................................................................TOOLS ......  112 
 16.6.1.2195 SET-CURRENT  ....................... .......................................................................SEARCH ......  120 
 16.6.1.2197 SET-ORDER  ............................ .......................................................................SEARCH ......  120 
 12.6.2.2200 SET-PRECISION  ................... .......................................................... FLOATING EXT ......  100 
 12.6.2.2202 SF!  ..........................................“s-f-store”.......................................... FLOATING EXT ......  101 
 12.6.2.2203 SF@  ..........................................“s-f-fetch” ......................................... FLOATING EXT ......  101 
 12.6.2.2204 SFALIGN  .................................“s-f-align” ......................................... FLOATING EXT ......  101 
 12.6.2.2206 SFALIGNED  ............................“s-f-aligned”...................................... FLOATING EXT ......  101 
 12.6.2.2207 SFLOAT+  .................................“s-float-plus”..................................... FLOATING EXT ......  101 

210  Collating Sequence: 



  ANSI X3.215-1994 

 12.6.2.2208 SFLOATS  ................................ “s-floats”........................................... FLOATING EXT......  101 
 .6.1.2210 SIGN  ........................................ ............................................................................ CORE........  45 
 17.6.1.2212 SLITERAL  .............................. .........................................................................STRING......  124 
 .6.1.2214 SM/REM  ................................... “s-m-slash-rem”.................................................. CORE........  45 
 .6.1.2216 SOURCE  ................................... ............................................................................ CORE........  45 
 .6.2.2218 SOURCE-ID  ............................ “source-i-d” ................................................CORE EXT........  56 
 11.6.1.2218 SOURCE-ID  ............................ “source-i-d” ...........................................................FILE........  84 
 .6.1.2220 SPACE  ..................................... ............................................................................ CORE........  45 
 .6.1.2230 SPACES  ................................... ............................................................................ CORE........  45 
 .6.2.2240 SPAN  ........................................ ....................................................................CORE EXT........  56 
 .6.1.2250 STATE  ..................................... ............................................................................ CORE........  45 
 15.6.2.2250 STATE  ..................................... ..................................................................TOOLS EXT......  115 
 .6.1.2260 SWAP  ........................................ ............................................................................ CORE........  45 
 .6.1.2270 THEN  ........................................ ............................................................................ CORE........  46 
 9.6.1.2275 THROW  ..................................... .................................................................EXCEPTION........  73 
 7.6.2.2280 THRU  ........................................ .................................................................BLOCK EXT........  64 
 .6.2.2290 TIB  .......................................... “t-i-b”..........................................................CORE EXT........  56 
 10.6.2.2292 TIME&DATE  ............................ “time-and-date” .................................. FACILITY EXT........  76 
 .6.2.2295 TO  ............................................ ....................................................................CORE EXT........  57 
 13.6.1.2295 TO  ............................................ ..........................................................................LOCAL......  106 
 .6.2.2298 TRUE  ........................................ ....................................................................CORE EXT........  57 
 .6.2.2300 TUCK  ........................................ ....................................................................CORE EXT........  57 
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