
SwiftForth®
Development System for Windows

Reference Manual

FORTH, Inc. makes no warranty of any kind with regard to this material, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. FORTH,
Inc. shall not be liable for errors contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

SwiftForth and SwiftX are registered trademarks of FORTH, Inc. SwiftOS, pF/x, and polyFORTH
are trademarks of FORTH, Inc. All other brand and product names are trademarks or registered
trademarks of their respective companies.

Copyright © 1998-2020 by FORTH, Inc. All rights reserved.
Latest revision, August 2020

ISBN 9781073525225

This document contains information proprietary to FORTH, Inc. Any reproduction, disclosure, or
unauthorized use of this document, either in whole or in part, is expressly forbidden without
prior permission in writing from:

FORTH, Inc.
Los Angeles, California

www.forth.com

SwiftForth Reference Manual
Contents

Welcome!
What is SwiftForth? . 11
Scope of this Manual . 11
Audience . 11
How to Proceed . 11
Typographic Conventions . 12
Support . 12

Section 1: Getting Started
1.1 Components of SwiftForth . 13
1.2 SwiftForth System Requirements . 14
1.3 Installation Instructions . 14
1.3.1 Installing the Host Software . 14
1.3.2 Linking to a Text Editor . 15
1.4 Development Procedures . 15
1.4.1 Exploring SwiftForth . 15
1.4.2 Running the Sample Programs . 16
1.4.3 Developing and Testing New Software . 16
1.5 Licensing Issues. 17
1.5.1 Use of the Run-time Kernel . 17
1.5.2 Use of the SwiftForth Development System. 17

Section 2: Using SwiftForth
2.1 SwiftForth Programming . 19
2.2 System Organization . 19
2.3 IDE Quick Tour. 20
2.3.1 The Command Window. 20
2.3.2 File Menu . 23
2.3.3 Edit Menu. 24
2.3.4 View Menu . 25
2.3.5 Options Menu. 25
2.3.6 Tools Menu . 28
2.3.7 Help Menu . 31
2.4 Interactive Programming Aids . 31
2.4.1 Interacting With Program Source. 31
2.4.2 Listing Defined Words . 33
2.4.3 Cross-references . 34
2.4.4 Disassembler . 35
2.4.5 Viewing Regions of Memory . 36
2.4.6 Single-Step Debugger . 37
2.4.7 Console Debugging Tool . 37
2.4.8 Managing the Command Window . 38

Section 3: Source Management
3.1 Interpreting Source Files . 39
 3

SwiftForth Reference Manual
3.2 Extended Comments .42
3.3 File-related Debugging Aids. .43

Section 4: Programming in SwiftForth
4.1 Programming Procedures .45
4.1.1 Dictionary Management .45
4.1.2 Preparing a Turnkey Image .49
4.2 Compiler Control. .50
4.2.1 Case-Sensitivity .50
4.2.2 Detecting Name Conflicts .51
4.2.3 Conditional Compilation .52
4.3 Input-Number Conversions .52
4.4 Timing Functions. .56
4.4.1 Date and Time of Day Functions .56
4.4.2 Interval Timing .59
4.5 Specialized Program and Data Structures. .61
4.5.1 String Buffers. .61
4.5.2 String Data Structures .62
4.5.3 Linked Lists .65
4.5.4 Switches .66
4.5.5 Execution Vectors .68
4.5.6 Local Variables. .68
4.6 Convenient Extensions .70
4.7 Exceptions and Error Handling .71
4.8 Standard Forth Compatibility .73

Section 5: SwiftForth Implementation
5.1 Implementation Overview .75
5.1.1 Execution model .75
5.1.2 Code Optimization. .75
5.1.3 Register usage .77
5.1.4 Memory Model and Address Management .77
5.1.5 Stack Implementation and Rules of Use .78
5.1.6 Dictionary Features .78
5.2 Memory Organization .79
5.3 Control Structure Balance Checking. .80
5.4 Dynamic Memory Allocation .81
5.5 Dictionary Management. .81
5.5.1 Dictionary Structure .81
5.5.2 Wordlists and Vocabularies .83
5.5.3 Packages .84
5.5.4 Automatic Resolution of References to Windows Constants86
5.5.5 Dictionary Search Extensions .86
5.6 Terminal-type Devices .86
5.6.1 Device Personalities .87
5.6.2 Keyboard Events .90
5.6.3 Printer Support .91
5.6.4 Serial Port Support .91
5.7 Timer Support .92
5.8 Custom I/O Drivers .92
4

SwiftForth Reference Manual
Section 6: i386 Assembler
6.1 SwiftForth Assembler Principles . 93
6.2 Code Definitions . 94
6.3 Registers . 95
6.4 Instruction Components. 96
6.5 Instruction Operands . 97
6.5.1 Implicit Operands. 97
6.5.2 Register Operands . 97
6.5.3 Immediate Operands . 97
6.5.4 I/O Operands . 98
6.5.5 Memory Reference Operands . 98
6.6 Instruction Mode Specifiers . 102
6.6.1 Size Specifiers . 102
6.6.2 Repeat Prefixes . 103
6.7 Direct Branches . 103
6.8 Assembler Structures . 104
6.9 Writing Assembly Language Macros . 109

Section 7: Multitasking and Windows
7.1 Basic Concepts. 113
7.1.1 Definitions . 113
7.1.2 Forth Reentrancy and Multitasking . 114
7.2 SwiftForth Tasks . 114
7.2.1 User Variables . 114
7.2.2 Sharing Resources . 116
7.2.3 Task Definition and Control . 118

Section 8: Windows Programming in SwiftForth
8.1 Basic Window Management . 121
8.1.1 Parameter Handling . 122
8.1.2 System Callbacks . 124
8.1.3 System Messages . 125
8.1.4 Class Registration. 126
8.1.5 Building a Windows Program . 127
8.2 SwiftForth and DLLs . 133
8.2.1 Importing DLL functions . 133
8.2.2 Creating a DLL . 135
8.3 Dynamic Data Exchange (DDE) . 136
8.4 Managing Configuration Parameters . 138
8.5 Command-line Arguments . 139
8.6 Environment Queries . 140
8.7 A Self-Contained Windows Application . 140

Section 9: Defining and Managing Windows Features
9.1 Menus . 143
9.2 Dialog Boxes . 145
9.2.1 Defining a Dialog Box. 146
9.2.2 Dialog Box Styles . 147
9.2.3 Dialog Box Controls . 148
9.2.4 Dialog Box Events. 150
 5

SwiftForth Reference Manual
9.3 Progress Bars .151
9.4 SwiftForth’s Status Bar. .152

Section 10: SwiftForth Object-Oriented Programming (SWOOP)
10.1 Basic Components .155
10.1.1 A Simple Example .155
10.1.2 Static Instances of a Class .156
10.1.3 Dynamic Objects .157
10.1.4 Embedded Objects. .159
10.1.5 Information Hiding .160
10.1.6 Inheritance and Polymorphism. .161
10.1.7 Numeric Messages. .162
10.1.8 Early and Late Binding .163
10.2 Data Structures .163
10.2.1 Classes .163
10.2.2 Members .165
10.2.3 Instance Structures .166
10.3 Implementation Strategies. .166
10.3.1 Global State Information .167
10.3.2 Compilation Strategy .168
10.3.3 Self .169
10.4 Tools. .169

Section 11: Windows Objects
11.1 Standard Windows Data Structures .171
11.2 Example: File-Handling Dialogs .173
11.3 Color Management .174
11.4 Rich Edit Controls .175
11.5 Other Available Resources .176

Section 12: Floating-Point Math Library
12.1 The Intel FPU .177
12.2 Use of the Math Co-processor Option .177
12.2.1 Configuring the Floating-Point Options .178
12.2.2 Input Number Conversion .179
12.2.3 Output Formats .180
12.2.4 Real Literals .180
12.2.5 Floating-Point Constants and Variables .181
12.2.6 Memory Access .182
12.3 FPU Assembler .185
12.3.1 FPU Hardware Stack .185
12.3.2 CPU Synchronization .186
12.3.3 Addressing Modes .186

Section 13: Recompiling SwiftForth
13.1 Recompiling the SwiftForth Turnkey .189
13.2 Recompiling the Kernel .189

Appendix A: Block File Support
6

SwiftForth Reference Manual
A.1 Managing Disk Blocks . 191
A.2 Source Block Editor . 194
A.2.1 Block Display . 194
A.2.2 String Buffer Management . 195
A.2.3 Line Display . 196
A.2.4 Line Replacement . 196
A.2.5 Line Insertion or Move . 197
A.2.6 Line Deletion . 197
A.2.7 Character Editing . 198

Appendix B: Standard Forth Documentation Requirements
B.1 System documentation. 199
B.2 Block Wordset Documentation . 204
B.3 Double Number Wordset Documentation . 205
B.4 Exception Wordset Documentation. 205
B.5 Facility Wordset Documentation . 205
B.6 File-access Wordset Documentation . 206
B.7 Floating Point Wordset Documentation. 207
B.8 Local Variables Wordset Documentation. 209
B.9 Memory Allocation Wordset Documentation 209
B.10 Programming Tools Wordset Documentation 210
B.11 Search-order Wordset Documentation . 210

Appendix C: Glossary of Windows Terms

Appendix D: Forth Words Index

Index . 227
 7

SwiftForth Reference Manual
List of Figures
1. SwiftForth directory structure .13
2. The SwiftForth command window. .20
3. Toolbar items. .21
4. Status bar indicators .21
5. Right mouse button actions on a selected word .22
6. Select Editor dialog. .26
7. Preferences dialog .27
8. System warning configuration dialog .28
9. Optional packages selection .29
10. Load options dialog .30
11. Included file monitoring configuration .43
12. Multiple overlays .47
13. Dialog box from a Windows exception .72
14. Processor Exception dialog box .73
15. SwiftForth memory map .79
16. Dictionary header fields .81
17. Structure of the “flags” byte .82
18. Character encoding for EKEY .91
19. General registers .95
20. Offset (or effective address) computation .100
21. Progress bar. .151
22. Structure of a class. .164
23. Basic structure of a member. .165
24. Data structures for various member types .166
25. Class hierarchy supporting file-handling features .173
26. Configure floating-point options .178
8

SwiftForth Reference Manual
List of Tables
1. Command window keyboard controls . 23
2. File menu options . 23
3. Edit menu options . 24
4. View menu options . 25
5. Options menu selections . 25
6. Examples of editor parameter sequences . 26
7. Tools menu options . 28
8. SwiftForth Optional Packages . 29
9. Some representative “Win32 Options” . 30
10. Color-coding in WORDS . 33
11. Number-conversion prefixes . 53
12. Character sequence transformations. 62
13. SwiftForth support for Standard Forth wordsets . 74
14. Terminal personality elements . 87
15. VK_ codes recognized by SwiftForth . 90
16. Forms for scaled indexing . 100
17. Size specifiers. 102
18. Repeat prefixes. 103
19. Forth condition codes . 106
20. Class registration parameters, with default values 126
21. Dialog box controls . 148
22. SwiftForth classes for Windows data structures . 171
23. SwiftForth color attributes . 174
24. More useful pre-defined classes . 176
25. Memory-format specifiers . 187
26. Examples of FPU stack addressing . 187
27. Blockmap format . 192
28. Block-editor commands and string buffer use . 196
29. Implementation-defined options in SwiftForth. 199
30. SwiftForth action on ambiguous conditions. 201
31. Other system documentation . 203
32. Block wordset implementation-defined options. 204
33. Block wordset ambiguous conditions . 204
34. Other block wordset documentation . 204
35. Double-number wordset ambiguous conditions . 205
36. Exception wordset implementation-defined options 205
37. Facility wordset implementation-defined options 205
38. Facility wordset ambiguous conditions . 205
39. File-access wordset implementation-defined options. 206
40. File-access wordset, ambiguous conditions. 207
41. Floating-point wordset, implementation-defined options. 207
42. Floating-point wordset ambiguous conditions. 208
43. Local variables wordset implementation-defined options 209
44. Local variables ambiguous conditions. 209
45. Memory allocation wordset implementation-defined options. 209
46. Programming tools wordset implementation-defined options 210
 9

SwiftForth Reference Manual
47. Programming tools wordset ambiguous conditions 210
48. Search-order wordset implementation-defined options210
49. Search-order wordset ambiguous conditions .211
50. Notation used for data types of stack arguments .215
10

SwiftForth Reference Manual
Welcome!

What is SwiftForth?

SwiftForth is FORTH, Inc.’s interactive development system for the Windows and
Linux environments. SwiftForth is based on the Forth programming language, which
for over 30 years has been the language of choice for engineers developing software
for challenging embedded and real-time control systems. SwiftForth uses the power
and convenience of the Windows and Linux operating systems to provide the most
intimate, interactive relationship possible with your application, to speed the soft-
ware development process, and to help ensure thoroughly tested, bug-free code. It
also provides a number of libraries and other programming aids to speed your
application development.

This manual describes the basic principles and features of the SwiftForth Interac-
tive Development Environment (IDE), including features specific to the i386 (IA-32)
processor family and to the Windows OS.

Scope of this Manual

The purpose of this manual is to help you learn SwiftForth and use it effectively. It
includes the basic principles of the compiler, multitasker, libraries, development
tools, and recommended programming strategies.

This manual does not attempt to teach Forth. If you are learning Forth for the first
time, install this system and then turn to Forth Programmer’s Handbook, which also
accompanies this system. Paper copies of this manual, as well as the tutorial text-
book, Forth Application Techniques, may be purchased from FORTH, Inc. Forth Pro-
grammer’s Handbook and Forth Application Techniques are also available from our
partner Amazon.com.

Audience

This manual is intended for engineers developing software to run in a Windows
environment. It assumes general knowledge of the Windows operating system, and
some familiarity with the Forth programming language (which you can get by fol-
lowing the suggestions below).

How to Proceed

If you are not familiar with Forth, start by reading the first two sections of Forth
Programmer’s Handbook, or work through the first six chapters of Forth Application
Techniques. Then experiment with this system by examining some of the sample
Welcome! 11

SwiftForth Reference Manual
programs described in Section 1.4.2 and by writing simple definitions and testing
them. Forth Programmer’s Handbook is included with SwiftForth as a PDF file. Paper
copies may be purchased from FORTH, Inc. and Amazon.com, as can the program-
ming tutorial Forth Application Techniques.

Typographic Conventions

A BOLDFACE type is used to distinguish Forth words (including assembler mnemon-
ics) from other words in the text of this document. This same type style is used to
display code examples.

Support

The support period included with the original purchase of a SwiftForth system or
version upgrade is one year. During the support period, you are entitled to unlim-
ited downloads of new releases as well as engineer-level technical support via email.

Please submit support requests via our website: www.forth.com/forth-tech-sup-
port/product.

The support period may be renewed in one-year increments. Please visit
www.forth.com for details.
12 Welcome!

https://www.forth.com/forth-tech-support/product/
https://www.forth.com/forth-tech-support/product/
https://www.forth.com

SwiftForth Reference Manual
Section 1: Getting Started

This section provides a general overview of SwiftForth for Windows, including infor-
mation necessary to help you install the system and to become familiar with its
principal features.

1.1 Components of SwiftForth

SwiftForth consists of the following components:

• Executable image of the SwiftForth development system, including the Interactive
Development Environment (IDE), Windows interface functions, and programming
aids including the disassembler and other tools.

• Forth language source files supplied depend on the version:

• The evaluation version includes source for all options and examples.

• A purchased SwiftForth adds source for the entire SwiftForth system, including the
cross-compiler that allows advanced programmers to modify the underlying sys-
tem.

• On-line documentation, including PDF versions of all manuals.

The SwiftForth directory structure is shown in Figure 1. The evaluation version does
not include the console, kernel, or xcomp directories (the source for the debug win-
dow, kernel, and cross compiler).

Figure 1. SwiftForth directory structure
Getting Started 13

SwiftForth Reference Manual
1.2 SwiftForth System Requirements

In order to use this package, you need the following:

• PC running Windows1. At least 256 MB of RAM is recommended. The package will
occupy approximately 36 MB of disk space.

• A programmer’s editor of your choice. Provision is made for linking interactive fea-
tures of SwiftForth with most standard editors.

1.3 Installation Instructions

This section describes how to install and run your SwiftForth development system.
It also describes basic procedures for compiling and testing programs, including the
demos and sample code provided with your system.

1.3.1 Installing the Host Software

Follow this procedure to install your SwiftForth software:

1. Turn on your computer and start Windows.
2. If you are installing from a downloaded file, simply launch the SwiftForth installer

you downloaded. If you are installing from a CD, the SwiftForth Installer should
launch automatically when you insert the CD; if it does not, you may launch the
SwiftForth Installer on the CD manually. The install procedure may prompt you for
additional information or choices.

The default main directory for purchased versions of SwiftForth is C:\Forthinc\
SwiftForth; SwiftForth evaluation versions will install in the default directory C:\
ForthInc-Evaluation\SwiftForth. If you prefer another directory name, you will
be given a chance to change it during the installation. However, this manual will
assume this path as the “root” for all examples.

We strongly recommend that you avoid using a path with spaces in it, such as
“Program Files”, as many standard Forth functions use a space as a delimiter.

If you have previously installed SwiftForth, you may wish to move older copies of
files being installed to a backup directory or rename its directory (or the new one).

The installation procedure creates a SwiftForth program group, from which you
may launch SwiftForth or view the release notes. It also provides PDF copies of the
SwiftForth Reference Manual and the Forth Programmer’s Handbook. These may be
launched from SwiftForth’s Help menu.

You may launch SwiftForth from the Start menu or from the sf.exe icon in the Swift-
Forth\bin directory.

1.Windows 7 or later
14 Getting Started

SwiftForth Reference Manual
1.3.2 Linking to a Text Editor

The SwiftForth Interactive Development Environment (IDE) contains a number of
programmer aids (discussed in Section 2.4) that are facilitated by a direct link to a
text editor. The default editor is Microsoft Notepad; alternatively, you may config-
ure SwiftForth to use an editor of your choice by specifying certain command for-
mats (see “Options Menu” on page 25).

1.4 Development Procedures

Here we provide a brief overview of some development paths you might pursue.
You may wish to:

• Run sample programs installed with your system.

• Write and test application routines.

• Prepare a custom image of your SwiftForth system with added routines (for details,
see Section 4.1.2).

Guidelines for doing these things are given in the following sections. Further details
about SwiftForth’s interactive development aids are given in Section 2.4.

1.4.1 Exploring SwiftForth

Launch SwiftForth from the Start menu or by double-clicking the sf.exe icon. The
main window SwiftForth presents is called the command window. Within this win-
dow, SwiftForth will attempt to execute everything you type. You may also use your
mouse to select words and to perform other functions. The command window is
described in Section 2.3.1.

When you type in the command window, SwiftForth will wait to process what you’ve
typed until you press the Enter key. Before pressing Enter, you may backspace or
use the left- and right-arrow keys to edit your command line. The up- and down-
arrow keys page through previous command lines.

Forth commands are strings separated by spaces. The default behavior of Swift-
Forth is to be case-insensitive; that is, it treats upper-case and lower-case letters the
same. For consistency, we will use upper case for most SwiftForth words. Windows
calls, however, are case-sensitive, and are spelled with mixed case following stan-
dard Windows nomenclature; these words should always be spelled exactly as
shown. For this reason, SwiftForth compiles all word names preserving their origi-
nal case. You may temporarily set SwiftForth to be case-sensitive by using the com-
mand CASE-SENSITIVE, and return to case-insensitivity by using the command CASE-
INSENSITIVE; however, we do not recommend operating for extended periods in
CASE-SENSITIVE mode, as aspects of the object system (Section 10) may not function
properly in this mode.

If you are new to the Forth programming language, we recommend you start your
exploration by looking at some of the sample programs provided with the system.
Getting Started 15

SwiftForth Reference Manual
These range from simple functions to moderately complex games with simple
graphics and sound. These are described in Section 1.4.2. As you look at the source
for these applications in your editor, you may go to the SwiftForth command win-
dow to use LOCATE to find the source for words that are not part of the application
file; the manuals provided with this system provide discussion of generic Forth
words.

If you are an experienced Forth programmer, you will also benefit from looking at
the sample programs to see how SwiftForth performs Windows-specific functions.
You may also wish to LOCATE various low-level words to familiarize yourself with
this implementation, which is discussed in Section 5.

References LOCATE, Section 2.4.1

1.4.2 Running the Sample Programs

SwiftForth ships with a number of sample programs. These may be found in the
Swiftforth\lib\samples directory. All are provided as source files that you may
INCLUDE and may be run according to their instructions. Many may be loaded from
the dialog box invoked by the Tools > Optional Packages > Generic Samples or
Win32 Samples menu items.

References INCLUDE (loading source files), Section 3.1
Tools menu selections, Section 2.3.5

1.4.3 Developing and Testing New Software

You may add new definitions to SwiftForth in four ways:

• Type them directly from the keyboard in the command window.

• Copy them from a source file and paste them into the command window (you can
also copy definitions from the command window or keyboard history window and
paste them into files).

• Interpret an entire source file using the File > Include menu option, or by typing
INCLUDE <filename>.

• Load them from Forth blocks, if the block-handling options are loaded.

The first two are extremely convenient for exploring a problem and for testing new
ideas. Later stages of development generally involve editing a file and repeatedly
loading it using INCLUDE. However, to maximize your debugging efficiency, remem-
ber to keep your definitions short (typically a few lines) and always follow the prac-
tice of bottom-up testing of individual, low-level words before trying the higher-
level functions that depend on them.

References Source in text files, Section 3.1
Source in Forth blocks, Section A.1
Keyboard history window, Section 2.4.8
16 Getting Started

SwiftForth Reference Manual
1.5 Licensing Issues

When you install SwiftForth, the installation process obtains your consent to a
license agreement describing the terms under which you may use this product. You
may find a copy of this license agreement in SwiftForth\doc\license.rtf.

SwiftForth is an unusual product, in that it is a development environment that can
also produce program images containing the development environment itself. In
this regard, SwiftForth differs dramatically from development systems such as
Visual Basic which only produce executables. Because of this, we want to be very
clear as to what is and is not permitted under this license.

1.5.1 Use of the Run-time Kernel

The purpose of SwiftForth is to enable you to develop Windows applications. Your
applications may incorporate the SwiftForth run-time kernel as a component of a
turnkey application in which the compiler and assembler or other programming
aids are not available to any user of the application software. If you need distribu-
tion rights other than these, please contact FORTH, Inc.

1.5.2 Use of the SwiftForth Development System

This section describes how you may use the SwiftForth development environment.
You may:

• use the SwiftForth development system on any single computer;

• use the SwiftForth development system on a network, provided that each person
accessing the Software through the network must have a copy licensed to that per-
son;

• use the SwiftForth development system on a second computer as long as only one
copy is used at a time;

• copy SwiftForth for archival purposes, provided that any copy must contain all of
the original Software’s proprietary notices; or

• distribute the run-time kernel provided with this system in accordance with the
terms described in Section 1.5.1 above.

If you have purchased licenses for multiple copies of SwiftForth, all copies must
contain all of the original Software’s proprietary notices. The number of copies is
the total number of copies that may be made for all platforms. You are welcome to
purchase additional copies of SwiftForth documentation.

You may not:

• permit other individuals to use the SwiftForth development system except under
the terms listed in Section 1.5.1 above;

• permit concurrent use of the SwiftForth development system;

• modify, translate, reverse-engineer, or create derivative works based on the Swift-
Getting Started 17

SwiftForth Reference Manual
Forth development system except as provided in Section 1.5.1 above;

• copy the Software other than as specified above;

• rent, lease, grant a security interest in, or otherwise transfer rights to the Software
without first obtaining written permission from FORTH, Inc.; or

• remove any proprietary notices or labels on the Software.
18 Getting Started

SwiftForth Reference Manual
Section 2: Using SwiftForth

SwiftForth supports interactive development and testing of Windows applications
that can deliver very fast performance, and full access to standard Windows fea-
tures, DLLs, and other powerful software found in this environment.

This introductory section gives a general view of the design of the SwiftForth devel-
opment environment. We recommend that you read this, even if you are already
familiar with the Forth language.

If you are a Forth beginner, read Forth Programmer’s Handbook carefully, and con-
sider ordering Forth Application Techniques, a tutorial textbook offered by FORTH,
Inc. Review some of the demo applications supplied with your system in the direc-
tory SwiftForth\lib\samples. Find out what software is available by looking through
the source code files supplied with SwiftForth. Finally, write to the SwiftForth email
group or to support@forth.com with any questions or problems (see “Support” on
page 12). Forth programming courses are also available from FORTH, Inc., and can
help shorten the learning process.

2.1 SwiftForth Programming

SwiftForth is a powerful and flexible system, supporting software development for
virtually any Windows application. Although the internal principles of SwiftForth
are simple, a necessary side-effect of its power is that it has a large number of com-
mands and capabilities. To get the most benefit, allocate some time to become
familiar with this system before you begin your project. This will pay off in your
ability to get results quickly.

2.2 System Organization

SwiftForth, like most Forth development systems, is a single, integrated package
that includes all the tools needed to develop applications. SwiftForth adds to the
normal Forth toolkit special extensions for Windows programming. The complete
package includes:

• Forth language compiler

• i386-family assembler

• Windows system interface functions

• Libraries

• Interactive development aids

SwiftForth complies with ANS Forth, including the Core wordset, most Core Exten-
sions, and most optional wordsets. Details of these features are given in Section 4.8
and Appendix B.

SwiftForth has two main components: a pre-compiled kernel and a set of options
Using SwiftForth 19

mailto:support@forth.com

SwiftForth Reference Manual
you may configure to suit your needs. In addition to these, you may add your appli-
cation functions. When your application is complete, you may use the turnkey util-
ity, described in Section 4.1.2, to prepare an executable binary image that you may
distribute as appropriate

Be sure to read and understand “Licensing Issues” on page 17.

A purchased SwiftForth includes source for all extensions and most kernel func-
tions, as this can be valuable documentation, including a cross-compiler that can be
used to modify the kernel.

2.3 IDE Quick Tour

The SwiftForth Interactive Development Environment (IDE) presents a user interface
that may be managed with toolbar buttons and pull-down menus, or directly from
the command line. This section summarizes its principal features.

Figure 2. The SwiftForth command window

2.3.1 The Command Window

Your main interface with SwiftForth is through the command window, which is dis-
played when the system boots. In this window, you may type commands, which will
20 Using SwiftForth

SwiftForth Reference Manual
be executed by SwiftForth.

All information displayed in the command window (including commands you type,
and system responses or displays) is kept in a large buffer while the IDE is running;
you may scroll through it, using the scroll bar or the PageUp and PageDown keys, to
see previous parts of the session. You may also print or save the entire buffer, or a
portion of it that you select using the mouse.

The toolbar at the top of the command window provides one-click access to several
menu options described in the following sections (see Figure 3).

Figure 3. Toolbar items

The status bar at the bottom of the command window shows the stack depth and
the actual values of the top several items, the current number base (the default is
decimal), and the current insert/overwrite typing mode (see Figure 4). Clicking on
the Base and Insert/Overwrite areas will toggle through possible values.

Figure 4. Status bar indicators

In addition to the buffer containing the general history of the command window’s
contents, SwiftForth remembers the last several commands you type, storing them
in a circular queue. The up-arrow and down-arrow keys allow you to retrieve these
command lines from the buffer. You may edit them by using the left-arrow and
right-arrow keys and typing; the Insert key toggles between insert and overwrite
mode (as does clicking on the mode area of the status bar, discussed above). Press
Enter to execute the entire line, or press Esc to leave the line without executing it.

The command-line input processor provides smart command completion. For
instance, if you had previously typed INCLUDE FOO, typing INC and pressing the Tab
key will complete the phrase INCLUDE FOO for you. Successive presses of the Tab key
toggle through entries in the circular command-line buffer.

Double-clicking any word in the command window will select it. The right mouse
button presents a menu of operations you can apply to a selected word, shown in
Figure 5.

Items
on

stack
User panelsCurrent number base

Insert/
Overwrite
Using SwiftForth 21

SwiftForth Reference Manual
• Locate displays the source for any word defined in your current scope by double-
clicking the word. If the source is not present (e.g. you are running a turnkey but do
not have the source files that generated it) or if the word you are trying to LOCATE
was defined interactively in the command window, you will see the error message
“Source file not available.” This feature is discussed further in Section 2.4.1.

• Edit launches or switches to your linked editor (see Sections 2.3.5 and 2.4.1) posi-
tioned at the source for the word (if it’s available).

• See disassembles the word, as described in Section 2.4.4.

• Cross Ref generates a cross-reference for the word, as described in Section 2.4.3.

• Execute executes the word, just as though you had typed it and pressed Enter.

• Copy copies it to the clipboard.

• Paste pastes whatever is currently in the clipboard at the current cursor position in
the command window.

Figure 5. Right mouse button actions on a selected word

Copy and Paste (below the horizontal line in the menu) are a little bit different. The
functions above the line require that you have selected a recognizable Forth word
(or, in the case of Execute, an executable word or number). Copy does not depend
on the selected text being a defined Forth word, and Paste will ignore any selected
text.

Table 1 summarizes the special keyboard functions available in the command win-
22 Using SwiftForth

SwiftForth Reference Manual
dow.

The following sections describe the options available from the command window’s
menu and toolbar. Where a letter in a menu item is underlined, the Alt key plus that
letter is a keyboard equivalent. In each case, we list the menu item, equivalent com-
mands (if any, in addition to the Alt versions), and a description.

2.3.2 File Menu

The File menu offers the selections described in Table 2.

Table 1: Command window keyboard controls

Key Action

PageUp
PageDown

Scroll through the history of the current session.

UpArrow
DownArrow

Retrieve commands you have typed.

LeftArrow
RightArrow

Move cursor on command line.

Insert Toggle the insert/overwrite mode of typing.

Enter Execute the command line the cursor is on.

Ctrl-C
Ctrl-V

Copy from, or paste text into, the window.
(See Section 2.3.3.)

Double-click
on a word

Selects the word, making it available for the right-click func-
tions.

Right-click Display pop-up menu options: Locate, Edit, See, Cross Ref,
Execute, Copy, and Paste.

Ctrl-Home Show history

Ctrl-Shift-Del Delete to end of line

F3 Recall last line entered

Table 2: File menu options

Item Command Action

Include INCLUDE <filename> Interpret a file (load it and any files
it loads). Displays a file-selection
dialog box; INCLUDE processes the
file filename.

Edit EDIT <path> or
EDIT <wordname>

Launch a linked editor, allowing you
to select a source file or word.

Print Print the command window.
In the print dialog, you may choose
to print the entire contents or a
selected portion.
Using SwiftForth 23

SwiftForth Reference Manual
The Edit menu option opens a file for editing, using your linked editor (see Sections
2.3.5 and 2.4.1).

Both File > Include and File > Edit and their corresponding toolbar buttons display a
“Browse” dialog box with which you can find your file. Both reset SwiftForth’s path
to the one for the file you select. However, INCLUDE typed from the keyboard does
not change SwiftForth’s path.

Save Command Window, Save Keyboard History, and Session Log are discussed fur-
ther in Section 2.4.8.

2.3.3 Edit Menu

Most editing in SwiftForth is done with your associated editor (see Section 2.3.5 and
Section 2.4). However, you can copy text—from a file in another window or from
elsewhere in the command window—and paste it into the command window, which
will have the same effect as typing it. You may also select text for typing, saving, or
copying into another window. Edit menu options are summarized in Table 3. (Cut
and Delete are not available in the command window, since the purpose of the com-
mand window is to maintain a record of your actions during this programming ses-
sion.)

Toolbar buttons are available for Copy and Paste.

Save Com-
mand Window

Record the current contents of the
command window in a text file.

Save Keyboard
History

Record all the commands you’ve
typed in this session in a text file.

Session Log Start recording all actions for this
session in a text file.

Break Force the main console task in Swift-
Forth to abort; used for error recov-
ery.

Exit bye Exit SwiftForth.

Table 3: Edit menu options

Item Keystroke Action

Copy Ctrl-C Copy selected text to your clipboard.

Paste Ctrl-V Paste the current clipboard contents on a new
command line and interpret its contents.

Select all Selects the entire contents of the command window.

Wipe all Clear the entire command window.

Table 2: File menu options (continued)

Item Command Action
24 Using SwiftForth

SwiftForth Reference Manual
2.3.4 View Menu

The View menu provides alternate views of the command window. If the feature is
active, a checkmark appears next to it on the menu. See Table 4.

2.3.5 Options Menu

The Options menu provides more ways to customize SwiftForth. Options menu
selections are summarized in Table 5.

To use an editor other than Notepad, which is the default when SwiftForth is
shipped, use the Options > Select Editor menu item, and type your editor’s path-
name into the box or click the browse button to search for it. After you have pro-
vided the pathname, the User Defined radio button should be highlighted.

Table 4: View menu options

Item Action

Status line When checked, displays the status line at the bottom of the debug
window.

Toolbar When checked, displays the toolbar at the top of the debug window.

Table 5: Options menu selections

Item Action

Font Select a font for the command window.
Only fixed-width (i.e., non-proportional) fonts are listed.

Editor Select and set parameters for your editor.

Preferences Set text and background colors for normal and highlighted
displays and other options.

Warnings Enable/disable various system warnings, and establish how
they and error messages will be displayed.

Include Monitoring Sets options for diagnostic features to be performed during
file INCLUDE operations. See Section 3.3 for details.

FPMath Options If floating-point math support has been loaded (Tools >
Optional Packages > Generic Options > FPMath), customize
related features.
Using SwiftForth 25

SwiftForth Reference Manual
Figure 6. Select Editor dialog

Next, you must specify how SwiftForth is to pass line-number and filename parame-
ters to your editor. The specification format is:

<line-selection string> %l "<file-selection string> %f"

Note that the file-selection string and %f require quotation marks around them,
since the filename may contain spaces.

When SwiftForth calls the editor, it will provide the line number at the place in this
string that has a %l (lower-case L), and will provide the filename at the place that
has a %f. Sample parameter strings for some editors are shown in Table 6. Swift-
Forth already knows the appropriate strings for these and other popular editors; if
the one you’ve selected is among them, it will automatically enter its strings. Other-
wise, you may fill them in.

When your editor’s pathname and parameter string are correct, click Done. This
information will be saved when you exit SwiftForth.

SwiftForth’s Options > Preferences dialog (or its equivalent Toolbar button) lets you
specify a number of configuration items, shown in Figure 7.

Table 6: Examples of editor parameter sequences

Editor name Parameter string

CodeWright "%f" -g%l

E -n%l "%f"

ED4W -1 -n -l %l "%f"

EMACS +%l "%f"

MultiEdit "%f" /L%l

TextPad -am -q "%f"(%l,0)

TSE -n%l "%f"

Ultra Edit "%f" -l %l
26 Using SwiftForth

SwiftForth Reference Manual
Figure 7. Preferences dialog

The Colors section controls the color scheme for the command window.

The checkbox “Use coloring for WORDS” affects the command WORDS (described in
Section 2.4.2). If this box is checked, typing WORDS in the command window will pro-
duce a color-coded display in the command window; otherwise, no coloring is
applied.

The “Reset” button will restore all options to the system defaults.

The “Flat” and “Large” toolbar buttons affect the appearance of the toolbar, if it is
displayed.

"Pause while scrolling" sets the scrolling mode of words that generate lots of output
(DUMP, SEE, WH, WORDS etc.). When this option is enabled, the output will pause
with the prompt “Press space for more...” at the bottom of each screen full of out-
put. When this option is disabled, output just scrolls with no pause.

The Options > Warnings dialog (Figure 8) provides configuration settings that deter-
mine whether, and where, error messages and system warnings will appear.

Even if warnings are disabled, error messages will always be displayed. See Section
4.7 (”Exceptions and Error Handling”).

Because SwiftForth is normally case insensitive, the box labeled “Warn for case
ambiguity” is normally unchecked. If it is checked, it will warn of name conflicts
based on case alone.
Using SwiftForth 27

SwiftForth Reference Manual
Figure 8. System warning configuration dialog

Options > Include monitoring configures diagnostics that can be used when you
INCLUDE a source file. These are discussed in detail in Section 3.3.

Options > FPMath Options displays a dialog box that provides several ways to cus-
tomize floating-point options. This menu selection is only available if floating-point
math support has been loaded (Tools > Optional Packages > System Options >
FPMath). See Section Section 12: for details.

SwiftForth is built using a kernel plus a set of additional features. These are incor-
porated into the Sf.exe program you usually boot. If your version of SwiftForth
includes system source code, you can customize it by adding or removing features.

References WORDS command, Section 2.4.2
INCLUDE, Section 3.1
Floating-point math library, Section Section 12:

2.3.6 Tools Menu

This menu provides tools that may be helpful in the development process.

The Options > Optional Packages sub-menu offers several choices; each displays a
dialog box from which you can select the items you want. There are several major
options, and a number of minor ones, including the sample programs described in

Table 7: Tools menu options

Item Command Action

Break Force the main console task in SwiftForth to abort;
used for error recovery.

History Open command history window, and start recording

Run RUN Run an auxiliary program, such as a checkout proce-
dure for a version-control program.

Optional
Packages

Select from among many optional libraries.
28 Using SwiftForth

SwiftForth Reference Manual
Section 1.4.2.

The options offered by SwiftForth are organized into four groups, shown in Table 8.

Figure 9. Optional packages selection

When you select a group, you will be presented a dialog box listing the packages
available in that group, such as the one in Figure 10. Use your mouse or arrow key
to move up and down in the list. As you select each item, you will be shown a brief
description of it.

Table 8: SwiftForth Optional Packages

Group Description

Generic
Options

Extensions to SwiftForth that are not platform-dependent,
such as floating point math, extensions to the object pack-
age, and various math functions.

Win32 Options Windows-dependent extensions, such as various forms of
dialog boxes and other kinds of controls, a console debug-
ging feature, a simple DDE client, some graphics tools, etc.

Generic Sam-
ples

Some examples of floating point and other non-Windows
coding tricks.

Win32 Samples A rich collection of samples of code that exploit various
Windows features, from TCP/IP communication to graph-
ics, including the popular Sokoban and Tetris games.
Using SwiftForth 29

SwiftForth Reference Manual
Figure 10. Load options dialog

The major items listed under Win32 Options are described in Table 9.

In addition to these options, SwiftForth also includes the Forth Scientific Library, a
collection of mathematical algorithms implemented in ANS Forth by a group of
independent programmers. These routines may be found in the SwiftForth\Unsup-
ported\FSLib directory, along with Info.txt which describes the library and its con-
tributors. FORTH, Inc. provides this library as a service to SwiftForth programmers
but, since we did not develop it, we cannot support it or assume any responsibility
for it.

To save a SwiftForth system configured to your taste, load the options of your
choice, then type:

PROGRAM <filename>

Table 9: Some representative “Win32 Options”

Filename Description

BLKEDIT polyFORTH block editor (includes PARTSMAP).

DDECLIENT API for DDE client services.

FPMATH Hardware (Intel FPU) floating-point math library (Section
Section 12:).

PARTSMAP Block support (ANS Forth Blocks wordset plus exten-
sions).

PFASSEMBLER polyFORTH-compatible assembler (see polyFORTH
documentation for details).

PROTECTION Re-defines most common memory access words to
ensure action within legally accessible memory.

RANDOM Parametric multiplicative linear congruential random-
number generator.

RATIONALAPPX Rational approximations.
30 Using SwiftForth

SwiftForth Reference Manual
to record a turnkey version of the system as filename.exe.

This feature is not available in the SwiftForth evaluation version.

References Command history window, Section 2.4.8
Using PROGRAM to make a turnkey image, Section 4.1.2
DDE Client Support, Section 8.3

2.3.7 Help Menu

The Help menu provides access to documentation for your SwiftForth system.

2.4 Interactive Programming Aids

This section describes the specific features of SwiftForth that aid development.
These tools will typically be used from the keyboard in the command window.

2.4.1 Interacting With Program Source

The command:

LOCATE <name>

is equivalent to selecting a word in the command window (as discussed in Section
2.3.1) and selecting the Locate right mouse menu option. If name is defined in the
current search order, this will display several lines from the source file from which
name was compiled, with name highlighted. The amount of text actually displayed
depends on how large your command window is just now; the display will use two-
thirds of the available lines.

LOCATE will work for all code compiled from available source files; source is not
available for:

• code typed directly into the SwiftForth command window

• source code copied from a file and pasted into the command window

• code from files not supplied with the version of SwiftForth you are using

• words in the SwiftForth metacompiler

LOCATE may also fail if the source file has been altered since the last time it was
compiled, since each compiled definition contains a pointer to the position in the
file that produced it.

For example, to view the source for the word DUMP:

LOCATE DUMP
Using SwiftForth 31

SwiftForth Reference Manual
The LOCATE command opens the correct source file, and displays the source:

C:\ForthInc\SwiftForth\src\ide\tools.f
 49: -? : DUMP (addr u --)
 50: BASE @ >R HEX /SCROLL
 51: BEGIN (a n) 2DUP 16 MIN DUMPLINE
 52: 16 /STRING DUP 0 <= UNTIL 2DROP
 53: R> BASE ! ;
 54:

After you have displayed source for a word in the command window, typing N (Next)
or B (Back) will display adjacent portions of that source file.

The actual amount of text displayed will depend on the size of your command win-
dow. SwiftForth calculates the number of lines to display based on the current
debug window size

If you select a word in the command window, the popup menu generated by a right-
click will offer (among others) the option Edit. Selecting that command will launch
your linked editor (or switch to it if it is already open) with the cursor positioned on
the source line containing the word. This feature lets you immediately edit the
source, if you wish, and examine the rest of the file. (Use of the Options menu to link
to an editor other than the default Notepad is described in Section 2.3.5.)

If the compiler encounters an error and aborts, you may directly view the file and
line at which the error occurred by typing L. This is particularly convenient if you
have a linked editor (see Section 2.3.5), because you can immediately repair the
error and recompile. If you don’t have a suitable editor, SwiftForth will display the
source path and line number in the command window, and you will have to manu-
ally switch to your editor to fix the problem.

Glossary

LOCATE <name> (—)
Display the source from which name was compiled, with the source path and defini-
tion line number, in the SwiftForth command window. name must be in the current
scope. Equivalent to double-clicking on name and selecting the Locate option from
the menu generated by a right-click. The number of lines displayed depends on the
current size of the SwiftForth command window.

N (—)
Display the Next range of lines following a LOCATE display.

B (—)
Display the previous (Back) range of lines following a LOCATE display.

L (—)
Following a compiler error, display the line of source at which the error occurred,
along with the source path and line number, in the SwiftForth command window.

EDIT <name> (—)
Launches or switches to a linked editor, passing it appropriate commands to open
the file in which name is defined, positioned at its definition. If name cannot be
32 Using SwiftForth

SwiftForth Reference Manual
found in the dictionary, EDIT will abort with an error message.

G (—)
Following a compiler error, opens the linked editor with the cursor positioned on
the line where the error occurred.

2.4.2 Listing Defined Words

The command WORDS displays a list of all defined words in the current search order
(i.e., currently accessible in the dictionary). If the option “Use coloring for WORDS”
is selected in the Options > Preferences dialog box (Section 2.3.5), typing WORDS will
display the words color-coded to indicate their category as shown in Table 10, and
you can double-click any such displayed word to select it and LOCATE its source or
any of the other “right mouse button” actions described on page 22.

You may see words in a particular vocabulary by specifying a vocabulary before
WORDS. For example:

FORTH WORDS

will show only those in the FORTH vocabulary. Alternatively, you may specify ALL
WORDS to get all defined words in all current vocabularies. You may search for words
with a particular character sequence in their names by following WORDS with the
search string. For example, if you type:

ALL WORDS M*

you will get this response:

M*/ M* UM*
3 words found. ok

Table 10: Color-coding in WORDS

Color Category

Black Default (no recognized category)

Blue Inline words (i.e., words expanded to inline code)

Red CONSTANTs

Green VARIABLEs

Cyan Menu items

Magenta Immediate words

Dark yellow User variables

Dark blue VALUEs

Dark red Wordlists

Dark green WinProcs

Dark cyan Windows functions

Dark magenta Switches
Using SwiftForth 33

SwiftForth Reference Manual
In other words, these three words contained the sequence M* in their names.

References Search orders, wordlists, and vocabularies, Forth Programmer’s Handbook
Wordlists in SwiftForth, Section 5.5.2

2.4.3 Cross-references

SwiftForth provides tools to enable you to find all references to a word, and also to
identify words that are never called in the currently compiled program.

To find all the places a word is used, you may type:

WHERE <name>

It displays the first line of the definition of name, followed by each line of source
code that contains name in the currently compiled program.

If the same name has been redefined, WHERE gives the references for each definition
separately. The shortcut:

WH <name>

does the same thing. This command is not the same as a source search—it is based
on the code you are running on right now. This means you will be spared any
instances of name in files you aren’t using. However, it’s also different from a nor-
mal dictionary search: it searches all wordlists, regardless of whether they are in the
current search order. This is to reveal any definitions or usages of the word that
may be currently hidden and, therefore, the source of subtle bugs.

Here’s an example of a display produced by WH (used on a word in the sample pro-
gram scribble.f):

WH POINT#

WORDLIST: FORTH
C:\ForthInc\SwiftForth\lib\samples\win32\scribble.f
125 13| 0 VALUE POINT#
125 24| POINT# 1 > IF
125 27| POINT# 1- 0 DO
125 28| POINT# 1 DO
125 38| POINT# #POINTS < IF
125 39| LPARAM POINT# CELLS POINTS + !
125 40| 1 +TO POINT#
125 87| SCRIBBLING ?EXIT 0 TO POINT#

The first line shows the wordlist name of the wordset in which the word was found.
The next lines show where it was defined, and the lines following show all refer-
ences to it. The numbers to the left of the vertical bar are line numbers in the file; if
you click on one of these, you will select it, making it available for the “right mouse
button” actions described on page 22.

Conversely, you may be interested in identifying words that have never been used,
perhaps to prune some of them from your program. To do this, type UNCALLED. This
34 Using SwiftForth

SwiftForth Reference Manual
will list all such definitions, as well as WINPROCs in open DLLs. As with the WHERE
display, you may double-click the line numbers to select that source for further
examination. Note that the fact that a word appears in this list doesn’t necessarily
mean you want to get rid of it.

Glossary

WHERE <name>, WH <name> (—)
Display a cross-reference showing the definition of name and each line of source in
which name is used in the currently compiled program. WH and WHERE are synonyms.

UNCALLED (—)
List all words that have never been called in a colon definition.

References Wordlists, Forth Programmer’s Handbook
Wordlists and vocabularies in SwiftForth, Section 5.5.2

2.4.4 Disassembler

The disassembler is used to reconstruct readable source code from compiled defini-
tions. This is useful as a cross-check, whenever a new definition fails to work as
expected, and also shows the results of SwiftForth’s code optimizer.

The single command SEE name disassembles the code generated for name. Since
SwiftForth compiles actual machine code, it is unable to reconstruct a high-level
definition. You may use LOCATE to display the source.

For example, the definition of TIMER (see Section 4.4.2) is:

: TIMER (ms --)
 COUNTER SWAP - U. ;

It disassembles as follows:

SEE TIMER
45A353 454883 (COUNTER) CALL E82BA5FFFF
45A358 0 [EBP] EBX SUB 2B5D00
45A35B 4 # EBP ADD 83C504
45A35E 407BC3 (U.) JMP E960D8FAFF ok

The leftmost column shows the memory location being disassembled; the rightmost
column shows the actual instruction.

An alternative is to disassemble or decompile from a specific address:

<addr> DASM

This is useful for disassembling code from an arbitrary address. The address must
be an absolute address such as may be returned by a LABEL definition, a data struc-
ture, or obtained from an exception (see Section 4.7).
Using SwiftForth 35

SwiftForth Reference Manual
Glossary

SEE <name> (—)
Disassemble name.

DASM (addr —)
Disassemble code starting at addr.

References Using LOCATE to display source, Section 2.4.1
CODE and LABEL, Section 6.2

2.4.5 Viewing Regions of Memory

Regions of memory may be dumped by using the commands DUMP, IDUMP, UDUMP,
and HDUMP. All take as arguments a memory address and length in bytes; they differ
in how they display the memory:

• DUMP displays successive bytes in hex, with an ASCII representation at the end of
each line.

• IDUMP displays successive single-cell signed integers in the current number base.

• UDUMP displays single-cell unsigned numbers in the current number base.

• HDUMP displays unsigned cells in hex.

Data objects defined with VARIABLE, CREATE, or defining words built using CREATE
will return suitable memory addresses. If you get an address using ' <name> and
wish to see its parameter field or data area, you may convert the address returned
by ' to a suitable address by using >BODY.

Example 1: Dumping a string

CREATE MY-STRING CHAR A C, CHAR B C, CHAR C C,
MY-STRING 3 DUMP

displays:

 45F860 41 42 43 ABC

Example 2: Dumping a 2CONSTANT

5000 500 2CONSTANT FIVES
' FIVES >BODY 8 IDUMP

displays:

0045F87C: 500 5000 ok

Glossary

DUMP (addr u —)
Displays u bytes of hex characters, starting at addr, in the current section, which
may be either code or data. An attempt at ASCII representation of the same space is
36 Using SwiftForth

SwiftForth Reference Manual
shown on the right. Addresses and data are displayed in hex.

IDUMP (addr u —)
Displays u bytes, starting at addr, as 32-bit signed integers in the current base.

UDUMP (addr u —)
Displays u bytes, starting at addr, as 32-bit unsigned numbers in the current base.

HDUMP (addr u —)
Displays u bytes, starting at addr, as unsigned hex numbers.

References Number bases, Section 4.3
Dictionary entry format and parameter fields, Section 5.5

2.4.6 Single-Step Debugger

SwiftForth’s simple single-step debugger allows you to step through source com-
piled from a file. The sample program sstest.f can be loaded with the phrase:

REQUIRES SSTEST

When the source has been compiled from the file sstest.f, type the following to
invoke the single-step interface:

4 DEBUG 5X

At each breakpoint between Forth words, the current data stack is displayed along
with a prompt to select the next action:

Nest Execute the next word, nesting if it is a call.

Step Execute the next word, with no nesting.

Return Execute to the end of the current definition without stopping.

Finish Finish executing the DEBUG word without stopping.

To load the single-step debug support without the 5X example above:

REQUIRES SINGLESTEP

2.4.7 Console Debugging Tool

The console debugging tool lets you get debugging information that is not available
interactively—such as traces during execution of dialog box code or Windows call-
backs—as the console is completely independent of the Windows GUI interface.

An example use is in the sample program bugsample.f, reproduced below:

REQUIRES CONSOLEBUG\ Include console debug routines

1 TO BUGME\ 0 means debug not active
Using SwiftForth 37

SwiftForth Reference Manual
: TEST
 [BUG CR ." TESTING" .S BUG]\ Anything output-oriented
 [BUG KEY DROP BUG]\ KEY for PAUSE also available
 DUP * DROP ;

: TRY
 10 0 DO
 I TEST
 LOOP ;

Any words between [BUG and BUG] will be executed if BUGME is not zero.

A common use of this feature is to display the parameters on each entry to a call-
back being debugged.

2.4.8 Managing the Command Window

The command window is implemented internally as a circular buffer; a long session
may “wrap” this buffer, so early commands may be lost. Three of the File menu
options allow you to record the events of a development session in various ways:

• Save Command Window records a snapshot of the present contents of the com-
mand window in a text file. This is useful if, for example, you have just encountered
a strange behavior you would like to record for later analysis.

• Save Keyboard History records into a text file only the commands you’ve typed.
Such a file may be edited, if you like, using your text editor. You can replay these
commands by including the file. This is useful for developing scripts or for repro-
ducing a bug.

• Session Log opens a file and starts recording everything that happens thereafter in
the session, until you turn it off by re-selecting this menu item. While it is active, its
menu item displays a check mark.

You may display a window containing the keyboard history by selecting Options >
History or the Toolbar button. You can edit the contents of this window, using it as
a scratch area, and you may copy and paste selections from this window into the
command window.

References File menu, Section 2.3.2
38 Using SwiftForth

SwiftForth Reference Manual
Section 3: Source Management

Traditionally, Forth source and data were maintained in 1024-byte blocks on disk.
This format was appropriate for early systems, many of which used Forth as the
only operating system, with native disk drivers. In such an environment, a block
number mapped directly to the physical head/track/sector location on disk, and
was an extremely fast and reliable means of handling the disk. As more Forths were
implemented on other host operating systems, blocks became a kind of lingua
franca, or standardized source interface, presented to the programmer regardless
of the host OS. On such systems, blocks were normally implemented in host OS
files.

Today, native Forth systems are extremely rare, and text files are the most portable
medium between systems. ANS Forth includes an optional wordset for managing
text files, as well as a block-handling wordset. SwiftForth provides full support for
both, although SwiftForth source resides in text files.

The primary vehicle for SwiftForth program source is text files, which may be edited
using a linked editor of your choice as described in Section 2.4.1. This section
describes tools for managing text files.

3.1 Interpreting Source Files

You may load source files using the File > Include menu option, the Include button
on the Toolbar, or by typing:

INCLUDE <filename>

…in the command window. The functional difference between these is that the but-
ton or menu options display a browse window in which you can select the file, and
leaves SwiftForth’s path set to that of the selected file, whereas the typed command
handles a specified file (including relative path information) and doesn’t affect your
current path.

The INCLUDE command causes all of a file to be loaded, as in:

INCLUDE HEXCALC

(where the filename extension .f is assumed if no extension is given).

The standard DOS/Windows rules for describing paths apply:

1. Absolute path: The name starts with a \ or <drive>:\ or \\<name>\. Any of these
indicates an absolute path to the file. This type of path is typically discouraged,
because it must be changed manually if the directory structure changes.

2. Relative path to subdirectories: The name does not contain a leading \ or ..\ desig-
nation, and the file is located in the current directory or a subdirectory below it.

3. Relative path to parent directories: The name begins with a series of ..\ (two peri-
ods and a backslash). Each series raises the location one level from the current sub-
Source Management 39

SwiftForth Reference Manual
directory. After you have raised the level sufficiently, you can use the technique in
#2 to go down subdirectory levels.

In addition, SwiftForth can manage paths relative to the location of the actual exe-
cutable (normally in the SwiftForth\bin directory). Such paths are indicated by the
starting symbol %, and the actual root is two levels above wherever the executable
is. For example, the basic error handling functions are loaded by:

INCLUDE %SwiftForth\src\ide\win32\errmessages.f

If you have launched SwiftForth from a project file or shortcut in your project direc-
tory (described in Section 3.1), your default path is that directory, so you don’t need
to preface local files with any path information. So, your local configuration file
could be loaded like this:

INCLUDE CONFIG

The word INCLUDING returns the string address and length of the filename currently
being interpreted by INCLUDE. This may be convenient for diagnostic or logging
tools.

The CD (Change Directory) command works in the SwiftForth command window just
as it does in a Windows command line, except there must be a space between CD and
any following string. The CD command followed by no string will display your cur-
rent path. No spaces are permitted in the pathname, and no other command may
appear on the line. CD is not appropriate for use in definitions.

If you wish to change your directory path temporarily, you may take advantage of
SwiftForth’s directory stack. The word PUSHPATH pushes your current path informa-
tion onto the directory stack, and POPPATH pops the top path from the directory
stack to become the current path.

Files can load other files that load still others. It is the programmer’s responsibility
to develop manageable load sequences. We recommend that you cluster the
INCLUDE commands for a logical section of a program into a single file, rather than
scattering INCLUDEs throughout the source. Your program will be more manageable
if you can look in a small number of files to find the INCLUDE sequences.

REQUIRES includes the first matching file it finds from among all the files in the fol-
lowing list of directories, in this order:

1. The current directory
2. The directory specified by the environment variable SFLOCAL_USER
3. %SwiftForth\lib
4. %SwiftForth\lib\options
5. %SwiftForth\lib\options\win32
6. %SwiftForth\lib\samples
7. %SwiftForth\lib\samples\win32

The syntax is simply:

REQUIRES <filename>
40 Source Management

SwiftForth Reference Manual
The default filename extension is .f.

Another function helps you to avoid loading the same file more than once, and also
makes it possible to add files to the lists displayed by the Tools >Optional Packages
> Load Options dialogs.

The usage is:

OPTIONAL <name> <description>

Name can be any text that doesn’t contain a space character. Description must be
on the same line and not exceed 200 characters in length.

OPTIONAL is valid only while including a file.

If name already exists in the LOADED-OPTIONS wordlist, the rest of the file will be
ignored. If name does not exist in the LOADED-OPTIONS wordlist, a dictionary entry
for name will be contructed and the rest of the line will be ignored.

If, and only if, OPTIONAL is the first word of one the first 10 lines of a file that exists
in one of the directories…

%SwiftForth\lib\samples\
%SwiftForth\lib\samples\win32\
%SwiftForth\lib\options\
%SwiftForth\lib\options\win32\

…name will appear in one of the LOAD-OPTIONS dialogs (selected via the Tools >
Optional Packages menu), and the associated description will be displayed in that
dialog box.

Glossary

INCLUDE <filename>[<.ext>] (—)
Direct the text interpreter to process filename; the extension is required if it is not
.f. Path information is optional; it will search only in the current path, unless you
precede filename with path information. INCLUDE differs from the File > Include
menu option and Toolbar button in that it does not offer a browse dialog box and
does not change your current path.

INCLUDING (— c-addr u)
Returns the string address and count of the filename currently being interpreted by
INCLUDE.

OPTIONAL <name> <description> (—)
If name already exists in the LOADED-OPTIONS wordlist, the rest of the file will be
ignored; otherwise, name will be added to the LOADED-OPTIONS wordlist and loading
will continue. Valid only while including a file.

If this appears as the first word in the first line of a file that exists in one of the
directories specified above (Section 3.1), name and description will appear in one of
the Load Options dialogs.
Source Management 41

SwiftForth Reference Manual
PUSHPATH (—)
Push the current directory path onto the directory stack.

POPPATH (—)
Pop the top path from the directory stack to become the new current path.

REQUIRES <filename>[<.ext>] (—)
INCLUDE the file filename from a pre-defined list of directories. The extension is
required if it is not .f.

References File-based disk access, Forth Programmer’s Handbook

3.2 Extended Comments

It is common in source files to wish to have commentary extending over several
lines. Forth provides for comments beginning with ((left parenthesis) and ending
with) (right parenthesis) to extend over several lines. However, the most common
use of multi-line comments is to describe a group of words about to follow, and
such descriptions frequently need to include parentheses for stack comments or for
actual parenthetical remarks.

To provide for this, SwiftForth defines braces as functionally equivalent to paren-
theses except for taking a terminating brace. So a multi-line comment can begin
with { and end with }, and can contain parenthetical remarks and stack comments.
Note that the starting brace, like a left parenthesis, is a Forth word and therefore
must be followed by a space. The closing brace is a delimiter, and does not need a
space.

For extra visual highlighting of extended comments, SwiftForth uses a full line of
dashes at the beginning and end of an extended comment:

{ ---
Numeric conversion bases

Forth allows the user to deal with arbitrary numeric conversion bases
for input and output. These are the most common.

--- }

Glossary

{ (—)
Begin a comment that may extend over multiple lines, until a terminating right
brace } is encountered.

\\ (—)
During an INCLUDE operation, treat anything following this word as a comment; i.e.,
anything that follows \\ in a source file will not be compiled.
42 Source Management

SwiftForth Reference Manual
3.3 File-related Debugging Aids

You can monitor the progress of an INCLUDE operation by using a flexible utility
enabled by the command VERBOSE and disabled by SILENT. The level of monitoring
is controlled by the dialog box, shown in Figure 11, that can be invoked by using the
Options > Include monitoring menu item. The default behavior is “Display the text
of each line.”

Figure 11. Included file monitoring configuration

For example, you might place these commands in a file where there is a problem:

 VERBOSE

 < troublesome code >

 SILENT

VERBOSE turns on the monitor, and SILENT turns off the monitor. While monitoring
is active, any INCLUDE will also display the name of the file being processed.

These words are not immediate, which means they should be used outside defini-
tions unless you specifically intend to define a word that incorporates this behavior.

The default mode for the system is SILENT.

Glossary

VERBOSE (—)
Enables the INCLUDE monitor, with a default behavior of “display the text of each
line.”

SILENT (—)
Disables the INCLUDE monitor.
Source Management 43

SwiftForth Reference Manual
44 Source Management

SwiftForth Reference Manual
Section 4: Programming in SwiftForth

SwiftForth is generally compatible with the basic principles of Forth programming
described in Forth Programmer’s Handbook. However, since that book is fairly gen-
eral and documents a number of optional features, this section will discuss particu-
lar features in SwiftForth of interest to a Forth programmer.

4.1 Programming Procedures

The overall programming strategy in SwiftForth involves developing components of
your application one at a time and testing each thoroughly using the tools described
in Section 2.4, as well as the intrinsically interactive nature of Forth itself. This pro-
cess is sometimes described as incremental development, and is known to be a good
way to develop sound, reliable programs quickly.

This section describes tools and procedures for configuring SwiftForth to include
the features you need, as well as for managing the incremental development pro-
cess.

4.1.1 Dictionary Management

When you are working on a particular component of an application, it’s convenient
to be able to repeatedly load and test it. In order to avoid conflicts (and an ever-
growing dictionary), it is desirable to be able to treat the portion of the program
under test as an overlay that will automatically discard previous versions before
bringing in a new one.

This section covers two techniques for managing such overlays. To replace the con-
tents of your entire dictionary with a new overlay, we recommend use of the word
EMPTY. To create additional levels of overlays within the task dictionary, such that
when an overlay is loaded, it will replace its alternate overlay beginning at the
appropriate level, we recommend use of dictionary markers MARKER or REMEMBER.
This section also discusses the option of allowing an overlay to reset the boundary
between system and private definitions.

4.1.1.1 Single-level Overlays

The command EMPTY empties the dictionary to a pre-defined point, sometimes
called its golden state. Initially, this is the state of the dictionary following the
launch of Sf.exe. Any application definitions that you don’t want discarded with the
overlay should be loaded as system options (see Section 2.3.5).

EMPTY discards all definitions and releases all allocated data space. To maintain a
one-level overlay structure, therefore, just place EMPTY at the beginning of the file
(such as an INCLUDE file that manages the other files in your application) you are
repeatedly loading during development.
Programming in SwiftForth 45

SwiftForth Reference Manual
If you have loaded a set of functions that you believe are sufficiently tested and sta-
ble to become a permanent part of your run-time environment, you may add them
to the golden dictionary by using the word GILD. This resets the pointers used by
EMPTY so that future uses of EMPTY will return to this golden state. To permanently
save this reconfigured system as a turnkey image, use PROGRAM (see Section 4.1.2).

Glossary

EMPTY (—)
Reset the dictionary to a predefined golden state, discarding all definitions and
releasing all allocated data space beyond that state. The initial golden state of the
dictionary is that following the launch of SwiftForth; this may be modified using
GILD.

GILD (—)
Records the current state of the dictionary as a golden state such that subsequent
uses of EMPTY will restore the dictionary to this state.

4.1.1.2 Multi-level Overlays

As the kinds of objects that programs define and modify become increasingly com-
plex, more care must be given to how such objects can be removed from the dictio-
nary and replaced using program overlays. In earlier Forth systems, the simple
words EMPTY and FORGET were used for this purpose; but in this system, it is not pos-
sible for these words to know about all the structures and interrelationships that
have been created within the dictionary. Typically, problems are encountered if new
structures are chained to some other structure, or if a structure is being used as an
execution vector for a system definition. Thus, an extensible concept has been
developed to satisfy these needs.

A dictionary marker is an extensible structure that contains all the information nec-
essary to restore the system to the state it was in when the structure was added.
The words MARKER and REMEMBER create such entries, giving each structure a name
which, when executed, will restore the system state automatically. The difference
between the words is simply that a MARKER word will remove itself from the dictio-
nary when it is executed, while a REMEMBER word will preserve itself so that it can be
used again. MARKER words are most useful for initialization code that will only be
executed once, while REMEMBER words are most useful in creating program overlays.

Although these marker words have been written to handle most common applica-
tion requirements, you may need to extend them to handle the unique needs of
your application. For example, if one of your application overlays requires a modifi-
cation to the behavior of ACCEPT, you will need to extend the dictionary markers so
they can restore the original behavior of ACCEPT when that overlay is no longer
needed. To do this, you must keep in mind both the compile-time (when the struc-
ture is created) and the run-time (when the structure is used) actions of dictionary
markers.

In particular, any time you have passed an address to Windows, such as a callback,
you must provide a mechanism for un-doing that connection before you discard the
code containing this address.
46 Programming in SwiftForth

SwiftForth Reference Manual
At compile time, when MARKER or REMEMBER is executed, a linked list of routines is
executed to create a structure in the dictionary containing the saved context infor-
mation. The word :REMEMBER adds another routine to the end of the sequence. This
routine can use the compiling words , and C, to add context information. Then,
when the words defined by MARKER or REMEMBER are executed, another linked list of
routines is executed to restore the system pointers to their prior values (a process
called pruning). The word :PRUNE adds another routine to the end of the sequence.
It will be passed the address within the structure where the :REMEMBER word com-
piled its information, and it must return the address incremented past that same
information.

Thus, :REMEMBER is paired with :PRUNE, and these words should never appear except
in pairs. The only exception is when the information being restored by :PRUNE is
constant and there is no need for :REMEMBER to add it to the structure.

The linked lists of :REMEMBER or :PRUNE words are executed strictly in the order in
which they are defined, starting with the earliest (effectively at the GILD point).

Two additional words are useful when extending these markers. ?PRUNED will return
true if the address passed to it is no longer within the dictionary boundaries, and
?PRUNE will return true if the definition in which it occurs is being discarded.

EMPTY and GILD use these dictionary markers. GILD adds a marker to the dictionary
that EMPTY can execute to restore the system state; it is never possible to discard
below the GILD point.

Figure 12. Multiple overlays

The following example (and Figure 12) illustrates how markers are used. Suppose
your application includes an overlay called GRAPHICS whose load file begins with the
command EMPTY. After GRAPHICS is loaded, you want to be able to load either of two
additional overlays, called COLOR and B&W, thus creating a second level of overlay.
Here is the procedure to follow.

1. Define a REMEMBER word as the final definition of the GRAPHICS overlay, using any
name you want as a dictionary marker. For example:

REMEMBER OVERLAY

System

GILD
(EM PTY discards to here)

GRAPHICS

O VERLAY
(d iscards to
here)

CO LO R

:REM EM BER ...
:PRUNE ...
(save/restore things changed since
O VERLAY)

:REM EM BER ...
:PRUNE ...
(save/restore things changed since
EM PTY)
Programming in SwiftForth 47

SwiftForth Reference Manual
Place such a definition at the bottom of the GRAPHICS load file or block.

2. Place the appropriate reference to this marker definition on the first line of the load
file or block of each level-two overlay. For instance,

(COLOR) OVERLAY

Thus, when you execute the phrase:

INCLUDE COLOR

you “forget” any definitions which may have been compiled after GRAPHICS. The
definition of OVERLAY is preserved to serve as a marker in the event you want to load
an alternative, such as B&W (which would also have OVERLAY in its first line).

3. If the COLOR overlay changes a system pointer such as 'ACCEPT to turn on text mode
before accepting characters at the keyboard, then you must extend the memory
pruning as follows:

:PRUNE ?PRUNE IF ['ACCEPT @] LITERAL
'ACCEPT ! THEN ;

This will restore 'ACCEPT to the value it had before the COLOR overlay changed it, if
this extension to PRUNE is being removed from the dictionary (e.g., ?PRUNE returns
true).

4. If the GRAPHICS application is the one that changed ACCEPT, you must also extend the
system’s ability to remember what it was, both before and after GRAPHICS is loaded,
as follows:

:PRUNE (a - a') ?PRUNE IF ['ACCEPT @]
LITERAL ELSE CELL SIZED @ THEN

 'ACCEPT ! ;

:REMEMBER 'ACCEPT @ , ;

This will remember what 'ACCEPT was when a new marker word is created, and
restore it to the original vector if the entire application is discarded. The extension
must occur in the overlay level in which the necessity for it is created (i.e., in GRAPH-
ICS itself).

By using different names for your marker definitions, you may create any number
of overlay levels. However, no markers will work below the GILD point.

If you are working with multiple layers, you may encounter situations in which sev-
eral layers have provided for the same data. In such cases, you need to take special
care to avoid conflicting restorations. For example, a pointer named 'H can be
added like this:

:PRUNE (a -- a')
?PRUNE IF \ If pruning this extension
['H @] LITERAL DUP ?PRUNED IF\ If prior extension is
DROP 'H @ \ also pruned.
THEN ELSE CELL SIZED @ \ Else get remembered
THEN 'H ! ; \ Restore value

:REMEMBER 'H @ , ;
48 Programming in SwiftForth

SwiftForth Reference Manual
Note that this extension makes a distinction between a marker defined before this
extension was defined and those that follow it.

If the marker was defined prior to this extension, the :REMEMBER data had not been
saved and 'H needs to be restored to the value it had when this extension was com-
piled. It also accounts for some other extension touching the same location. If that
other extension is also being removed, we assume it has already set the location to
the proper value and we leave it alone this time.

:PRUNE and :REMEMBER are only necessary if the overlay changes a system pointer (or
any value it did not itself instantiate).

If you are creating definitions or re-definitions at the keyboard, you can remove all
of them either by typing MARKER <name> before you start and then executing name
when you are done or, usually, just by typing EMPTY.

Glossary

:REMEMBER (—)
Add an un-named definition to the list of functions to be executed when MARKER or
REMEMBER is invoked, to save system state data. The content of this definition must
record the state information, normally using , or C,. When an associated :PRUNE
definition is executed, it will be passed the address where the data was stored by
:REMEMBER. Must be used with :PRUNE in the same overlay layer.

:PRUNE (addr1 — addr2)
Add an un-named definition to the list of functions to be executed when MARKER or
REMEMBER is invoked, to restore the system to a saved state. When the :PRUNE defini-
tion is executed, addr1 provides the address where the data has been stored by a
:REMEMBER in the same overlay layer.

?PRUNE (— flag)
Return true if the definition in which it is being invoked is being discarded (e.g., a
MARKER is being executed).

?PRUNED (addr — flag)
Return true if addr is no longer within the active dictionary (e.g., it has been dis-
carded via MARKER or REMEMBER).

REMEMBER <name> (—)
Create a dictionary entry for name, to be used as a deletion boundary. When name
is executed, it will remove all subsequent definitions from the dictionary and exe-
cute all :PRUNE definitions (beginning with the earliest) to restore the system to the
state it was in when name was defined. Note that name remains in the dictionary, so
it can be used repeatedly.

4.1.2 Preparing a Turnkey Image

You may make a bootable binary image of SwiftForth, including additional code you
have compiled, by typing:
Programming in SwiftForth 49

SwiftForth Reference Manual
PROGRAM <filename>[.<ext>] [<icon>]

This records a “snapshot” of the current running system in the current path. The
file extension is optional. If it is omitted, .exe will be assumed and a Windows exe-
cutable file will be built.

The optional icon specification lets you associate an icon with this executable that
is different from the standard SwiftForth icon. The icon must be in Windows ICO
format and contain exactly one icon image, which can be a BMP or PNG image. The
maximum icon image size supported is 64k. You specify it by giving its filename,
which must have the extension .ico.

This feature is not available in the evaluation version of SwiftForth.

Simple use of PROGRAM is adequate to make a customized version of SwiftForth with
added options of your choice, such as floating point support. To make a standalone
Windows application, however, requires more detailed attention to startup issues.
These issues are discussed further in Section 8.7.

Glossary

PROGRAM <filename>[.<ext>] [<icon>] (—)
Record a “snapshot” of the current running system in the current path (or in the
path specified with filename). If the optional file extension is omitted, .exe is
assumed and a Windows executable file will be built. If an optional icon is specified,
it must be the name of a Windows ICO file that contains exactly one icon. The icon
file must end with the extension .ico.

4.2 Compiler Control

This section describes how you can control the SwiftForth compiler using typed
commands and (more commonly) program source. In most respects, the command-
line user interface in the SwiftForth console is treated identically to program source.
Anything you do in source may be done interactively in the command window.

SwiftForth may be programmed using either blocks or files for source. Any source
supplied with SwiftForth is provided in text files, the format that fits best with
other programs and with the features of a Windows programming environment; this
section assumes you are working with text files.

References Using blocks for source, Section A.2

4.2.1 Case-Sensitivity

SwiftForth is normally case-insensitive, although you may set it to be case-sensitive
temporarily. All standard Forth words are in upper case in SwiftForth, as are most
SwiftForth words. Calls to Windows procedures are in mixed case, as shown in Win-
dows documentation; these calls are case sensitive regardless of the state of the
SwiftForth option.
50 Programming in SwiftForth

SwiftForth Reference Manual
If you need to make SwiftForth case sensitive, you may do so with the command
CASE-SENSITIVE; to return to case insensitivity, use CASE-INSENSITIVE. This may be
useful for situations such as compiling legacy code from a case-sensitive Forth,
however we strongly recommend against operating in this mode in general, as un-
intended conflicts may be introduced that are difficult to find and debug.

4.2.2 Detecting Name Conflicts

Since Forth is extremely modular, there are very many words and word names. As
shipped, SwiftForth has over 3,500 named words, plus the Windows constants and
procedures that are callable by other means. As a result, programmers are under-
standably concerned about inadvertently burying a name with a new one.

Insofar as possible, SwiftForth factors words that are not intended for general use
into separate vocabularies. This leaves about 1,600 words in the Forth vocabulary.

Re-defining a name is harmless, so long as you no longer need to refer to the buried
word; it won’t change references that were compiled earlier. Sometimes it is prefer-
able to use a clear, meaningful name in a high level of your application—even if it
buries a low-level function you no longer need—than to devise a more obscure or
cumbersome name. And there are occasions when you specifically want to redefine
a name, such as to add protection or additional features in ways that are transpar-
ent to calling programs.

However, it is often useful to have the compiler warn you of renamings. By default,
SwiftForth will warn you if the name of a word being defined matches one in the
same vocabulary. For example:

: DUP (x -- x x) DUP . DUP ;
DUP isn't unique. ok

This makes it possible for you to look at the redefined word and make an informed
judgement whether you really want to redefine it.

If you are redefining a number of words, you may find the messages annoying (after
all, you already know about these instances). So SwiftForth has a flag called WARNING
that you can set to control whether the compiler notifies you of redefinitions. You
may set its state by using:

WARNING ON or WARNING OFF

You may also use -? just preceding a definition to suppress the warning that one
time only, leaving WARNINGs enabled. General control of this feature is in the dialog
box Options > Warnings (see Section 2.3.5).

Glossary

WARNING (— addr)
Return the address of the flag that controls compiler redefinition warnings. If it is
true, warnings will be issued.
Programming in SwiftForth 51

SwiftForth Reference Manual
ON (addr —)
Set the flag at addr to true.

OFF (addr —)
Set the flag at addr to false.

-? (—)
Suppress redefinition warning for the next definition only.

4.2.3 Conditional Compilation

[IF], [ELSE], and [THEN] support conditional compilation by allowing the compiler
to skip any text found in the unselected branch. These commands can be nested,
although you should avoid very complex structures, as they impair the maintain-
ability of the code.

Say, for example, you have defined a flag this way:

0 EQU MEM-MAP \ 1 Enables memory diagnostics

then in a load file you might find the statement:

MEM-MAP [IF] INCLUDE ..\..\MEMMAP [THEN] \ Reports memory use

and later, this one:

MEM-MAP [IF] .ALLOCATED [THEN] \ Display data sizes

Conditional compilation is also useful when providing a high-level definition that
might be used if a code version of that word has not been defined. For example, in
strings.f we find:

[UNDEFINED] -ZEROS [IF]
: -ZEROS (addr n -- addr n') \ Remove trailing 0s
 <high-level code> ;

[THEN]

[UNDEFINED] <word> will return true if word has not been defined. Thus, if a code or
optimized version of -ZEROS was included in an earlier CPU-specific file (e.g.,
core.f), it will not be replaced when this file is compiled later. Note that load order
is extremely important!

In contrast, [DEFINED] <word> will return a true flag if word has been defined previ-
ously.

Conditional compilation is discussed more fully in Forth Programmer’s Handbook.

4.3 Input-Number Conversions

When the SwiftForth text interpreter encounters numbers in the input stream, they
are automatically converted to binary. If the system is in compile mode (i.e.,
52 Programming in SwiftForth

SwiftForth Reference Manual
between a : and ;), it will compile a reference to the number as a literal; when the
word being compiled is subsequently executed, that number will be pushed onto
the stack. If the system is interpreting, the number will be pushed onto the host’s
stack directly.

All number conversions in Forth (input and output) are controlled by the user vari-
able BASE. The system’s BASE controls all input number conversions. Several words
in this section may be used to control BASE. In each case, the requested base will
remain in effect until explicitly changed. Punctuation in a number (decimal point,
comma, colon, slash, or dash anywhere other than before the leftmost digit) will
cause the number to be converted as a double number.

Your current number base can be set by the commands DECIMAL, HEX, OCTAL, and
BINARY. Each of these will stay in effect until you specify a different one. DECIMAL is
the default.

In addition, input number conversion may be directed to convert an individual num-
ber using a particular base specified by a prefix character from Table 11. Following
such a conversion, BASE remains unchanged from its prior value. If the number is to
be negative, the minus sign must follow the prefix and precede the most-significant
digit.

SwiftForth also provides a more powerful set of words for handling number conver-
sion. For example, you may need to accept numbers with:

• decimal places (dots or commas, depending on American or European conventions)

• angles or times with embedded colons

• dates with slashes

• part numbers, telephone numbers, or other numbers with embedded dashes

SwiftForth’s number-conversion words are based on the low-level number conver-
sion word from ANS Forth, >NUMBER (see “Number Conversions” in Forth
Programmer’s Handbook).

The word NUMBER? takes the address and length of a string, and attempts to convert
it until either the length expires (in which case it is finished) or it encounters a char-
acter that is neither a digit (0 to BASE-1) nor valid punctuation.

NUMBER? interprets any number containing one or more valid embedded punctuation
characters as a double-precision integer. Single-precision numbers are recognized
by their lack of punctuation. Conversions operate on character strings of the follow-
ing format:

Table 11: Number-conversion prefixes

Prefix Conversion base Example

% Binary %10101010

& Octal &177

Decimal #-13579

$ Hex $FE00
Programming in SwiftForth 53

SwiftForth Reference Manual
[-]dddd[punctuation]dddd ... delimiter

where dddd is one or more valid digits according to the current base (or radix) in
effect for the task. A numeric string may be shorter than the length passed to NUM-
BER? if it is terminated with a blank. If another character is encountered (i.e., a char-
acter which is neither a digit according to the base nor punctuation), conversion will
end. The leading minus sign, if present, must immediately precede the leftmost
digit or punctuation character.

Any of the following punctuation characters may appear in a number (except in
floating-point numbers, as described in Section Section 12:):

, . + - / :

All punctuation characters are functionally equivalent. A punctuation character
causes the digits that follow to be counted. This count may be used later by certain
of the conversion words. The punctuation character performs no other function
than to set a flag that indicates its presence, and does not affect the resulting con-
verted number. Multiple punctuation characters may be contained in a single num-
ber; the following two character strings would convert to the same number:

1234.56
1,23.456

NUMBER? will return one of three possible results:

• If number conversion failed (i.e., a character was encountered that was neither a
digit nor a punctuation character), it returns the value zero.

• If the number is single precision (i.e., unpunctuated), it returns a 1 on top of the
stack, with the converted value beneath.

• If the number is double-precision (i.e., contained at least one valid punctuation
character), it returns a 2 on top of the stack, with the converted value beneath.

The floating-point option described in Section Section 12: extends the number con-
version process to handle floating-point numbers.

The variable DPL is used during the number conversion process to track punctua-
tion. DPL is initialized to a large negative value, and is incremented every time a digit
is processed. Whenever a punctuation character is detected, it is set to zero. Thus,
the value of DPL immediately following a number conversion contains potentially
useful information:

• If it is negative, the number was unpunctuated and is single precision.

• Zero or a positive non-zero value indicates the presence of a double-precision num-
ber, and gives the number of digits to the right of the rightmost punctuation charac-
ter.

This information may be used to scale a number with a variable number of decimal
places. Since DPL doesn’t care (or, indeed, know) what punctuation character was
used, it works equally well with American decimal points and European commas to
start the fractional part of a number.

The word NUMBER is the high-level input number-conversion routine used by Swift-
54 Programming in SwiftForth

SwiftForth Reference Manual
Forth. It performs number conversions explicitly from ASCII to binary, using the
value in BASE to determine which radix should be used. This word is a superset of
NUMBER?.

NUMBER will attempt to convert the string to binary and, if successful, will leave the
result on the stack. Its rules for behavior in the conversion are similar to the rules
for NUMBER? except that it always returns just the value (single or double). It is most
useful in situations in which you know (because of information relating to the appli-
cation) whether you will be expecting punctuated numbers. If the conversion fails
due to illegal characters, a THROW will occur.

If NUMBER’s result is single precision (negative DPL), the high-order part of the work-
ing number (normally zero) is saved in the variable NH, and may be recovered to
force the number to double precision.

Glossary

BASE (— addr)
Return the address of the user variable containing the current radix for number
conversions.

DECIMAL (—)
Set BASE for decimal (base 10) number conversions on input and output. This is the
default number base.

HEX (—)
Set BASE for hexadecimal (base 16) number conversions on input and output.

OCTAL (—)
Set BASE for octal (base 8) number conversions on input and output.

BINARY (—)
Set BASE for binary (base 2) number conversions on input and output.

>NUMBER (ud1 addr1 u1 — ud2 addr2 u2)
Convert the characters in the string at addr1, whose length is u1, into digits, using
the radix in BASE. The first digit is added to ud1. Subsequent digits are added to ud1

after multiplying ud1 by the number in BASE. Conversion continues until a non-con-
vertible character (including an algebraic sign) is encountered or the string is
entirely converted; the result is ud2. addr2 is the location of the first unconverted
character or, if the entire string was converted, of the first character beyond the
string. u2 is the number of unconverted characters in the string.

NUMBER? (addr u — 0 | n 1 | d 2)
Attempt to convert the characters in the string at addr, whose length is u, into dig-
its, using the radix in BASE, until the length u expires. If valid punctuation (, . + -
/ :) is found, returns d and 2; if there is no punctuation, returns n and 1; if conver-
sion fails due to a character that is neither a digit nor punctuation, returns 0 (false).

NUMBER (addr u — n | d)
Attempt to convert the characters in the string at addr, whose length is u, into dig-
its, using the radix in BASE, until the length u expires. If valid punctuation (, . + -
Programming in SwiftForth 55

SwiftForth Reference Manual
/ :) is found, returns d; if there is no punctuation, returns n; if conversion fails
due to a character that is neither a digit nor punctuation, an ABORT will occur.

DPL (— addr)
Return the address of a variable containing the punctuation state of the number
most recently converted by NUMBER? or NUMBER. If the value is negative, the number
was unpunctuated. If it is non-negative, it represents the number of digits to the
right of the rightmost punctuation character.

NH (— addr)
Return the address of a variable containing the high-order part of the number most
recently converted by NUMBER? or NUMBER.

References Numeric input, Forth Programmer’s Handbook

4.4 Timing Functions

The words in this section support a time-of-day clock and calendar using the sys-
tem clock/calendar functions.

4.4.1 Date and Time of Day Functions

SwiftForth supports a calendar using the <mm/dd/yyyy> format. Some of the words
described below are intended primarily for internal use, whereas others provide
convenient ways to enter and display date and time-of-day information.

SwiftForth’s internal format for time information is an unsigned, double number
representing seconds since midnight. There are 86,400 seconds in a day.

Dates are represented internally as a modified Julian date (MJD). This is a simple,
compact representation that avoids the “Year 2000 problem,” because you can eas-
ily do arithmetic on the integer value, while using the words described in this sec-
tion for input and output in various formats.

The date is encoded as the number of days since 31 December 1899, which was a
Sunday. The day of the week can be calculated from this with 7 MOD.

The useful range of dates that can be converted by this algorithm is from 1 March
1900 thru 28 February 2100. Both of these are not leap years and are not handled
by this algorithm which is good only for leap years which are divisible by 4 with no
remainder.

A date presented in the form mm/dd/yyyy is converted to a double-precision inte-
ger on the stack by the standard input number conversion routines. A leading zero
is not required on the month number, but is required on day numbers less than 10.
Years must be entered with all four digits. A double-precision number entered in
this form may be presented to the word M/D/Y, which will convert it to an MJD. For
example:
56 Programming in SwiftForth

SwiftForth Reference Manual
8/03/1940 M/D/Y

will present the double-precision integer 8031940 to M/D/Y, which will convert it to
the MJD for August 3, 1940. This takes advantage of the enhanced SwiftForth num-
ber conversion that automatically processes punctuated numbers (in this case, con-
taining / characters) as double-precision (see Section 4.3).

Normally, M/D/Y is included in the application user interface command that accepts
the date. For example:

: HIRED (-- n) \ Gets date of hire
 CR ." Enter date of hire:" \ User prompt
 PAD 10 ACCEPT \ Await input to PAD
 PAD SWAP NUMBER \ Text to number
 M/D/Y \ Number to MJD
 DATE-HIRED ! ; \ Store date

You can set the system date by typing:

<mm/dd/yyyy> NOW

To obtain the day of the week from an MJD, simply take the number modulo 7; a
value of zero is Sunday. For example:

8/03/1940 M/D/Y 7 MOD .

gives 6 (Saturday).

An alternative form D/M/Y is also available. It takes the day, month, and year as
separate stack items, and combines them to produce an MJD.

Output formatting is done by (DATE), which takes an MJD as an unsigned number
and returns the address and length of a string that represents this date. The word
.DATE will take an MJD and display it in that format.

(DATE) is an execution vector. The following standard behaviors for this word are
provided by SwiftForth:

• (MM/DD/YYYY) provides the SwiftForth default format, e.g., 12/30/2000.

• (DD-MM-YYYY) provides an alternative date format, e.g., 30-Dec-2000.

• (WINLONGDATE) provides a Windows long date, e.g., Wednesday, June 3, 1998.

• (WINSHORTDATE) provides the Windows short date format, e.g., 6/3/98.

(MM/DD/YYYY) is the default. To change it, assign a new behavior to (DATE):

<xt> IS (DATE)

...where xt is the execution token of the desired behavior.

Entry of times also takes advantage of SwiftForth’s enhanced number conversion
features. Just as you can use slashes in dates for readability, you can also use
colons in times. For example, you could set your system’s time-of-day clock by typ-
ing:

10:25:30 HOURS
Programming in SwiftForth 57

SwiftForth Reference Manual
Here, the double-precision integer 102530 is presented to HOURS, which converts it
to internal units and stores it.

Glossary Low-level time and date functions

@NOW (— ud u)
Return the system time as an unsigned, double number ud representing seconds
since midnight, and the system date as u days since 01/01/1900.

!NOW (ud u —)
Use parameters like those returned by @NOW to set the system time and date.

TIME&DATE (— u1 u2 u3 u4 u5 u6)
Return the system time and date as u1 seconds (0–59), u2 minutes (0–59), u3 hours
(0–23), u4 day (1–31), u5 month (1–12), u6 year (1900–2079).

!TIME&DATE (u1 u2 u3 u4 u5 u6 —)
Convert the stack arguments u1 seconds (0–59), u2 minutes (0–59), u3 hours (0–23),
u4 day (1–31), u5 month (1–12), u6 year (1900–2079) to internal form and store them
as the system date and time.

Time functions

@TIME (— ud)
Return the system time as an unsigned, double number representing seconds since
midnight.

(TIME) (ud — addr u)
Format the time ud as a string with the format hh:mm:ss, returning the address and
length of the string.

.TIME (ud —)
Display the time ud in the format applied by (TIME) above.

TIME (—)
Display the current system time.

HOURS (ud —)
Set the current system time to the value represented by ud, which was entered as
hh:mm:ss.

Date functions

D/M/Y (u1 u2 u3 — u4)
Convert day u1, month u2, and year u3 into MJD u4.

M/D/Y (ud — u)
Accept an unsigned, double-number date which was entered as mm/dd/yyyy, and
convert it to MJD.

@DATE (— u)
Return the current system date as an MJD.
58 Programming in SwiftForth

SwiftForth Reference Manual
(DATE) (u1 — addr u2)
An execution vector that may be set to a suitable formatting behavior. The default
(MM/DD/YYYY) formats the MJD u1 as a string in the form mm/dd/yyyy, returning the
address and length of the string.

(MM/DD/YYYY) (u1 — addr u2)
Format the MJD u1 as a string with the format mm/dd/yyyy, returning the address
and length of the string. This is the default behavior of (DATE).

(DD-MMM-YYYY) (u1 — addr u2)
Format the MJD u1 as a string with the format dd-MMM-yyyy, where MMM is a
three-letter month abbreviation, returning the address and length of the
string. This is the default behavior of (DATE).

(WINLONGDATE) (u1 — addr u2)
Format the MJD u1 as a string using the Windows long date format. This is a possi-
ble alternative behavior for (DATE).

(WINSHORTDATE) (u1 — addr u2)
Format the MJD u1 as a string using the Windows short date format. This is a possi-
ble alternative behavior for (DATE).

.DATE (u —)
Display the MJD u in the format applied by (DATE) above.

DATE (—)
Display the current system date.

NOW (ud —)
Set the current system date to the value represented by the unsigned, double num-
ber which was entered as mm/dd/yyyy.

References Number conversion, Section 4.3
Execution vectors, including IS, Section 4.5.5

4.4.2 Interval Timing

SwiftForth includes facilities to time events, both in the sense of specifying when
something will be done, and of measuring how long something takes. These words
are described in the glossary below.

The word MS causes a task to suspend its operations for a specified number of milli-
seconds, during which time other tasks can run. For example, if an application word
SAMPLE records a sample, and you want it to record a specified number of samples,
one every 100 ms., you could write a loop like this:

: SAMPLES (n --)
 (n) 0 DO \ Record n samples
 SAMPLE 100 MS \ Take one sample, wait 100 ms
 LOOP ;
Programming in SwiftForth 59

SwiftForth Reference Manual
Because MS relies on a Windows timer, the accuracy of the measured interval
depends upon the overall Windows multitasking environment. In general, the error
on an interval will be on the order of the duration of a clock tick; however, it can be
much longer if a privileged operation is running. The exact distribution of errors is
highly subject to the behavior of other Windows programs that may be running.

The words COUNTER and TIMER can be used together to measure the elapsed time
between two events. For example, if you wanted to measure the overhead caused by
other tasks in the system, you could do it this way:

: MEASURE (--) \ Time the measurement overhead
 COUNTER \ Initial value
 100000 0 DO \ Total time for 100,000 trials
 PAUSE \ One lap around the multitasker
 LOOP
 TIMER ; \ Display results.

Following a run of MEASURE, you can divide the time by 100,000 to get the time for
an average PAUSE. For maximum accuracy, you can run an empty loop (without
PAUSE) and measure the measurement overhead itself.

A formula you can use in Forth for computing the time of a single execution is:

<t> 100 <n> */ .

where t is the time given by a word such as MEASURE, above, and n is the number of
iterations. This yields the number of 1/100ths of a millisecond per iteration (the
extra 100 is used to obtain greater precision).

The pair of words uCOUNTER and uTIMER are analogous to COUNTER and TIMER, but use
the high-performance clock that runs at about 1 MHz, and manage 64-bit counts of
microseconds.

Glossary

MS (n —)
PAUSE the current task for n milliseconds. The accuracy of this interval is always
about one clock tick.

COUNTER (— u)
Return the current value of the millisecond timer.

TIMER (u —)
Repeat COUNTER, then subtract the two values and display the interval between the
two in milliseconds.

EXPIRED (u — flag)
Return true if the current millisecond timer reading has passed u. For example, the
following word will execute the hypothetical word TEST for u milliseconds:

: TRY (u --) \ Run TEST repeatedly for u ms.
 COUNTER + BEGIN \ Add interval to curr. value.
 TEST \ Perform test.
 DUP EXPIRED UNTIL ; \ Stop when time expires.
60 Programming in SwiftForth

SwiftForth Reference Manual
uCOUNTER (— d)
Return the current value of the microsecond timer.

uTIMER (d —)
Repeat uCOUNTER, then subtract the two values and display the interval between the
two in microseconds.

References Time and timing, Forth Programmer’s Handbook
Timer support, Section 5.7
Multitasking impact of MS, Section 7.2.3

4.5 Specialized Program and Data Structures

The complex needs of the Windows environment have led to the inclusion of the
specialized structures described in this section.

4.5.1 String Buffers

ANS Forth provides the word PAD to return the address of a buffer that may be used
for temporary data storage. In SwiftForth, PAD starts at 512 bytes above HERE, and its
actual size can extend for the balance of unused memory (typically several MB). You
can determine the actual size by the phrase:

UNUSED 512 - .

This will change, as will the address of PAD, any time you add definitions, perform
ALLOT, or otherwise change the size of the dictionary.

SwiftForth itself uses PAD only for various high-level functions, such as the WORDS
browser, cross-reference, etc. It is highly recommended as a place to put strings for
temporary processing, such as building a message or command string that will be
used immediately, or to keep a search key during a search. It is not appropriate for
long-term storage of data; for this purpose you should define a buffer using BUF-
FER: or one of the words from Section 4.5.2.

BUFFER: is a simple way to define a buffer or array whose size is specified in charac-
ters. For example:

100 BUFFER: MYSTRING

...defines a 100-character region whose address will be returned by MYSTRING. If you
prefer to specify the length in cells, you may use:

50 CELLS BUFFER: MYARRAY

...which defines a buffer 50 cells (200 bytes) long whose address is returned by
MYARRAY.

There is an important distinction between PAD and buffers defined by BUFFER:. PAD
is in a task’s user area, which means that if you have multiple tasks (including the
Programming in SwiftForth 61

SwiftForth Reference Manual
kind of transient task instantiated by a callback) each may have its own PAD. In con-
trast, a BUFFER: (like all other Forth data objects) is static and global.

Glossary

PAD (— addr)
Returns the address of a region in the user area suitable for temporary storage of
string data. The size of PAD is indefinite, comprising all unused memory in a task’s
dictionary space. Beacuse PAD is in the user area, each task or callback has a private
version. PAD is defined relative to HERE, and so will move if additional memory is
allotted for definitions or data.

BUFFER: <name> (n —)
Defines a buffer n characters in size. Use of name will return the address of the
start of the buffer.

References WORDS browser, Section 2.4.2
Cross-reference, Section 2.4.3
User areas, Section 7.2.1
Callbacks, Section 8.1.2

4.5.2 String Data Structures

SwiftForth includes the standard Forth words S" and C", and in addition provides
several string-defining words that are used similarly. Windows uses a standard
string format that is terminated by a binary zero, referred to as an ASCIIZ string.
Also, Unicode strings are required in a few places. In this implementation, these are
ASCII characters in the low byte of a 16-bit character, with the high-order byte zero.

All of the string-defining words are intended to be used inside definitions or struc-
tures such as switches (Section 4.5.4). If you use one of them interpretively, it will
return an address in a temporary buffer. This is useful for interactive debugging,
but you should not attempt to record such an address, as there is no guarantee how
long the string will remain there!

SwiftForth includes a special set of string words with \ in their names, listed in the
glossary below, that provide for the inclusion of control characters, quote marks,
and other special characters in the string.

Within the string, a backslash indicates that the character following it is to be trans-
lated or treated specially, following the conventions used in the C printf() function.
The transformations listed in Table 12 are supported. Note that characters follow-
ing the \ are case-sensitive.

The string-management extensions in SwiftForth are documented below.

Table 12: Character sequence transformations

Character sequence Compiled byte(s), hex Description

\\ 5C backslash
62 Programming in SwiftForth

SwiftForth Reference Manual
Glossary

Z" <string> " (— addr)
Compile a zero-terminated string, returning its address.

Z\" <string> " (— addr)
Compile a zero-terminated string, returning its address. The string may contain a \
followed by one or more characters which will be converted into a control or other
special character according to the transformations listed in Table 12.

,Z" <string> " (—)
Compile a zero-terminated string with no leading count.

,Z\" <string> " (—)

Compile a zero-terminated string. The string may contain a \ followed by one or
more characters which will be converted into a control or other special character
according to the transformations listed in Table 12. (Differs from Z\" in that it is
used interpretively to compile a string, whereas Z\" belongs inside a definition).

,U" <string> " (—)

Compile a Unicode string. Analogous to U" but used interpretively, whereas U"
belongs inside a definition.

,U\" <string> " (—)

Compile a Unicode string. The string may contain a \ followed by one or more char-
acters which will be converted into a control or other special character according to
the transformations listed in Table 12.

\” 22 double quote

\q 22 double quote

\a 07 bell

\b 08 backspace

\e 1B escape

\l 0A line feed

\f 0C form-feed

\n 0A Platform-specific end-of-line

\r 0D CR

\t 09 horizontal tab

\v 0B vertical tab

\xcc cc General constant, expressed
ashex cc

\z 00 null

Table 12: Character sequence transformations (continued)

Character sequence Compiled byte(s), hex Description
Programming in SwiftForth 63

SwiftForth Reference Manual
S\" <string> " (— addr n)
Compile a string, returning its address and length. The string may contain a \ fol-
lowed by one or more characters which will be converted into a control or other spe-
cial character according to the transformations listed in Table 12.

.\” (—)
Compile a counted string and print it at run time. The string may contain a \ fol-
lowed by one or more characters which will be converted into a control or other spe-
cial character according to the transformations listed in Table 12.

C\" <string> " (— addr)
Compile a counted string, returning its address. The string may contain a \ fol-
lowed by one or more characters which will be converted into a control or other spe-
cial character according to the transformations listed in Table 12.

," <string> " (—)
Compile the following string in the dictionary starting at HERE, and allocate space
for it.

,\" <string> " (—)
Similar to ," but the string may contain a \ followed by one or more characters
which will be converted into a control or other special character according to the
transformations listed in Table 12. For example, ,\" Nice\nCode!\n".

STRING, (addr u —)
Compile the string at addr, whose length is u, in the dictionary starting at HERE, and
allocate space for it.

PLACE (addr1 u addr2 —)
Put the string at addr1, whose length is u, at addr2, formatting it as a counted string
(count in the first byte). Does not check to see if space is allocated for the final
string, whose length is n+1.

APPEND (addr1 u addr2 —)
Append the string at addr1, whose length is u, to the counted string already existing
at addr2. Does not check to see if space is allocated for the final string.

ZPLACE (addr1 u addr2 —)
Put the string at addr1, whose length is u, at addr2 as a zero-terminated string. Does
not check to see if space is allocated for the final string.

ZAPPEND (addr1 u addr2 —)
Append the string at addr1, whose length is u, to the zero-terminated string already
existing at addr2. Does not check to see if space is allocated for the final string.

SCAN (addr1 len1 char -- addr2 len2)
Searches for the first instance of the specified character in a string. Returns the
address of the character and the remaining length of the string. len2 = 0 means that
the character was not found.

SKIP (addr1 len1 char -- addr2 len2)
Skips leading instances of the specified character in a string.
64 Programming in SwiftForth

SwiftForth Reference Manual
4.5.3 Linked Lists

SwiftForth provides for linked lists of items that are of different lengths or that may
be separated by intervening objects or code. This is an important underlying imple-
mentation technology used by switches (Section 4.5.4) as well as other structures. A
linked list is controlled by a VARIABLE that contains a relative pointer to the head of
the chain. Each link contains a relative pointer to the next, and a zero link marks the
end.

In SwiftForth, references to data objects return full, absolute addresses (as
described in Section 5.1.4). To convert these to and from relative addresses (the
only form that is portable both in a .exe program and a DLL), SwiftForth provides
the words @REL, !REL, and ,REL. Respectively, these fetch a relative address (convert-
ing it to absolute), store an address converted from absolute to relative, and com-
pile a converted relative address. These words are used when constructing linked
lists or when referring to the links in them.

Linked lists are built at compile time. The word >LINK inserts a new entry at the top
of the chain, updating the controlling variable and compiling a relative pointer to
the next link at HERE. Similarly, <LINK inserts a link at the bottom of the chain,
replacing the 0 in the previous bottom entry with a pointer to this link, whose link
contains zero. Here is a simple example:

VARIABLE MY-LIST

MY-LIST >LINK 123 ,
MY-LIST >LINK 456 ,
MY-LIST >LINK 789 ,

: TRAVERSE (--)\ Display all values in MY-LIST
MY-LIST BEGIN
 @REL ?DUP WHILE \ While there are more links...
 DUP CELL+ @ . \ Display cell following link
REPEAT ;

Glossary

@REL (addr1 — addr2)
Fetch a relative address from addr1 to the stack, converting it to the absolute
address addr2.

!REL (addr1 addr2 —)
Store absolute address addr1 in addr2, after converting it to a relative address.

,REL (addr —)
Compile absolute address addr at HERE, after converting it to a relative address.

>LINK (addr —)
Add a link starting at HERE to the top of the linked list whose head is at addr (nor-
mally a variable). The head is set to point to the new link, which, in turn, is set to
Programming in SwiftForth 65

SwiftForth Reference Manual
point to the previous top link.

<LINK (addr —)
Add a link starting at HERE to the bottom of the linked list whose head is at addr.
The new link is given a value of zero (indicating the bottom of the list), and the pre-
vious bottom link is set to point to this one.

CALLS (addr —)
Run down a linked list starting at addr, executing the high-level code that follows
each entry in the list.

References Memory model and address management, Section 5.1.4

4.5.4 Switches

Switches are used to process Windows messages, Forth THROW codes, and other
encoded information for which specific responses are required.

Message switches are defined using this syntax:

[SWITCH <name> <default-word>
<val1> RUNS <wordname>
<val2> RUN: <words> ;
...

SWITCH]

where there are two possible RUN words:

• The word RUNS followed by a previously defined word will set that switch entry to
execute the word.

• The word RUN: starts compiling a nameless colon definition, terminated by ;, that
will be executed for that value. This form is appropriate when the response code is
used only in this one case.

This will build a structure whose individual entries have the form:

|link|value|xt|

...where each link points to the next entry. This is necessary because the entries may
be anywhere in memory, and each individual list is subject to extension by
[+SWITCH. The last link in a list contains zero. The xt will point either to a specified
word (if RUNS is used) or to the code fragment following RUN:. Note that the values
do not need to be in any particular order, although performance will be improved if
the most common values appear early.

When the switch is invoked with a value on the stack, the execution behavior of the
switch is to run down the list searching for a matching value. If a match is found,
the routine identified by xt will execute. If no match is found, the default word will
execute. The data value is not passed to the xts, but is passed to the default word if
no match is found.

For example:
66 Programming in SwiftForth

SwiftForth Reference Manual
[SWITCH TESTING DROP
 1 RUNS WORDS
 2 RUN: HERE 100 DUMP ;
 3 RUNS ABOUT
SWITCH]

You may add cases to a previously defined switch using a similar structure called
[+SWITCH, whose syntax is:

[+SWITCH <name>
<valn+1> RUNS <wordname>
<valn+2> RUN: <words> ;
...

SWITCH]

...where name must refer to a previously defined switch. No new default may be
given. The cases valn+1, etc., will be added to the list generated by the original
[SWITCH definition for name, plus any previous [+SWITCH additions to it.

Glossary

[SWITCH <name> (— switch-sys addr)
Start the definition of a switch structure consisting of a linked list of single-preci-
sion numbers and associated behaviors. The switch definition will be terminated by
SWITCH], and can be extended by [+SWITCH. See the discussion above for syntax.

switch-sys and addr are used while building the structure; they are discarded by
SWITCH].

The behavior of name when invoked is to take one number on the stack, and search
the list for a matching value. If a match is found, the corresponding behavior will be
executed; if not, the switch’s default behavior will be executed with the value on the
stack.

[+SWITCH <name> (— switch-sys addr)
Open the switch structure name to include additional list entries. The default
behavior remains unchanged. The additions, like the original entries, are terminated
by SWITCH].

switch-sys and addr are used while building the structure; they are discarded by
SWITCH].

SWITCH] (switch-sys addr —)
Terminate a switch structure (or the latest additions to it) by marking the end of its
linked list.

switch-sys and addr are used while building the structure; they are discarded by
SWITCH].

RUNS <word> (switch-sys addr n — switch-sys addr)
Add an entry to a switch structure whose key value is n and whose associated
behavior is the previously defined word. The parameters switch-sys and addr are
used internally during construction of the switch.
Programming in SwiftForth 67

SwiftForth Reference Manual
RUN: <words> ; (switch-sys addr n — switch-sys addr)
Add an entry to a switch structure whose key value is n and whose associated
behavior is one or more previously defined words, ending with ;. The parameters
switch-sys and addr are used internally during construction of the switch.

4.5.5 Execution Vectors

An execution vector is a location in which an execution token (or xt) may be stored
for later execution. SwiftForth supports several common mechanisms for managing
execution vectors.

The word DEFER makes a definition (called a deferred word) which, when invoked,
will attempt to execute the execution token stored in its data space. If none has
been set, it will abort. To store an xt in such a vector, use the form:

<xt> IS <vector-name>

Note that DEFER is described in Forth Programmer’s Handbook as being set by TO;
that is not a valid usage in SwiftForth.

You may also construct execution vectors as tables you can index into. Such a table
is described in Forth Programmer’s Handbook. SwiftForth provides a word for exe-
cuting words from such a vector, called @EXECUTE. This word performs, in effect, @
followed by EXECUTE. However, it also performs the valuable function of checking
whether the cell contained a zero; if so, it automatically does nothing. So it is not
only safe to initialize an array intended as an execution vector to zeros, it is a useful
practice.

DEFER <name> (—)
Define name as an execution vector. When name is executed, the execution token
stored in name’s data area will be retrieved and its behavior performed. An abort
will occur if name is executed before it has been initialized.

IS <name> (xt —)
Store xt in name, where name is normally a word defined by DEFER.

@EXECUTE (addr —)
Execute the xt stored in addr. If the contents of addr is zero, do nothing.

4.5.6 Local Variables

SwiftForth provides a mechanism for local variables that is compatible with ANS
Forth. Local variables can be very useful in Windows, as the number of parameters
used to manage Windows structures can be large. Local variables are defined and
used as follows:

: <name> (xn ... x2 x1 --)

 LOCALS| name1 name2 ... namen |

 < content of definition > ;
68 Programming in SwiftForth

SwiftForth Reference Manual
When name executes, its local variables are initialized with values taken from the
stack. Note that the order of the local names is the inverse of the order of the stack
arguments as shown in the stack comment; in other words, the first local name (e.g.,
name1) will contain the top stack item (e.g., x1).

The behavior of a local variable, when invoked by name, is to return its value. You
may store a value into a local using the form:

<value> TO <name>

or increment it by a value using the form:

<value> +TO <name>

Local variable names are instantiated only within the definition in which they occur.
Following the locals declaration, locals are not accessible except by name. During
compilation of a definition in which locals have been declared, they will be found
first during a dictionary search. Local variable names may be up to 254 characters
long, and follow the same case-sensitivity rules as the rest of the system. SwiftForth
supports up to 16 local variables in a definition.

Local variables in SwiftForth are instantiated on the return stack. Therefore,
although you may perform some operations in a definition before you declare
locals, you must not place anything on the return stack (e.g., using >R or DO) before
your locals declarations. Return stack usage after the declaration of locals is gov-
erned by the rules in Section 5.1.5.

Note that, since local variables are not available outside the definition in which they
are instantiated, use of local variables precludes interpretive execution of phrases
in which they appear. In other words, when you decide to use local variables you
may simplify stack handling inside the definition, but at some cost in options for
testing. For this reason, we recommend using them sparingly.

Glossary

LOCALS| <name1> <name2> ... <namen> | (xn ... x2 x1 —)
Create up to 16 local variables, giving each an initial value taken from the stack
such that name1 has the value x1, etc. Must be used inside a colon definition.

TO <name> (x —)
Store x in name, where name must be a local variable or defined by VALUE.

+TO <name> (n —)
Add n to the contents of name, where name must be a local variable or defined by
VALUE.

&OF <name> (— addr)
Return address of name, where name must be a local variable or defined by VALUE.
Programming in SwiftForth 69

SwiftForth Reference Manual
4.6 Convenient Extensions

This section presents a collection of words that have been found generally useful in
SwiftForth programming.

Glossary

++ (addr —)
Increment the value at addr.

@+ (addr — addr+4 x)
Fetch the value x from addr, and increment the address by one cell.

!+ (addr x — addr+4)
Write the value x to addr, and increment the address by one cell.

~!+ (x addr — addr+4)
Write the value x to addr, and increment the address by one cell (accepts the param-
eters in reverse order compared to !+).

3DUP (x1 x2 x3 — x1 x2 x3 x1 x2 x3)
Place a copy of the top three stack items onto the stack.

3DROP (x1 x2 x3 —)
Drop the top three items from the stack.

ZERO (x — 0)
Replace the top stack item with the value 0 (zero).

ENUM <name> (n1 — n2)
Define name as a constant with value n1, then increment n1 to return n2. Useful for
defining a sequential list of constants (e.g., THROW codes; see Section 4.7).

ENUM4 <name> (n1 — n2)
Define name as a constant with value n1, then increment n1 by four to return n2.
Useful for defining a sequential list of constants that reference cells or cell offsets.

NEXT-WORD (— addr u)
Get the next word in the input stream—extending the search across line breaks as
necessary, until the end-of-file is reached—and return its address and length.
Returns a string length of 0 at the end of the file.

GET-XY (— nx ny)
Return the current screen cursor position. The converse of the ANS Forth word AT-
XY.

/ALLOT (n —)
Allocate n bytes of space in the dictionary and initialize it to zeros (nulls).
70 Programming in SwiftForth

SwiftForth Reference Manual
4.7 Exceptions and Error Handling

Program exceptions in SwiftForth are handled using the CATCH/THROW mechanism of
Standard Forth. This provides a flexible way of managing exceptions at the appro-
priate level in your program. This approach to error handling is discussed in Forth
Programmer’s Handbook.

SwiftForth includes a scheme to provide optional warnings of potentially serious
errors. These include redefinitions of Forth words and possible attempts to compile
or store absolute addresses, which is often inappropriate; see Section 5.1.4 for a dis-
cussion of address management. You may configure SwiftForth to report only cer-
tain classes of warnings, or disable warnings altogether.

In addition, you may configure the way in which both warnings and error messages
(from THROW) are displayed: either in the command window, in a separate dialog
box, or both. (Even if warnings are disabled, error messages will always be dis-
played.) This configuration is handled by the Options > Warnings menu selection,
discussed in Section 2.3.5.

At the top level of SwiftForth, the text interpreter provides a CATCH around the inter-
pretation of each line processed. You may also place a CATCH around any application
word that may generate an exception whose management you wish to control. Typi-
cally, CATCH is followed by a CASE statement to process possible THROW codes that
may be returned; if you are only interested in one or two possible THROW codes at
this level, an IF … THEN structure may be more appropriate.

As shipped, SwiftForth handles errors detected by the text interpreter’s CATCH by
issuing an error message in a dialog box that must be acknowledged. You may add
application-specific error messages if you wish, using the word >THROW. This word
associates a string with a THROW code such that SwiftForth’s standard error handler
will display that string if it CATCHes its error code. The code is returned to facilitate
naming it as a constant. For example:

12345 S" You've been bad! " >THROW CONSTANT BADNESS

Usage would be BADNESS THROW. In combination with ENUM (an incrementing constant,
described in Section 4.6), >THROW can be used to define a group of THROW codes in
your application. SwiftForth has predefined many internally used THROW codes,
using the naming convention IOR_<name>. You may see which are available using
the Words dialog box specifying “Words that start with” IOR_; to see them all, set
the Vocabulary to *All*.

To avoid re-naming a particular constant, let SwiftForth continue to manage your
throw code assignments. The VALUE THROW# records the next available assigned
THROW code. So, you could define your codes this way:

THROW#
S" Unexpected Error" >THROW ENUM IOR_UNEXPECTED
S" Selection unknown" >THROW ENUM IOR_UNKNOWN
S" Selection not available" >THROW ENUM IOR_NOTAVAIL
S" Value too high" >THROW ENUM IOR_TOOHIGH
S" Value too low" >THROW ENUM IOR_TOOLOW

TO THROW#
Programming in SwiftForth 71

SwiftForth Reference Manual
This defines codes to issue the messages shown. You can use the names defined
with ENUM to issue the errors; for example:

GET-SELECTION 0 10 WITHIN NOT IF IOR_UNKNOWN THROW THEN

SwiftForth’s error-handling facility includes an interface to the Windows exception
handler. When a processor exception is generated, SwiftForth will generate a THROW.
If your application CATCHes such an exception, you can handle it like any other Swift-
Forth exception. If you wish additional information, you may call WINERROR to get
the address and length of the text string describing the exception. The string
returned matches the Win32 API standard status message names, except that the
SwiftForth strings omit a preceding STATUS_ prefix. In other words, the Win32
exception that returns the code STATUS_ACCESS_VIOLATION will, in SwiftForth, return
the string ACCESS_VIOLATION.

SwiftForth’s interface to Windows’ error handling is structured such that each indi-
vidual thread can have its own exception (CATCH) frame, operating independently of
others and nested as desired.

SwiftForth’s standard error handler can be configured (as described in Section 2.3.5)
to display a simple dialog box, a message in the command window, or both. For
example, if you type 0 @ (an illegal attempt to read memory location zero) you’ll get
an ACCESS_VIOLATION processor exception. The resulting dialog box would look like
the one shown in Figure 13. An internal SwiftForth error (e.g., stack underflow or
application-generated exception) would be the same, except that the register por-
tion of the Details button is valid only for Windows exceptions.

Figure 13. Dialog box from a Windows exception

If you press the Details button, the dialog box is extended to show the processor
registers, the top eight data stack items, and the top eight return stack items. Swift-
Forth attempts to translate the return stack addresses, to provide additional debug-
ging information. The result is shown in Figure 14.
72 Programming in SwiftForth

SwiftForth Reference Manual
Figure 14. Processor Exception dialog box

On any exception, if you check the “Terminate” box, pressing the OK button will
close SwiftForth. Otherwise, it will cause an internal abort, clearing both stacks and
returning control to the command window. This will usually work, except in the
case of a very serious violation (e.g., a deep return stack underflow).

Glossary

>THROW (n addr u — n)
Associate the string addr u with the THROW code n such that SwiftForth’s standard
error handler will display that string if it CATCHes its error code. The code is
returned to facilitate naming it as a constant.

WINERROR (— addr u)
Following a Windows exception caught by CATCH, returns the address and length of
the string provided by Windows identifying the exception.

4.8 Standard Forth Compatibility

In implementing SwiftForth, we have made every attempt to deliver a standard
Forth system in compliance with ANSI X3.215-1994 and ISO/IEC 15145:1997 (here-
after referred to as Standard Forth). The package includes the Hayes Standard Forth
compliance test suite, in \Unsupported\Anstest. To run it, type:

INCLUDE anstest.f.

Sample output is shown in Anstest.txt.

This section provides a summary of SwiftForth’s compliance to Standard Forth. Fur-
ther details are given in Appendix B. We welcome any comments or questions in this
regard.
Programming in SwiftForth 73

SwiftForth Reference Manual
Table 13 summarizes SwiftForth support for the wordsets defined in ANS Forth.

Table 13: SwiftForth support for Standard Forth wordsets

Wordset Support provided

CORE All words provided.

CORE EXT All words provided except EXPECT, SPAN, [COMPILE].
EXPECT and SPAN are marked “obsolescent.”

BLOCK All words provided.

BLOCK EXT All words provided. Enhanced editor and block
management and editing support is also provided;
see Sections A.2 and A.1.

DOUBLE All words provided.

DOUBLE EXT All words provided.

EXCEPTION All words provided.

EXCEPTION EXT All words provided.

FACILITY All words provided.

FACILITY EXT All words provided.

FILE All words provided.

FILE EXT All words provided.

FLOATING All words provided.

FLOATING EXT All words provided.

LOCALS All words provided.

MEMORY All words provided.

TOOLS All words provided.

TOOLS EXT All words provided except FORGET, which is
obsolescent.

SEARCH All words provided.

SEARCH EXT All words provided.

STRING All words provided.

STRING EXT All words provided.
74 Programming in SwiftForth

SwiftForth Reference Manual
Section 5: SwiftForth Implementation

SwiftForth is designed to produce optimal performance in a Windows 32-bit envi-
ronment. This section describes the implementation of the Forth virtual machine in
this context.

5.1 Implementation Overview

This section provides a summary of the important implementation features of
SwiftForth. More detail on critical issues is provided in later sections.

5.1.1 Execution model

SwiftForth is a 32-bit, subroutine-threaded Forth running as a GUI application under
the Win32 subsystem of Windows 95 and later.

Subroutine threading is an implementation strategy in which references in a colon
definition are compiled as subroutine calls, rather than as addresses that must be
processed by an address interpreter.

Colon and code definitions do not have a code field distinct from the content of the
definition itself; data structures typically have a code field consisting of a call to the
code for that data type. At the end of a colon definition, the EXIT used in other
Forth implementation strategies is replaced by a subroutine return.

A subroutine-threaded implementation lends itself to code inline expansion. Swift-
Forth takes advantage of this via a header flag indicating that a word is to be com-
piled inline or called. Many kernel-level primitives are designated for inline
expansion by being defined with ICODE rather than by CODE (see Section 6.2).

The compiler will automatically inline a definition whose INLINE field is set.

References Forth implementation strategies, Forth Programmer’s Handbook

5.1.2 Code Optimization

More extensive optimization is provided by a powerful rule-based optimizer that
can optimize over 200 common high-level phrases. This optimizer is normally on,
but can be turned off for debugging or comparison purposes. Consider the defini-
tion of DIGIT, which converts a small binary number to a digit:

: DIGIT (u -- char) DUP 9 > IF 7 + THEN [CHAR] 0 + ;

With the optimizer turned off, you would get:

SEE DIGIT
SwiftForth Implementation 75

SwiftForth Reference Manual
4078BF 4 # EBP SUB 83ED04
4078C2 EBX 0 [EBP] MOV 895D00
4078C5 4 # EBP SUB 83ED04
4078C8 EBX 0 [EBP] MOV 895D00
4078CB 9 # EBX MOV BB09000000
4078D0 403263 (>) CALL E88EB9FFFF
4078D5 EBX EBX OR 09DB
4078D7 0 [EBP] EBX MOV 8B5D00
4078DA 4 [EBP] EBP LEA 8D6D04
4078DD 4078F4 JZ 0F8411000000
4078E3 4 # EBP SUB 83ED04
4078E6 EBX 0 [EBP] MOV 895D00
4078E9 7 # EBX MOV BB07000000
4078EE 0 [EBP] EBX ADD 035D00
4078F1 4 # EBP ADD 83C504
4078F4 4 # EBP SUB 83ED04
4078F7 EBX 0 [EBP] MOV 895D00
4078FA 30 # EBX MOV BB30000000
4078FF 0 [EBP] EBX ADD 035D00
407902 4 # EBP ADD 83C504
407905 RET C3 ok

But with it turned on, you would get:

SEE DIGIT
45A2D3 9 # EBX CMP 83FB09
45A2D6 45A2DF JLE 0F8E03000000
45A2DC 7 # EBX ADD 83C307
45A2DF 30 # EBX ADD 83C330
45A2E2 RET C3 ok

Another example shows the compiler’s ability to “fold” literals, and operations on
literals, into shorter sequences. The definition…

: TEST DUP 6 CELLS + CELL+ $FFFF AND @ ;

…optimizes nicely to:

SEE TEST
45A2F3 4 # EBP SUB 83ED04
45A2F6 EBX 0 [EBP] MOV 895D00
45A2F9 18 # EBX ADD 83C318
45A2FC 4 # EBX ADD 83C304
45A2FF FFFF # EBX AND 81E3FFFF0000
45A305 0 [EBX] EBX MOV 8B1B
45A307 RET C3 ok

To experiment with this further, follow this procedure:

1. Turn off the optimizer, by typing -OPTIMIZER
2. Type in a definition.
3. Decompile it, using SEE <name>.
4. Turn the optimizer back on with +OPTIMIZER
5. Re-enter your definition.
76 SwiftForth Implementation

SwiftForth Reference Manual
Tip: You can re-enter the previous definition by pressing your up-arrow key until
you see the desired line, then press Enter to re-enter it.

6. Decompile it and compare.

At the end of each colon definition, the optimizer attempts to convert a CALL fol-
lowed by a RET into a single JMP instruction. This process is known as tail recursion
and is a common compiler technique. To prevent tail recursion on a definition (e.g.
a word that performs implementation-specific manipulation of the return stack),
follow the end of the definition with the directive NO-TAIL-RECURSION.

5.1.3 Register usage

Following are the register assignments:

• EBX is the top of stack

• ESI is the user area pointer

• EDI contains the address of the start of SwiftForth’s memory

• EBP is the data stack pointer

• ESP is the return stack pointer

All other registers are available for use without saving and restoring.

Note that the processor stack pointer is now used for the return stack; this is a con-
sequence of the subroutine-threaded model. This model also does not require regis-
ters for the address interpreter (I and W in some implementations). With more
registers free, this system uses EBX to cache the top stack item, as noted above,
which further improves performance.

References Assembly language programming in SwiftForth, Section 6

5.1.4 Memory Model and Address Management

SwiftForth’s dictionary occupies a single, contiguous, flat 32-bit address space in
Windows virtual memory. SwiftForth is position-independent, which means it can
run wherever Windows has instantiated it without having to keep track of where
that is. This means that compiled address references are relative; however, when
words that reference data objects (e.g., things constructed with CREATE, VARIABLE,
etc.) are executed, they return an absolute address that can be passed to Windows,
if desired, without change. All references in this book to “addresses” as stack argu-
ments refer to these full, absolute addresses.

By contrast, some Windows Forths keep the absolute address of the beginning of
the assigned memory area in a register, and internally use addresses assigned from
a zero base. When an address is passed to Windows, the register value must be
added to the internal address; when Windows passes it an address, the register
value must be subtracted to get the internal address.
SwiftForth Implementation 77

SwiftForth Reference Manual
By being position-independent, SwiftForth simplifies and speeds up all Windows
interactions. This feature is a natural consequence of subroutine-threading, since
80x86 calls use relative addresses. Forth execution tokens are zero-relative to the
start of the run-time memory space, but they are used only internally and, thus, do
not need conversion.

SwiftForth and turnkey executable programs made from SwiftForth are always
instantiated into the same virtual address space. However, DLLs made from Swift-
Forth cannot control where they are instantiated.

Therefore, although it is efficient for data objects to return absolute addresses,
these must never be compiled into definitions in code that may be used in a DLL.
Instead, you should always execute the object name at run time to get the address.
The only situation in which this is difficult is in assembler code; Section 6.5.5 dis-
cusses ways of doing this if you really need to compile or permanently store data
addresses.

References Creating DLLs from SwiftForth, Section 8.2.2
PROTECTION option (absolute address warnings), Section 2.3.5

5.1.5 Stack Implementation and Rules of Use

The Forth virtual machine has two stacks with 32-bit items, which in SwiftForth are
located in the stack frame assigned by Windows. Stacks grow downward in address
space. The return stack is the CPU’s subroutine stack, and it functions analogously
to the traditional Forth return stack (i.e., carries return addresses for nested calls).
A program may use the return stack for temporary storage during the execution of
a definition, subject to the following restrictions:

• A program shall not access values on the return stack (using R@, R>, 2R@, or 2R>) that
it did not place there using >R or 2>R.

• When within a DO loop, a program shall not access values that were placed on the
return stack before the loop was entered.

• All values placed on the return stack within a DO loop shall be removed before I, J,
LOOP, +LOOP, or LEAVE is executed.

• In a definition in which local variables will be used, values may not be placed on the
return stack before the local variables declaration.

• All values placed on the return stack within a definition shall be removed before the
definition is terminated or before EXIT is executed.

References Return stack use by local variables, Section 4.5.6

5.1.6 Dictionary Features

The dictionary can accommodate word names up to 254 characters in length. This
is because the names of Windows functions can be quite long, and because it is
desirable to be able to keep long filenames as normal dictionary entries.
78 SwiftForth Implementation

SwiftForth Reference Manual
There is no address alignment requirement in SwiftForth.

References Dictionary structure, Section 5.5.1
Wordlists in SwiftForth, Section 5.5.2

5.2 Memory Organization

SwiftForth’s dictionary resides in a Windows-provided memory space whose size is
fixed when SwiftForth is loaded. The current memory allocation and usage can be
displayed with .ALLOCATION.

The SwiftForth dictionary begins at ORIGIN. SwiftForth’s loader ensures that it is
always instantiated at a fixed address. The dictionary grows toward high memory.

The general layout of SwiftForth’s memory is shown in Figure 15.

Figure 15. SwiftForth memory map

The Standard Forth command UNUSED returns on the stack the current amount of
free space remaining in the dictionary; the command FYI displays the origin, cur-
rent value of HERE (top of dictionary), and remaining free space.

System
extensions

Return Stack

Data Stack

Un-allocated memory

ORIGIN

Reserved
dictionary

space

MEMTOP

Stack
space

assigned
by

Windows

Code entry point
(ORIGIN $100 -)

OPERATOR's
User Area

Kernel

Available
memory

S0

R0

HERE
SwiftForth Implementation 79

SwiftForth Reference Manual
A total of 1 MB of stack space is allocated by Windows. SwiftForth reserves the top
portion of this for its data stack, and the balance is left for the return stack. The
return stack is the processor stack, which is used extensively by Windows.

SwiftForth is an inherently multitasked system. When booted, it has a single task,
whose name is OPERATOR. OPERATOR’s user area is allocated above the kernel. You
may define and manage additional tasks, as described in Section 7. Additional
tasks each get a private 1 MB space for user variables and stacks; this space is com-
pletely independent of SwiftForth’s dictionary allocation.

Glossary

.ALLOCATION (—)
Displays the current SwiftForth memory allocation and usage.

MEMTOP (— addr)
Return the address of the top of SwiftForth’s committed memory.

ORIGIN (— addr)
Return the address of the origin of SwiftForth’s committed memory.

+ORIGIN (xt — addr)
Convert an execution token to an address by adding ORIGIN.

-ORIGIN (addr — xt)
Convert an absolute address to a relative address by subtracting ORIGIN.

UNUSED (— n)
Return the amount of available memory remaining in the dictionary. This value
must not fall below 32K.

FYI (—)
Display current memory statistics: origin address, next available address, total
committed memory, and amount of free memory.

5.3 Control Structure Balance Checking

The SwiftForth colon definition compiler performs an optional control structure
balance check at the end of each definition. If any control structure is left unbal-
anced, SwiftForth will abort with this error message:

Unbalanced control structure

This feature can be turned on and off with the words +BALANCE and -BALANCE. The
default is on.

Here is an advanced use of control structures that passes control between two high-
level definitions, but leaves the first definition out of balance until the IF and BEGIN

are resolved in the second definition1:

1.Thanks to Bill Muench of Intellasys for this elegant example.
80 SwiftForth Implementation

SwiftForth Reference Manual
-BALANCE
: DUMIN (d1 d2 -- d3) 2OVER 2OVER DU< IF BEGIN 2DROP ;
: DUMAX (d1 d2 -- d3) 2OVER 2OVER DU< UNTIL THEN 2SWAP 2DROP ;
+BALANCE

Glossary

-BALANCE (—)
Turn off control structure balance checking.

+BALANCE (—)
Turn on control structure balance checking.

5.4 Dynamic Memory Allocation

SwiftForth supports the ANS Forth dynamic memory allocation wordset, described
in Forth Programmer’s Handbook. ALLOCATE gets memory from Windows’ virtual
memory pool, which is outside SwiftForth’s data space.

This is a particularly useful strategy for large buffers, because it avoids enlarging
the size of a saved program (which would be the result of a CREATE … ALLOT
sequence). It’s also a useful strategy for assigning private data space to each
instance of a window; the handle may be stored in the window data structure.

Virtual memory ALLOCATEd by your program does not have to be explicitly released,
as it will be automatically released when the program terminates. However, mem-
ory ALLOCATEd by a window must be released when the window is destroyed.

ALLOCATEd memory is not instantiated until you write to it.

References Temporary memory allocation for callback use, Section 8.1.2

5.5 Dictionary Management

This section describes the layout and management of the SwiftForth dictionary.

5.5.1 Dictionary Structure

The SwiftForth dictionary includes code, headers, and data. There is no separation
of code and data in this system.
SwiftForth Implementation 81

SwiftForth Reference Manual
Figure 16. Dictionary header fields

Headers are laid out as shown in Figure 16. Within the header, the following fields
are defined:

• FF is always set to FFH; this is a marker byte, used to identify the start of the name
field. No other byte in the name field of the header may be FF.

• f is the flags byte (depicted in Figure 17).

• # is a count byte, valid for 0–254 characters; it is followed by the given number of
characters.

• & is the inline byte. If it is zero, references to this word must compile a CALL to this
word; otherwise, it specifies the inline expansion size, 1–254 bytes.

Expansion of an inline definition does not include a trailing RET if one is present.

Figure 17. Structure of the “flags” byte

SwiftForth also provides a number of words for managing and navigating to various
parts of a definition header. These are summarized in the glossary.

Glossary

IMMEDIATE (—)
Set the immediate bit in the most recently created header.

+SMUDGE (—)
Set the smudge bit in the flags byte, thus rendering the name invisible to the dictio-
nary search. This bit is set for a colon definition while it is being constructed, to
avoid inadvertent recursive references.

-SMUDGE (—)
Clear the smudge bit.

>BODY (xt — addr)
Return the parameter field address for the definition xt.
82 SwiftForth Implementation

SwiftForth Reference Manual
BODY> (addr — xt)
Return the xt corresponding to the parameter field address addr.

>CODE (xt — addr)
Return the code address addr corresponding to xt.

CODE> (addr — xt)
Return the xt corresponding to the code address addr.

>NAME (xt — addr)
Return the address of the name field for the definition xt.

NAME> (addr — xt)
Return the xt corresponding to the name at addr.

References Wordlists in Forth, Forth Programmer’s Handbook
Forth dictionaries, Forth Programmer’s Handbook

5.5.2 Wordlists and Vocabularies

Forth provides for the dictionary to be organized in multiple linked lists. This
serves several purposes:

• to shorten dictionary searches

• to allow names to be used in different contexts with different meanings (as often
occurs in human languages)

• to allow internal words to be protected from inappropriate or unintentional use or
redefinition

• to enable the programmer to control the order in which various categories of words
are searched.

Such lists are called wordlists. ANS Forth provides a number of system-level words
for managing wordlists, discussed in Forth Programmer’s Handbook. These facili-
ties are fully implemented in SwiftForth.

In addition, SwiftForth defines a number of vocabularies. A vocabulary is a named
wordlist. When the name of a vocabulary is invoked, its associated wordlist will be
added to the top of the search order. A vocabulary is defined using the word VOCAB-
ULARY (also discussed in Forth Programmer’s Handbook).

Normally, new definitions are linked into the current wordlist, which is normally a
vocabulary. However, there may be times when you want to manage a special word-
list outside the normal system of Forth defining words and vocabularies.

The word WORDLIST creates a new, unnamed wordlist, and returns a unique single-
cell numeric identifier for it called a wid (wordlist identifier). This may be given a
name by using it as the argument to CONSTANT.

The word (WID-CREATE) will create a definition from a string in a specified wordlist
identifier, given its wid.
SwiftForth Implementation 83

SwiftForth Reference Manual
For example:

S" FOO" FORTH-WORDLIST (WID-CREATE)

In this example, the string parameters for FOO and the wid returned by FORTH-WORD-
LIST are passed to (WID-CREATE).

To search a wordlist of this type, you may use SEARCH-WORDLIST. It takes string
parameters for the string you’re searching for and a wid. It will return a zero if the
word is not found; if the word is found, it will return its xt and a 1 if the definition
is immediate, and a -1 otherwise.

Wordlists are linked in multiple strands, selected by a hashing mechanism, to speed
up the dictionary search process. Wordlists in SwiftForth may have any number of
strands, and the user can set the system default for this. The default number of
strands in a wordlist is 31. To change it, store the desired value in the variable
#STRANDS and save a new executable as described in Section 4.1.2.

Glossary

WORDLIST (— wid)
Create a new empty wordlist, returning its wordlist identifier.

(WID-CREATE) (addr u wid —)
Create a definition for the counted string at addr, in the wordlist wid.

SEARCH-WORDLIST (addr u wid — 0 | xt 1 | xt -1)
Find the definition identified by the string addr u in the wordlist identified by wid.
If the definition is not found, return zero. If the definition is found, return its exe-
cution token xt and 1 if the definition is immediate, -1 otherwise.

#STRANDS (— addr)
Variable containing the number of strands in a wordlist. Its default value is 31.

References Wordlists in Forth, Forth Programmer’s Handbook

5.5.3 Packages

Encapsulation is the process of containing a set of entities such that the members
are only visible thru a user-defined window. Object-oriented programming is one
kind of encapsulation. Another is when a word or routine requires supporting
words for its definition, but which have no interest to the “outside” world.

Packages are a technique for encapsulating groups of words. This is useful when
you are writing special-purpose code that includes a number of support words plus
a specific API. The words that constitute the API need to be public (globally avail-
able), whereas the support words are best hidden (private) in order to keep dictio-
nary searches short and avoid name collisions. Packages in SwiftForth are
implemented using wordlists.

 The simplest way to show how packages work is with an example.
84 SwiftForth Implementation

SwiftForth Reference Manual
PACKAGE MYAPPLICATION

PACKAGE defines a named wordlist, and places a set of marker values (referred to as
tag in the glossary below) on the data stack. These marker values will be used by the
words PRIVATE and PUBLIC to specify the scope of access for groups of words in the
package, and must remain on the stack throughout compilation of the package.

Initially words defined in a package are PRIVATE. This means that the system vari-
able CURRENT, which indicates the wordlist into which to place new definitions, is set
to the newly created wordlist MYAPPLICATION.

Now we define a few private words. These words are the building blocks for the
application, but are considered not to be generally useful or interesting. They are
available for use while the package is being compiled, and are available at any time
by explicit wordlist manipulation.

: WORD1 (--) ... ;
: WORD2 (--) ... ;
: WORD3 (--) ... ;

PUBLIC words are the words that are available to the user as the API, or to make the
package accessible from other code. These words are placed into whatever wordlist
was CURRENT when the package was opened. PUBLIC words may reference any words
in the PRIVATE section, as well as any words normally available in the current search
order.

PUBLIC
: WORD4 (--) WORD1 WORD2 DUP + ;
: WORD5 (--) WORD1 WORD3 OVER SWAP ;

We can switch back to PRIVATE words anytime.

PRIVATE
: WORD6 (--) WORD1 WORD5 DUP + OVER ;
: WORD7 (--) WORD1 WORD4 WORD6 SWAP ROT DROP ;

We can switch between PUBLIC and PRIVATE as many times as we wish. When we are
finished, we close the package with the command:

END-PACKAGE

With the package closed, only the PUBLIC words are still “visible.”

If you need to add words to a previously-constructed package, you may re-open it
by re-asserting its defining phrase:

PACKAGE MYAPPLICATION

The word PACKAGE will create a new package only if it doesn’t already exist; so using
PACKAGE with an already-created package name re-opens it. After re-opening, the
normal PUBLIC, PRIVATE, and END-PACKAGE definitions apply.
SwiftForth Implementation 85

SwiftForth Reference Manual
Glossary

PACKAGE <name> (— tag)
If the package name has been previously defined, open it and return its tag. Other-
wise, create it and return a tag.

PRIVATE (tag — tag)
Mark subsequent definitions invisible outside the package. This is the default con-
dition following the use of PACKAGE.

PUBLIC (tag — tag)
Mark subsequent definitions available outside the package.

END-PACKAGE (tag —)
Close the package.

5.5.4 Automatic Resolution of References to Windows Constants

Windows programming uses a large number of named constants, such as GENER-
IC_READ. The system would be burdened to include all of these as Forth definitions.
The SwiftForth compiler contains a link to a file with access to the full list, called
WINCON.DLL (included with SwiftForth), and the dictionary search mechanism is
extended to include it if the parsed text is not a known word or a valid number.

References to Windows constants are compiled as literals, so after compilation is
complete, WINCON.DLL is no longer needed. It is also not required by non-extensible
turnkey applications.

5.5.5 Dictionary Search Extensions

Because numerous entities can be referenced in SwiftForth beyond just defined
words and numbers, the dictionary search mechanism has been extended. The full
search includes the following steps (listed in the order performed):

1. Search the list of currently active local variables (if any).
2. Search the dictionary, according to the current search order.
3. Try to convert the word as a number (including floating point, if the floating-point

option is loaded).
4. Check the special Windows function wordlist KNOWN-PROCS (see Section 5.5.2).
5. Check WINCON.DLL.
6. Abort, with the error message <unknown-word> ?

References Local variables, Section 4.5.6
Search orders, Section 5.5.2
Number conversion, Section 4.3
86 SwiftForth Implementation

SwiftForth Reference Manual
5.6 Terminal-type Devices

Forth provides a standard API for terminal-type devices (those that handle character
I/O) that is described in the Terminal Input and Terminal Ouput topics in Forth Pro-
grammer’s Handbook. Most implementations handle the existence of varied actual
character-oriented devices by vectoring the standard words KEY, EMIT, TYPE, etc., to
perform appropriate behaviors for each device supported, along with a mechanism
for selecting devices.

5.6.1 Device Personalities

In SwiftForth, the collection of device-specific functions underlying the terminal API
is called a personality. Personalities are useful for making specialized serial-type
destinations; all the serial I/O words in SwiftForth (e.g., TYPE, EMIT, KEY, etc.) are
implemented as vectored functions whose actual behavior depends upon the cur-
rent personality. SwiftForth’s command window has a specific personality, for
example, which is different from the one supported for buffered I/O.

A personality is a data structure composed of data and execution vectors; the first
two cells contain the number of bytes of data and the number of vectors present.
Any SwiftForth task or callback may have its own current personality; a pointer to
the current personality is kept in the user variable 'PERSONALITY.

A description of a personality data structure is given in Table 14. When defining a
personality for a device that supports only a subset of these, the unsupported ones
must be given appropriate null behaviors. In most cases, this can be provided with
' NOOP (address of a word that does nothing); or you could use DROP or 2DROP to dis-
card parameters.

Table 14: Terminal personality elements

Item Stack Description

Data section (values assumed to be single-cell integers)

datasize Size of the data section, in bytes.

maxvector Number of vectors (whole cells).

handle Handle for input/output.

previous Address of saved previous personality.

Vector section (xts of actual words to be executed by “Item” word)

INVOKE (—) Open the personality (performing necessary initial-
ization, if any).

REVOKE (—) Close the personality (performing necessary
cleanup, if any).

/INPUT (—) Reset the input stream.

EMIT (char —) Output char.

TYPE (addr len
—)

Output the string addr len.
SwiftForth Implementation 87

SwiftForth Reference Manual
The handle and “previous” locations are used during execution; they are normally
initialized to zero by using 0 , to allocate their space.

A personality does not have to implement a full set of vectors, but the correct order
and structure must be maintained, with no gaps. In other words, you may leave off
unused items at the end, if desired, making a shorter structure. Any vectors that
are not implemented but are present must be assigned a default behavior and the
stack effect must be correct.

For example, the following code defines a personality that does nothing:

: NULL 0 ;
: 2NULL 0 0 ;

CREATE MUTE \ data offset (bytes)
4 CELLS , \ datasize0
18 , \ maxvector4
0 , \ PHANDLE8
0 , \ PREVIOUS12

\ Vector Offset (cells)
' NOOP , \ INVOKE(--) 0
' NOOP , \ REVOKE(--)1
' NOOP , \ /INPUT(--)2
' DROP , \ EMIT (char --)3

?TYPE (addr len
—)

Output the string addr len, respecting margins and
performing necessary additional formatting.

CR (—) Go to the next line.

PAGE (—) Go to the next page (or clear screen).

ATTRIBUTE (n —) Set the attribute n for output strings from TYPE
and EMIT.

KEY (— char) Low-level function to wait for a character.

KEY? (— flag) Low-level function to return true if a character is
waiting.

EKEY (— char) Low-level function to wait for an extended charac-
ter.

EKEY? (— flag) Low-level function to return true if an extended
character is waiting.

AKEY (— char) Specialized version of KEY used by ACCEPT, which
processes Enter, Backspace, etc., if necessary.

PUSHTEXT (addr len
—)

Push the string addr len into the input stream for
interpretation.

AT-XY (nx ny—) Position the cursor at row nx, column ny.

GET-XY (— nx ny) Return the current cursor position.

GET-SIZE (— nx ny) Return the size, in characters, of the current dis-
play device.

Table 14: Terminal personality elements (continued)

Item Stack Description
88 SwiftForth Implementation

SwiftForth Reference Manual
' 2DROP , \ TYPE (addr len --)4
' 2DROP , \ ?TYPE (addr len --)5
' DROP , \ CR (--)6
' NOOP , \ PAGE (--)7
' DROP , \ ATTRIBUTE(n --)8
' NULL , \ KEY (-- char)9
' NULL , \ KEY? (-- flag)10
' NULL , \ EKEY (-- echar)11
' NULL , \ EKEY? (-- flag)12
' NULL , \ AKEY (-- char)13
' 2DROP , \ PUSHTEXT(addr len --)14
' 2DROP , \ AT-XY (x y --)15
' 2NULL , \ GET-XY(-- x y)16
' 2NULL , \ GET-SIZE(-- x y)17

An example is in SwiftForth\src\ide\win32\buffio.f. This personality provides out-
put to a temporary buffer between the words [BUF and BUF]. The phrase BUF @+
returns the address and length of the string in the buffer. Its main use is to create a
document in full before acting on it. For example, SwiftForth uses it to generate the
“details” display of an exception dialog box (Section 4.7). It’s necessary to generate
the entire output picture of the registers, etc., then use that text for a dialog control,
because the program must be running in the Forth context to generate the output,
but the dialog context could display pre-written text only.

To activate a personality, pass the address of its data structure to OPEN-PERSONAL-
ITY; it will automatically save the present personality and perform the INVOKE
behavior of the new one. Conversely, to close a personality you would use CLOSE-
PERSONALITY, which closes the current one and re-asserts the saved one. For exam-
ple, from buffio.f, we have:

: [BUF (--) SIMPLE-BUFFERING OPEN-PERSONALITY ;
: BUF] (--) CLOSE-PERSONALITY ;

…where SIMPLE-BUFFERING is the data structure for the buffered I/O personality.

Another example featuring a personality that performs I/O on a serial COM port
may be found in SwiftForth\lib\samples\win32\serial.f.

Glossary

OPEN-PERSONALITY (addr —)
Makes the personality at addr the current one, saving the previous personality in its
data structure.

CLOSE-PERSONALITY (—)
Close the current personality, restoring the previous saved one.
SwiftForth Implementation 89

SwiftForth Reference Manual
5.6.2 Keyboard Events

The words EKEY and EKEY? return keyboard events, beyond simple characters. There
are, in fact, four keyboard-related messages Windows can generate:

• WM_SYSKEYDOWN occurs when a key of interest to the system (e.g., a key combination
such as Alt-F that is associated with a menu) has been pressed.

• WM_SYSCHAR may occur along with a WM_SYSKEYDOWN, to deliver a system character.

• WM_KEYDOWN occurs when a key that is not a system key is pressed (such as a func-
tion key that has no menu association).

• WM_CHAR may occur along with a WM_KEYDOWN to deliver a character.

Some keypresses, like At-Tab, are completely processed by Windows, and will never
be passed to a program. System key events must be dispatched to the owning win-
dow; SwiftForth programs can process them locally, as well. WM_KEYDOWN events not
accompanied by WM_CHAR events are processed immediately; simple characters are
placed in an input queue and can be retrieved by KEY or EKEY.

Windows defines virtual keys, 16-bit combinations whose low-order byte contains
an ASCII code and whose high-order byte contains bits indicating the state of the
Alt, Shift, and Ctrl keys. These named Windows constants have names in the form
VK_<xxx>. SwiftForth recognizes the VK_<xxx> keystrokes shown in Table 15. If
the message parameter identifies a key in this table, EKEY returns the exact Windows

Table 15: VK_ codes recognized by SwiftForth

Constant Value Constant Value

VK_PAUSE $13 VK_F7 $76

VK_PRIOR $21 VK_F8 $77

VK_NEXT $22 VK_F9 $78

VK_END $23 VK_F10 $79

VK_HOME $24 VK_F11 $7A

VK_LEFT $25 VK_F12 $7B

VK_UP $26 VK_F13 $7C

VK_RIGHT $27 VK_F14 $7D

VK_DOWN $28 VK_F15 $7E

VK_SNAPSHOT $2C VK_F16 $7F

VK_INSERT $2D VK_F17 $80

VK_DELETE $2E VK_F18 $81

VK_F1 $70 VK_F19 $82

VK_F2 $71 VK_F20 $83

VK_F3 $72 VK_F21 $84

VK_F4 $73 VK_F22 $85

VK_F5 $74 VK_F23 $86

VK_F6 $75 VK_F24 $87
90 SwiftForth Implementation

SwiftForth Reference Manual
representation of its associated constant; otherwise, it synthesizes a value accord-
ing to Figure 18.

Figure 18. Character encoding for EKEY

The 16-bit character space in the low-order half of the cell contains whatever infor-
mation is provided with the character itself, while the next nibble is decoded using
four named masks that indicate whether it is a function key (KEY_SCAN is true) and/
or is accompanied by a Control, Shift, or Alt key.

Glossary

KNOWN-VKEYS (— addr)
Return the address of a table of VKEYS. If an incoming <xxx>KEYDOWN event matches
an entry in this table, it will not generate a WM_CHAR message, and SwiftForth will
return the value from the table, masked as appropriate with the bits shown in Fig-
ure 18.

References Windows constants in SwiftForth, Section 5.5.3
Windows message handling, Section 8.1.3

5.6.3 Printer Support

Output via standard Windows printer functions is supported. Any console output
may be redirected to a Windows printer or to an arbitrary text file. For example:

>PRINT HERE 100 DUMP

…will prompt the user to select a printer and print the memory dump on it.

Glossary

>PRINT <commands> (—)
Execute whatever commands follow to the end of the line, routing any output to the
current printer.

5.6.4 Serial Port Support

Serial ports (e.g., COM1) can be read or written, using a small library of words pro-
vided that are equivalent to KEY?, KEY, and EMIT. See the source file Swift-
Forth\lib\options\win32\sio.f for details.

16-bit character

KEY_SCAN

KEY_CONTROLKEY_SHIFT

KEY_ALT
SwiftForth Implementation 91

SwiftForth Reference Manual
5.7 Timer Support

Windows supports four different timers:

• System clock, which responds to the function GetSystemTicks. This clock is used
by the SwiftForth words COUNTER and TIMER, and has a resolution of about 1–55 ms.,
depending on hardware and system configuration.

• Sleep timer, which controls the interval that a task is inactive when it executes the
Sleep function. Its resolution is about one millisecond.

• High-performance timer, which operates at about 1 MHz or faster. This is sup-
ported by the SwiftForth words uCOUNTER and uTIMER.

• Multimedia timer, for which SwiftForth provides no built-in support. However, it is
easy to add the WINPROCs if you wish to use it, following the instructions in Section
8.2.

It is important to remember, however, that timing in Windows is never completely
accurate or predictable, because it is subject to system configuration differences, as
well as to the demands of whatever other applications or hardware are operating at
a given time.

References Interval timing, Section 4.4.2
Sleep timer, Section 7.2.3
Interfacing to WINPROCs, Section 8.2

5.8 Custom I/O Drivers

Windows does not encourage the development of custom I/O drivers. Under Win-
dows 95 and 98, you can read and write I/O registers directly, although some sys-
tem overhead is imposed. Interrupts are not supported. Under Windows NT, direct
I/O reads and writes are prohibited.

However, SwiftForth includes a special third-party driver that permits you to
develop custom I/O drivers, including interrupt handlers, for all Win32 systems. It
is installed in the SwiftForth\bin directory. To use it, load the file Swift-
Forth\lib\samples\portio.f, which also includes documentation for the API.

Please note that response time is never guaranteed under the Windows environ-
ment, and that FORTH, Inc. cannot be held responsible for programs using third-
party drivers.
92 SwiftForth Implementation

SwiftForth Reference Manual
Section 6: i386 Assembler

SwiftForth operates in 32-bit protected mode on the IA-32 (Intel Architecture, 32-
bit) processors. This class of processors is referred to here as “i386”, which encom-
passes Intel and AMD derivatives.

Throughout this book, we assume you understand the hardware and functional
characteristics of the i386 as described in Intel IA-32 documentation (available for
download at www.intel.com and from the SwiftForth page on www.forth.com). We
also assume you are familiar with the basic principles of Forth.

This section supplements, but does not replace, Intel’s manuals. Departures from
the manufacturer’s usage are noted here; nonetheless, you should use the Intel’s
manuals for a detailed description of the instruction set and addressing modes.

Where boldface type is used here, it distinguishes Forth words (such as register
names) from Intel names. Usually, these are the same; for example, MOV can be used
as a Forth word and as an Intel mnemonic. Where boldface is not used, the name
refers to the manufacturer’s usage or to hardware issues that are not particular to
SwiftForth or Forth.

References IA-32 (Intel Architecture, 32-bit), Wikipedia, wikipedia.org/wiki/IA-32
SwiftForth Programming References, www.forth.com

6.1 SwiftForth Assembler Principles

Assembly routines are used to implement the Forth kernel, to perform low-level
CPU-specific operations, and to optimize time-critical functions.

SwiftForth provides an assembler for the i386. The mnemonics for the 386 opcodes
have been defined as Forth words which, when executed, assemble the correspond-
ing opcode at the next location in code space. The SwiftForth kernel is itself imple-
mented with this assembler, so there are plenty of examples available in the kernel
source.

Most mnemonics, addressing modes, and other mode specifiers use MASM names,
but postfix notation and Forth’s data stack are used to specify operands. Words
that specify registers, addressing modes, memory references, literal values, etc. pre-
cede the mnemonic.

SwiftForth constructs conditional jumps by using a condition code specifier fol-
lowed by IF, UNTIL, or WHILE, as described in Section 6.8. Table 19 summarizes the
relationship between SwiftForth condition codes used with one of these words and
the corresponding Intel mnemonic.

References Assemblers in Forth, Forth Programmer’s Handbook.
i386 Assembler 93

http://www.intel.com
http://www.intel.com
http://www.intel.com
http://en.wikipedia.org/wiki/IA-32
https://www.forth.com/swiftforth/
https://www.forth.com/swiftforth/

SwiftForth Reference Manual
6.2 Code Definitions

Code definitions normally have the following syntax:

CODE <name> <assembler instructions> RET END-CODE

or:

ICODE <name> <assembler instructions> RET END-CODE

For example:

ICODE DEPTH (-- +n) \ Return current stack depth
PUSH(EBX) \ save current tos
16 [ESI] EBX MOV \ get SP0 from user area
EBP EBX SUB \ calculate stack size in bytes
EBX SAR \ convert to cells
EBX SAR
RET END-CODE

All code definitions must be terminated by the command END-CODE.

The differences between words defined by ICODE and CODE are small, but crucial.

• ICODE begins a word which, when referenced inside a colon definition, will expand
in-line code at that point in the definition. It may be called from another assembler
routine, but it may not call any external function, nor may it exit any way except via
the RET at the end.

• CODE begins a word which can only be called as an external function. When a CODE
word is referenced inside a colon definition, a CALL to it will be assembled. A CODE
word may call other words, and may have multiple exits.

You may name a code fragment or subroutine using the form:

LABEL <name> <assembler instructions> END-CODE

This creates a definition that returns the address of the next code space location, in
effect naming it. You may use such a location as the destination of a branch or call,
for example.

The critical distinction between LABEL and CODE is:

• If you reference a CODE definition inside a colon definition, SwiftForth will assemble
a call to it; if you invoke it interpretively, it will be executed.

• Reference to a LABEL under any circumstance will return the address of the labelled
code.

The defining words LABEL, CODE, and ICODE may not be used to define entry points to
any part of a code routine except the beginning.

Within code definitions, the words defined in the following sections may be used to
construct machine instructions.
94 i386 Assembler

SwiftForth Reference Manual
Glossary

CODE <name> (—)
Start a new assembler definition, name. If the definition is referenced inside a colon
definition, it will be called; if the definition is referenced interpretively, it will be
executed.

ICODE <name> (—)
Start a new assembler definition, name. If the definition is referenced inside a colon
definition, its code will be expanded in-line; if the definition is referenced interpre-
tively, it will be executed. A word defined by ICODE may not contain any external ref-
erences (calls or branches).

LABEL <name> (—)
Start an assembler code fragment, name. If the definition is referenced, either
inside a definition or interpretively, the address of its code will be returned on the
stack.

END-CODE (—)
Terminate an assembler sequence started by CODE, ICODE, or LABEL.

6.3 Registers

The processor contains sixteen registers, of which eight 32-bit general registers can
be used by an application programmer. Some have 8-bit and 16-bit, as well as 32-bit
forms, as shown in Figure 19

.

Figure 19. General registers

Neither the segment registers nor the status and control registers (not shown here)
may be used directly under Windows.

The general registers EAX, EBX, etc., hold operands for logical and arithmetic opera-
tions. They also can hold operands for address calculations (except the ESP register

31 23 15 7 0 16-Bit 32-Bit

AX

DX

CX

BX

EAX

EDX

ECX

EBX

EBP

ESI

EDI

ESP

AH AL

DH DL

CH CL

BH BL

BP

SI

DI

SP
i386 Assembler 95

SwiftForth Reference Manual
cannot be used as an index operand). The names of these registers are derived from
the names of the general registers on the 8086 processor, the AX, BX, CX, DX, BP, SP,
SI, and DI registers. As Figure 19 shows, the low 16 bits of the general registers can
be referenced using these names.

Each byte of the 16-bit registers AX, BX, CX, and DX also has another name. The byte
registers are named AH, BH, CH, and DH (high bytes) and AL, BL, CL, and DL (low bytes).

All of the general-purpose registers are available for address calculations and for
the results of most arithmetic and logical operations; however, a few instructions
assign specific registers to hold operands. For example, string instructions use the
contents of the ECX, ESI, and EDI registers as operands. By assigning specific regis-
ters for these functions, the instruction set can be encoded more compactly. The
instructions that use specific registers include: double-precision multiply and
divide, I/O, strings, move, loop, variable shift and rotate, and stack operations.

SwiftForth has assigned certain registers special functions for the Forth virtual
machine, as follows:

• EBX is the top of stack

• ESI is the user area pointer

• EDI contains the origin of SwiftForth’s memory window

• EBP is the data stack pointer

• ESP is the return stack pointer

These registers may not be used for any other purpose unless you save and restore
them.

References The Forth virtual machine, Forth Programmer’s Handbook

6.4 Instruction Components

An instruction may have a number of components, which are listed below. The only
required component is the opcode itself. In SwiftForth, as in many Forth assem-
blers, an opcode is represented by a Forth word which takes arguments specifying
the other components, as desired, and assembles the completed instruction. For
this reason, the opcode generally comes last, preceded by other notation (i.e., the
syntax is <operand(s)> <opcode>). Except for this ordering, SwiftForth assembler
notation follows Intel notation.

The components of an instruction may include:

1. Prefixes: one or more bytes that modify the operation of the instruction.
2. Register specifier: an instruction can specify one or two register operands. Register

specifiers occur either in the same byte as the opcode or in the same byte as the
addressing-mode specifier.

3. Addressing-mode specifier: when present, specifies whether an operand is a regis-
ter or memory location; if in memory, specifies whether a displacement, a base reg-
ister, an index register, and scaling are to be used.
96 i386 Assembler

SwiftForth Reference Manual
4. SIB (scale, index, base) byte: when the addressing-mode specifier indicates the use
of an index register to calculate the address of an operand, an SIB byte is included
in the instruction to encode the base register, the index register, and a scaling fac-
tor.

5. Displacement: when the addressing-mode specifier indicates a displacement will be
used to compute the address of an operand, the displacement is encoded in the
instruction. A displacement is a signed integer of 32, 16, or 8 bits. The 8-bit form is
used in the common case when the displacement is sufficiently small. The proces-
sor extends an 8-bit displacement to 16 or 32 bits, taking into account the sign.

6. Opcode: specifies the operation performed by the instruction. Some operations
have several different opcodes, each specifying a different form of the operation.

These components make up the instruction operands discussed in the next section.

References Index registers and displacement address mode specifiers, Section 6.5.5.2

6.5 Instruction Operands

Everything except the opcode may be considered an operand. SwiftForth notation
for various kinds of operands is similar to Intel’s, except for order. In general,
where there are two operands, the order is <source> <destination>.

6.5.1 Implicit Operands

An operand is implicit if the instruction itself specifies it. In effect, this means the
operand is absent! Some examples include:

• CLD Clear direction flag to zero

• RET Return from subroutine

6.5.2 Register Operands

A register operand specifies one or two registers, by giving their names. Some
examples include:

• ESI INC Increment ESI.

• EBX ECX MOV Move top-of-stack to ECX

6.5.3 Immediate Operands

An immediate operand specifies a number as part of the instruction. SwiftForth
indicates immediate operands by following the number with a # character. Numbers
may be specified in any base; if your base is decimal and you want to specify a sin-
gle number in hex, you can use the $ prefix (see Section 4.3). Some examples of
i386 Assembler 97

SwiftForth Reference Manual
immediate operands include:

• 8 # EBP ADD Add 8 to the data stack pointer

• 2 # EBX SUB Subtract 2 from the top stack item

• 32 # AL XOR Exclusive-or the character in AL by 32

6.5.4 I/O Operands

I/O operands specify a port address as an argument to an IN or OUT instruction. A
port address may be specified as an immediate value, provided it fits in eight bits
(values to 256); otherwise you must put it in a register. Some examples:

• 4 # AL IN Read a byte from the port at address 4 into register AL

• DX EAX IN Read from the port whose address is given by DX into EAX.

However, these instructions are not generally useful in Windows programming.
Under Windows 95, all I/O is virtual, and it is not allowed at all under Windows NT.
Instead, one does I/O using Windows calls (for standard devices or ports) or special
drivers supplied as DLLs.

References Calling DLLs from SwiftForth, Section 8.2.1

6.5.5 Memory Reference Operands

This is a large class of operands, because of the many ways to address memory.

6.5.5.1 Direct Addressing

This is the simplest form of memory addressing, in which you simply specify an
address and SwiftForth assembles a reference to it.

Addresses used as destinations for a JMP or CALL are assembled as offsets from the
location of the instruction, within the memory space allocated to SwiftForth by Win-
dows. To get an address of a defined word to be used as a destination for a JMP or
CALL use the form:

' <name> >CODE

The word >CODE converts the execution token supplied by ' (“tick”) to a suitable
address.

VARIABLEs and other data structures present some particular problems as a conse-
quence of the position-independent implementation strategy used in SwiftForth.
The address returned by such words (to be precise, any word defined using CREATE
that returns a data space address) is the absolute address in the machine. Swift-
Forth and executable programs generated from SwiftForth are always instantiated
in the same virtual address space, but DLLs may be instantiated in different places
at different times. This means that code that might ever be used in a DLL must
98 i386 Assembler

SwiftForth Reference Manual
avoid compiling references to absolute addresses. If you are writing code that may
ever be used inside a DLL, we recommend that you test your code using the optional
PROTECTION option described in Section 8.2.2.

In order to obtain a generic address, special actions are required. SwiftForth pro-
vides an assembler macro ADDR that will place a suitable data address in a desig-
nated register, used in the form:

<addr> <reg> ADDR

where addr is the data address returned by a VARIABLE or any word defined using
CREATE, and reg is the desired register. This macro is optimized for EAX, the general-
purpose accumulator, but you may specify any other register. The following exam-
ple shows how to add a value to the contents of a VARIABLE:

VARIABLE DATA

CODE +DATA (n --) \ Add n to the contents of DATA
 DATA EAX ADDR \ Address of DATA to EAX
 EBX 0 [EAX] ADD \ Add top-of-stack to DATA
 POP(EBX) \ POP stack
RET END-CODE

Another example is:

' THROW >CODE JMP

Jump to THROW (on an error condition). When using this method to abort from code,
you must provide the throw code value in EBX (top-of-stack).

Glossary

ADDR (addr reg —)
Convert the data address addr from an absolute address to an address relative to
the start of SwiftForth’s memory, and place it in the register reg.

References Addressing in SwiftForth, Section 5.1.4
>CODE, Section 5.5.1
Creating DLLs from SwiftForth, Section 8.2.2
PROTECTION option (absolute address warnings), Section 2.3.5

6.5.5.2 Addressing with an Offset

Offset addressing combines parameters that are added to a base or index register,
with other parameters, as shown in Figure 20.
i386 Assembler 99

SwiftForth Reference Manual
Figure 20. Offset (or effective address) computation

The SwiftForth assembler syntax is:

disp [base] [index*scale] opcode

The displacement must be given, even if it is zero. The assembler will use the cor-
rect instruction form, depending upon the size of the displacement (omitting it if it
is zero).

You may specify a base register, an index register, or both. The default scale of an
index register is 1; the form of reference is the same as for a base register, e.g.,
[EBX]. For other scale factors, the form of reference is given in Table 16.

For example:

• 0 [EBP] EAX MOV
Move the second stack item to EAX

• 4 [EBP] EAX MOV
Move the third stack item to EAX

• -1 [ECX] [EDI] EDI LEA
Load the effective address (ECX+EDI) -1 into EDI.

• 0 [EDI] [EDX*4] EAX CMP
Add the number of cells (4 bytes each) in EDX to the base address in EDI, and com-
pare the referenced item to EAX.

6.5.5.3 Stack-based Addressing

The hardware stack, controlled by ESP, is used for subroutine calls, which makes it a
natural choice for the Forth return stack pointer. The stack is affected implicitly by

Table 16: Forms for scaled indexing

Scale (from Figure 20) Form Example

2 [reg*2] [EAX*2]

4 [reg*4] [EAX*4]

8 [reg*8] [EAX*8]

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1

2

4

8

None

8-bit

16-bit

32-bit

+ +*

Base Index Scale Displacement

Offset = Base + (Index*Scale) + Displacement
100 i386 Assembler

SwiftForth Reference Manual
CALL and RET instructions, but is directly manipulated using PUSH and POP. These are
single-operand instructions, where the operand may be an immediate value, regis-
ter, or memory location.

The hardware stack is a convenient place for temporarily saving a register’s con-
tents while you use that register for something else.

SwiftForth uses EBP as its data stack pointer. However, this stack must be managed
more directly, since PUSH and POP are specifically tied to ESP. Both stacks are consid-
ered to grow towards low memory. That is, if you do a PUSH, ESP will be decre-
mented; if you do a POP, it will be incremented. Correspondingly, to push something
on the data stack, decrement EBP; to pop something, increment EBP. Data stack man-
agement is slightly complicated (but its performance is improved) by SwiftForth’s
practice of keeping the top-of-stack item in EBX.

To facilitate use of the data stack pointer, SwiftForth provides the assembler mac-
ros PUSH(EBX) and POP(EBX) that push and pop the top stack item in EBX.

Here are some examples of data stack management:

• 0 [EBX] EBX MOV

Replace the top item with the contents of its address (the action of @).

• 4 # EBP SUB EBX 0 [EBP] MOV

Push the contents of EBX onto the data stack (the action of PUSH(EBX)).

• PUSH(EBX) 4 [EBP] EBX MOV

Push a copy of the second stack item on top of the stack (the action of OVER).

• 4 [EBP] EBX MOV 8 # EBP ADD

Drop the top two stack items (the action of 2DROP).

6.5.5.4 User Variable Addressing

ESI contains the address of the start of the user area. User variables are defined in
terms of an offset from this area. When a user variable is executed, an absolute
address is returned which is the address of the start of the current task’s user area
plus the offset to this user variable.

The assembler line:

BASE [ESI] EBX MOV

would load EBX from the address userarea + userarea + offset, which is wrong. But
the phrase

BASE STATUS - [ESI] EBX MOV

would load the real contents of BASE into EBX, subtracting off the extraneous user-
area.

Since this is rather cumbersome, SwiftForth provides the following shorthand nota-
tion:

: [U] (useraddr -- offset) STATUS - [ESI] ;
i386 Assembler 101

SwiftForth Reference Manual
which is available as an assembler addressing mode. So, the appropriate form of an
instruction to load EBX from BASE becomes:

BASE [U] EBX MOV

Glossary

[U] (addr — +addr)
Provides the appropriate addressing mode for accessing a user variable at addr by
converting addr to an offset +addr in the user area, which may be applied as an
index to register ESI.

References User variables, Section 7.2.1

6.6 Instruction Mode Specifiers

Mode specifiers, including instruction prefixes, modify the action of instructions.
These include:

• Size specifiers control whether the instruction affects data elements whose size is
eight bits, 16 bits, etc.

• Repeat prefixes control string instructions, causing them to act on whole strings
instead of on single data elements.

• Segment register overrides control what memory space is affected (not used in
Windows applications.)

6.6.1 Size Specifiers

The size specifiers defined in SwiftForth are listed in Table 17. These words must be
used after a memory reference operand such as those discussed in Section 6.5.5,
and will modify its size attribute.

For example:

• $40 # 5 [EBX] BYTE TEST
Test the bit masked by $40 in the byte at EBX+5 (the immediate bit in a name field).

• 0 [EAX] TBYTE FLD

Table 17: Size specifiers

Specifier Description

BYTE 8-bit

WORD 16-bit integer

DWORD 32-bit integer and real

QWORD 64-bit integer and real

TBYTE BCD or 80-bit internal real (floating point)
102 i386 Assembler

SwiftForth Reference Manual
Push the floating-point value pointed to by EAX onto the numeric stack.

6.6.2 Repeat Prefixes

The 386 family provides a group of string operators that use ESI as a pointer to a
source string, EDI as a pointer to a destination string, and ECX as a count register.
These instructions can do a variety of things, including move, compare, and search
the strings. The string instructions can operate on single data elements or can pro-
cess the entire string. In the default mode, they operate on a single item, and auto-
matically adjust the registers to prepare for the next item. If, however, a string
instruction is preceded by one of the prefixes in Table 18, it will repeat until one of
the terminating conditions is encountered.

6.7 Direct Branches

In Forth, most direct branches are performed using structures (such as those
described above) and code endings (described below). Good Forth programming
style involves many short, self-contained definitions (either code or high level),
without the unstructured branching and long code sequences that are characteristic
of conventional assembly language. The Forth approach is also consistent with prin-
ciples of structured programming, which favor small, simple modules with one
entry point, one exit point, and simple internal structures.

However, direct transfers are useful at times, particularly when compactness of the
compiled code or extreme performance requirements override other criteria. The
SwiftForth assembler supports JMP, CALL, and all forms of conditional branches,
although most conditional branching is done using the structure words described in
Section 6.8.

A CALL is automatically generated when a word defined by CODE is referenced inside
a colon definition, but you may also use CALL in assembly code. The argument to
CALL must be the address of the code field of a subroutine that ends with an RET.

The normal way to define a piece of code intended to be referenced from other code
routines is to use LABEL (described below). To get a suitable address for a word
defined by CODE or ICODE, you must use the form:

' <name> >CODE CALL

The word >CODE transforms the execution token returned by ' to a suitable code
field address.

Table 18: Repeat prefixes

Prefix Description

REP Repeat until ECX = 0

REPE, REPZ Repeat until ECX = 0 or ZF = 0

REPNE, REPNZ Repeat until ECX ≠ 0 or ZF = 1
i386 Assembler 103

SwiftForth Reference Manual
LABEL is used in the form described in Section 6.2. Invoking name returns the
address identified by the label, which may be used as a destination for either a JMP
or a CALL.

For example, this code fragment is used by code that constructs a temporary data
buffer to provide a substitute return address:

LABEL R-GO-ON
 EAX JMP \ jump to address in EAX
 END-CODE

It is also possible to define local branch destinations within a single code routine,
using the form <n> L: where n is 0–19. To reference a local label of this kind, use
<n> L# where n is the number of the desired destination. You may reference such
local labels either in forward or backward branches within the routine in which they
were defined. For example:

CODE UBETWEEN (u ulo uhi -- flag)
0 [EBP] EAX MOV \ get ulo
4 [EBP] EDX MOV \ get u
EAX EDX CMP \ compare ulo with u
8 [EBP] EBP LEA \ discard unused space, preserve flags
1 L# JB \ u is below ulo, return zero
EBX EDX CMP \ compare uhi with u
1 L# JA \ u is above uhi, return zero
-1 # EBX MOV \ return true
RET

1 L: \ here if returning false
EBX EBX SUB \ zero
RET END-CODE

In this example, the label 1 L: identifies the code for the false case, which is
branched to from two locations above.

Although labels such as this are standard practice in assembly language program-
ming, they tend to encourage unstructured and unmaintainable code. We strongly
recommend that you keep your code routines short and use the structure words in
Section 6.8 in preference to local labels.

Glossary

L: (n —)
Define local label n and resolve any outstanding forward branches to it. Local labels
can only be referenced within the routine in which they are defined.

L# (n — addr)
Reference local label n, and leave its address to be used by a subsequent branch
instruction.

6.8 Assembler Structures

In conventional assembly language programming, control structures (loops and
104 i386 Assembler

SwiftForth Reference Manual
conditionals) are handled with explicit branches to labeled locations. This is con-
trary to principles of structured programming, and is less readable and maintain-
able than high-level language structures.

Forth assemblers in general, and SwiftForth in particular, address this problem by
providing a set of program-flow macros, listed in the glossary at the end of this sec-
tion. These macros provide for loops and conditional transfers in a structured man-
ner, and work like their high-level counterparts. However, whereas high-level Forth
structure words such as IF, WHILE, and UNTIL test the top of the stack, their assem-
bler counterparts test the processor condition codes.

The structures supported in this assembler (and others from FORTH, Inc.) are:

BEGIN <code to be repeated> AGAIN
BEGIN <code to be repeated> <cc> UNTIL
BEGIN <code> <cc> WHILE <more code> REPEAT
<cc> IF <true case code> ELSE <false case code> THEN

In the sequences above, cc represents condition codes, which are listed in a glossary
beginning on page 107. The combination of a condition code and a structure word
(UNTIL, WHILE, IF) assembles a conditional branch instruction Bcc, where cc is the
condition code. The other components of the structures — BEGIN, REPEAT, ELSE, and
THEN — enable the assembler to provide an appropriate destination address for the
branch.

In addition, the Intel instructions LOOP, LOOPE, and LOOPNE may be used with BEGIN to
make a loop. For example:

BEGIN
LODSB \ read a char
BL AL CMP \ check for control
U< IF \ if control
CHAR ^ # AL MOV \ replace with caret
THEN
STOSB \ write the char
LOOP \ and repeat

All conditional branches use the results of the previous operation which affected
the necessary condition bits. Thus:

EBX EAX CMP < IF

executes the true branch of the IF structure if the contents of EAX is less than the
contents of EBX.

The word NOT following a condition code inverts its sense. Since the name NOT is also
the name of an opcode mnemonic, the SwiftForth assembler will examine the stack,
and if a valid condition code is present, it will invert it; otherwise, it will assemble a
NOT instruction.

In high-level Forth words, control structures must be complete within a single defi-
nition. In assembler, this is relaxed; the assembler will automatically assemble a
short or long form for all relative jump, call, and loop instructions. Control struc-
tures that span routines are not recommended, however—they make the source
code harder to understand and harder to modify.
i386 Assembler 105

SwiftForth Reference Manual
Table 19 shows the instructions generated by SwiftForth condition codes in combi-
nation with words such as IF or UNTIL. See the glossary below for details. Refer to
your processor manual for details about the condition flags.

Note that the standard Forth syntax for sequences such as 0< IF implies no branch
in the true case. Therefore, the combination of the condition code and branch
instruction assembled by IF, etc., branch on the opposite condition (i.e., ≥ 0 in this
case).

Table 19: Forth condition codes

Condition Intel instruction Forth cc
OF=1 JO Jump if overflow OV NOT
OF=0 JNO Jump if not overflow OV

CF=1
JB Jump if below U< NOT
JC Jump if carry CC

CF=0
JNB Jump if not below U<
JNC Jump if not carry CS

ZF=1
JE Jump if equal

0= NOT
JZ Jump if zero

ZF=0
JNE Jump if not equal

0=
JNZ Jump if not zero

CF=1 or ZF=1
JBE Jump if below or equal

U>
JNA Jump if not above

CF=0 and
ZF=0

JA Jump if above
U> NOT

JNBE Jump if not below or equal
SF=1 JS Jump if sign 0< NOT
SF=0 JNS Jump if not sign 0<

PF=1
JP Jump if parity

PO
JPE Jump if parity even

PF=0
JNP Jump if not parity

PE
JPO Jump if parity odd

SF≠OF
JL Jump if less

< NOT
JNGE Jump if not greater or equal

SF=OF
JGE Jump if greater or equal

<
JNL Jump if not less

ZF=1 or
SF≠OF

JLE Jump if less or equal 0>
JNG Jump if not greater >

ZF=0 and
SF=OF

JG Jump if greater
> NOT

JNLE Jump if not less or equal
ECX=0 JECXZ Jump if ECX register is 0 ECXNZ
Any JMP Unconditional jump NEVER
106 i386 Assembler

SwiftForth Reference Manual
These constructs provide a level of logical control that is unusual in assembler-level
code. Although they may be intermeshed, care is necessary in stack management,
because REPEAT, UNTIL, AGAIN, ELSE, and THEN use the addresses on the stack.In the
glossary entries below, the stack notation cc refers to a condition code. Available
condition codes are listed beginning on page 107.

Glossary Branch Macros

BEGIN (— addr)
Leave the current address addr on the stack, to serve as a destination for a branch.
Doesn’t assemble anything.

AGAIN (addr —)
Assemble an unconditional branch to addr.

UNTIL (addr cc —)
Assemble a conditional branch to addr. UNTIL must be preceded by one of the con-
dition codes (see below).

WHILE (addr1 cc — addr2 addr1)
Assemble a conditional branch whose destination address is left empty, and leave
the address of the branch addr on the stack. A condition code (see below) must pre-
cede WHILE.

REPEAT (addr2 addr1 —)
Set the destination address of the branch that is at addr1 (presumably having been
left by WHILE) to point to the next location in code space, which is outside the loop.
Assemble an unconditional branch to the location addr2 (presumably left by a pre-
ceding BEGIN).

IF (cc — addr)
Assemble a conditional branch whose destination address is not given, and leave
the address of the branch on the stack. A condition code (see below) must precede
IF.

ELSE (addr1 — addr2)
Set the destination address addr1 of the preceding IF to the next word, and assem-
ble an unconditional branch (with unspecified destination) whose address addr2 is
left on the stack.

THEN (addr —)
Set the destination address of a branch at addr (presumably left by IF or ELSE) to
point to the next location in code space. Doesn’t assemble anything.

Condition Codes

0< (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on positive.

0= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
i386 Assembler 107

SwiftForth Reference Manual
branch on non-zero.

0> (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on zero or negative.

0<> (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on zero.

0>= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on negative.

U< (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on unsigned greater-than-or-equal.

U> (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on unsigned less-than-or-equal.

U>= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on unsigned less-than.

U<= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on unsigned greater-than.

< (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on greater-than-or-equal.

> (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on less-than-or-equal.

>= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on less-than.

<= (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on greater-than.

CS (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on carry clear. This condition is the same as U<.

CC (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on carry set.
108 i386 Assembler

SwiftForth Reference Manual
PE (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on parity odd.

PO (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on parity even.

OV (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on overflow not set.

ECXNZ (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate a
branch on CX equal to zero.

NEVER (— cc)
Return the condition code that—used with IF, WHILE, or UNTIL—will generate an
unconditional branch.

NOT (cc1 — cc2)
Invert the condition code cc1 to give cc2.

Note that the sense of phrases such as < IF and > IF is parallel to that in high-level
Forth; that is, since < IF will generate a branch on greater-than-or-equal, the code
following IF will be executed if the test fails. For example:

CODE Test (n1 -- n2)
 10 # EBX CMP < IF 0 # EBX MOV THEN
 RET END-CODE

When this is executed, one gets the result:

12 test . 12 ok
8 test . 0 ok

6.9 Writing Assembly Language Macros

The important thing to remember when considering assembler macros is that the
various elements in SwiftForth assembler instructions (register names, addressing
mode specifiers, mnemonics, etc.) are Forth words that are executed to create
machine language instructions. Given that this is the case, if you include such words
in a colon definition, they will be executed when that definition is executed, and will
construct machine language instructions at that time, i.e., expanding the macro.
Therefore:

An assembly language macro in SwiftForth is a colon definition whose contents
include assembler commands.

The only complication lies in the fact that SwiftForth assembler commands are not
normally “visible” in the search order (see the discussion of search orders in Section
5.5.2). This is necessary because there are assembler versions IF, WHILE, and other
i386 Assembler 109

SwiftForth Reference Manual
words that have very different meanings in high-level Forth. When you use CODE,
ICODE, or LABEL to start a code definition, those words automatically select the
assembler search order, and END-CODE restores the previous search order. However,
to make macros, you will need to manipulate search orders more directly.

Relevant commands for manipulating vocabularies for assembler macros are given
in the glossary at the end of this section. Here are a few simple examples.

Example 1: POP(EBX)

: POP(EBX) (--) \ Pop data stack
[+ASSEMBLER]
0 [EBP] EBX MOV \ Move top-of-stack to EBX
4 # EBP ADD \ Pop stack pointer
[PREVIOUS] ;

This is a macro included with SwiftForth (described in Section 6.5.5.3). Its purpose
is to POP the data stack, in a fashion analogous to POP on the hardware stack (Swift-
Forth’s return stack). Since SwiftForth keeps its top stack item in the register EBX,
the operation consists of moving what was the second stack item (pointed to by
EBP) into EBX, and then incrementing EBP by one cell. These two machine instruc-
tions MOV and ADD will be assembled in place whenever POP(EBX) is used in code.

Example 2: High-level comparisons

ASSEMBLER
: BINARY-TEST (cc --)
 [+ASSEMBLER]\

EBX 0 [EBP] CMP \ compare top with second
(cc) IF \ if the condition is true
-1 # EBX MOV \ return TRUE
ELSE \ otherwise
EBX EBX SUB \ return false
THEN
4 # EBP ADD \ discard unused stack item
RET END-CODE ; \ end routine

PREVIOUS

ICODE < (u u -- flag) < BINARY-TEST
ICODE > (u u -- flag) > BINARY-TEST
ICODE = (n n -- flag) 0= BINARY-TEST

This example shows how the high-level Forth two-item (binary) comparison opera-
tors are defined (only the first few are actually given here; all are defined similarly).
All share a common behavior: they compare two items on the stack, removing both
and leaving the results of the comparison as a well-formed flag (i.e., true = -1). They
differ only in the actual comparison to be performed.

As noted in Section 6.8 above, the assembler’s IF takes a condition code on the
stack. So the macro BINARY-TEST also takes a condition code on the stack, which is
the argument to IF. All the rest of the logic in performing the comparison is the
same.
110 i386 Assembler

SwiftForth Reference Manual
Example 3: Data address computation

: ADDR (addr reg --)
DUP R32? [FORTH] 0= THROW >R [ASM]
R@ EAX = [FORTH] IF [ASSEMBLER]
ORIGIN 5 - CALL
ORIGIN - # EAX ADD
[FORTH] ELSE [+ASSEMBLER]
EAX PUSH
ORIGIN 5 - CALL
ORIGIN - [EAX] R@ LEA
EAX POP
[FORTH] THEN [+ASSEMBLER] R> DROP ;

This is the macro described in Section 6.5.5.1 for getting the address of a data
object, adjusting for the fact that data objects normally return an absolute address
that is dependent on where Windows positioned SwiftForth in address space during
this session. To do this, it is necessary to obtain the address given by the call to
ORIGIN 5 - and compute the difference between that and addr, the address returned
by invoking the name of the data item.

The major issue highlighted here is the use of [FORTH] and [ASSEMBLER] to manipu-
late addresses within a definition, so that the high-level versions of 0=, IF, and THEN
are used, but assembler words are used elsewhere.

Glossary

ASSEMBLER (—)
Add the assembler vocabulary to the top of the current search order.

[+ASSEMBLER] (—)
Add the assembler vocabulary to the top of the current search order. An immediate
word (will be executed immediately when used inside a colon definition).

[FORTH] (—)
Add the main Forth vocabulary to the top of the current search order. An immediate
word (will be executed immediately when used inside a colon definition).

[PREVIOUS] (—)
Remove the top of the current search order. Often used to “undo” [FORTH] or
[+ASSEMBLER]. An immediate word (will be executed immediately when used inside a
colon definition).

References Search orders in Forth, Forth Programmer’s Handbook
Wordlists and vocabularies in SwiftForth, Section 5.5.2
i386 Assembler 111

SwiftForth Reference Manual
112 i386 Assembler

SwiftForth Reference Manual
Section 7: Multitasking and Windows

Windows is an inherently multitasked environment. The actual task management
algorithms vary between variants of the basic Win32 model, but the interface from
the perspective of a program such as SwiftForth and its applications is the same.

The most important fundamental concept is that Windows is an event-driven envi-
ronment. An event may be I/O (e.g., receipt of a keystroke or mouse click), receipt
of a message from another window or program, or an event generated by the OS
itself.

7.1 Basic Concepts

This section discusses the underlying principles behind both Windows multitasking
and SwiftForth’s facilities for defining and controlling multiple tasks or threads.

7.1.1 Definitions

Multitasking under Windows environments works at several levels:

• Multiple applications (e.g., Word, Excel, Firefox, SwiftForth) can be launched and
running concurrently. Each has its own resources (memory, CPU registers and
stacks, etc.). Each is a completely different program; they are not sharing any code,
although they might call some of the same DLLs. They might also communicate with
one another, but they are still separate programs. An application is frequently
called a process.

• Multiple threads can be launched from within a process. A thread is a piece of code
(often a loop) that the Windows OS can be asked to execute separately. The thread
uses the resources of the process that launched (and “owns”) it, meaning it is exe-
cuting code that resides in the owner’s memory, using its registers, etc. However,
the code is running asynchronously to the owning application, with the Windows OS
controlling the scheduling according to its priority with respect to others. The own-
ing process launches the thread and sets its priority; it can start and stop it, or kill
it.

• Multiple windows can be launched by a process (or by one of its threads), as well.
These are considered child windows. A child window has a procedure (WindowProc)
that it executes, which is in many respects like an interrupt. It must start up, initial-
ize itself, perform whatever the event causing the interrupt demands, and exit. The
WindowProc is not permitted to have an ongoing behavior or loop, it runs solely in
response to events and messages.

A SwiftForth program can support both multiple threads and multiple windows. A
thread is in some respects similar to a background task in other FORTH, Inc. prod-
ucts, in that it is given its own stacks and user variables, and is executing code from
within the SwiftForth process’s dictionary. However, since the Windows OS controls
execution and task switching, there is no equivalent of the round-robin loop found
Multitasking and Windows 113

SwiftForth Reference Manual
in pF/x or SwiftOS.

Just as you can launch multiple instances of Windows applications, such as Word or
Excel, you can also launch multiple instances of SwiftForth. These function as com-
pletely independent programs, each of which might have its own threads and/or
windows. It is relatively easy for one SwiftForth program to send messages to
another.

7.1.2 Forth Reentrancy and Multitasking

When more than one task can share a piece of code, that code can be called
reentrant. Reentrancy is valuable in a multitasking system, because it facilitates
shared code and simplifies inter-task communication.

Routines that are not reentrant are those containing elements subject to change
while the program runs. Thus, self-modifying code is not reentrant. Routines that
use global variables are not reentrant.

Forth routines can be made completely reentrant with very little effort. Most keep
their intermediate results on the data stack or the return stack. Programs to handle
strings or arrays can be designed to keep their data in the section of memory allot-
ted to each task. It is possible to define public routines to access variables, and still
retain reentrancy, by providing private versions of these variables to each task; such
variables are called user variables.

Since reentrancy is easily achieved, tasks may share routines in a single program
space. In SwiftForth, the entire dictionary is shared among tasks.

References User variables, Section 7.2.1

7.2 SwiftForth Tasks

A task is a Windows thread with additional facilities assigned by SwiftForth. It may
be thought of as an entity capable of independently executing Forth definitions. It
may be given permanent or temporary job assignments. If it will be given a perma-
nent job assignment, the recommended naming convention is a job title. For exam-
ple, a task that will acquire data from a remote device attached to a serial port
might be called MONITOR.

A task has a separate stack frame assigned to it by Windows, containing its data and
return stacks and user variables. SwiftForth may read and write a task’s user vari-
ables, but cannot modify its stacks.

7.2.1 User Variables

In SwiftForth, tasks can share code for system and application functions, but each
task may have different data for certain facilities. The fact that all tasks have pri-
114 Multitasking and Windows

SwiftForth Reference Manual
vate copies of variable data for such shared functions enables them to run concur-
rently without conflicts. For example, number conversion in one task needs to
control its BASE value without affecting that of other tasks.

Such private variables are referred to as user variables. User variables are not
shared by tasks; each task has its own set, kept in the task’s user area.

• Executing the name of a user variable returns the address of that particular variable
within the task that executes it.

• Invoking <taskname> @ returns the address of the first user variable in task-name’s
user area. (That variable is generally named STATUS.)

Some user variables are defined by the system for its use; they may be found in the
file SwiftForth\src\kernel\data.f. You may add more in your application, if you
need to in order to preserve reentrancy, to provide private copies of the application-
specific data a task might need.

User variables are defined by the defining word +USER, which expects on the stack
an offset into the user area plus a size (in bytes) of the new user variable being
defined. A copy of the offset will be compiled into the definition of the new word,
and the size will be added to it and left on the stack for the next use of +USER. Thus,
when specifying a series of user variables, all you have to do is start with an initial
offset (#USER) and then specify the sizes. When you are finished defining +USER vari-
ables, you may save the current offset to facilitate adding more later, i.e., <n> TO
#USER.

It is good practice to group user variables as much as possible, because they are dif-
ficult to keep track of if they are scattered throughout your source.

When a task executes a user variable, its offset is added to the register containing
the address of the currently executing task’s user area. Therefore, all defined user
variables are available to all tasks that have a user area large enough to contain
them (see task definition, Section 7.2.3).

A task may need to initialize another task’s user variables, or to read or modify
them. The word HIS allows a task to access another task’s user variables. HIS takes
two arguments: the address of the task of interest, and the address of the user vari-
able of interest. For example:

2 CHUCK BASE HIS !

will set the user variable BASE of the task named CHUCK to 2 (binary). In this exam-
ple, HIS takes the address of the executing task’s BASE and subtracts the address of
the start of the executing task’s user area from it to get the offset, then adds the
offset to the user area address of the desired task, supplied by CHUCK.

The glossaries below list words used to manage the user variables. The actual user
variables are listed in SwiftForth\src\kernel\data.f.

Glossary

+USER (n1 n2 — n3)
Define a user variable at offset n1 in the user area, and increment the offset by the
Multitasking and Windows 115

SwiftForth Reference Manual
size n2 to give a new offset n3.

#USER (— n)
A VALUE that returns the number of bytes currently allocated in a user area. This is
the offset for the next user variable when this word is used to start a sequence of
+USER definitions intended to add to previously defined user variables.

HIS (addr1 addr2 — addr3)
Given a task address addr1 and user variable addr2, returns the address of the refer-
enced user variable in that task’s user area. Usage:

<task-name> <user-variable-name> HIS

7.2.2 Sharing Resources

Some system resources must be shared by tasks without giving any single task per-
manent control of them. Devices, non-reentrant routines, and shared data areas are
all examples of resources available to any task but limited to use by only one task at
a time. SwiftForth provides two levels of control: control of an individual resource,
or control of the CPU itself within the SwiftForth process.

7.2.2.1 Facility variables

SwiftForth controls access to these resources with two words that resemble Dijks-
tra’s semaphore operations. (Dijkstra, E.W., Comm. ACM, 18, 9, 569.) These words
are GET and RELEASE.

As an example of their use, consider an A/D multiplexer. Various tasks in the sys-
tem are monitoring certain channels. But it is important that while a conversion is
in process, no other task issue a conflicting request. So you might define:

VARIABLE MUX
: A/D (ch# -- n) \ Read a value from channel ch#
 MUX GET (A/D) MUX RELEASE ;

In the example above, the word A/D requires private use of the multiplexer while it
obtains a value using the lower-level word (A/D). The phrase MUX GET obtains pri-
vate access to this resource. The phrase MUX RELEASE releases it.

In the example above, MUX is an example of a facility variable. A facility variable
behaves like a normal VARIABLE. When it contains zero, no task is using the facility
it represents. When a facility is in use, its facility variable contains the address of
the STATUS of the task that owns the facility. The word GET waits, executing PAUSE
repeatedly, until the facility is free or is owned by the task which is running GET.

GET checks a facility repeatedly until it is available. RELEASE checks to see whether a
facility is free or is already owned by the task that is executing RELEASE. If it is
owned by the current task, RELEASE stores a zero into the facility variable. If it is
owned by another task, RELEASE does nothing.

GET and RELEASE can be used safely by any task at any time, as they don’t let any
116 Multitasking and Windows

SwiftForth Reference Manual
task take a facility from another.

Glossary

GET (addr —)
Obtain control of the facility variable at addr. If the facility is owned by another
task, the task executing GET will wait until the facility is available.

RELEASE (addr —)
Relinquish the facility variable at addr. If the task executing RELEASE did not previ-
ously own the facility, this operation does nothing.

7.2.2.2 Critical sections

Occasionally, it is necessary to perform a sequence of operations that cannot be
interrupted by other SwiftForth tasks. Such a sequence is a critical section, and
there are Windows functions to ensure that a critical section can be performed with-
out interruption. SwiftForth’s API to this is in the form of a pair of words, [C and
C], which begin and end a critical section. No other SwiftForth task will be permit-
ted to run during the execution of whatever functions lie between these words.
Note the use of critical sections in the definitions of GET and RELEASE above.

Glossary

[C (—)
Begin a critical section. Other SwiftForth tasks cannot execute during a critical sec-
tion.

C] (—)
Terminate a critical section.

7.2.2.3 Avoiding deadlocks

SwiftForth does not have any safeguards against deadlocks, in which two (or more)
tasks conflict because each wants a resource the other has. For example:

: 1HANG MUX GET TAPE GET ... ;
: 2HANG TAPE GET MUX GET ... ;

If 1HANG and 2HANG are run by different tasks, the tasks could eventually deadlock.

The best way to avoid deadlocks is to get facilities one at a time, if possible! If you
have to get two resources at the same time, it is safest to always request them in the
same order. In the multiplexer/tape case, the programmer could use A/D to obtain
one or more values stored in a buffer, then move them to tape. In almost all cases,
there is a simple way to avoid concurrent GETs. However, in a poorly written appli-
cation the conflicting requests might occur on different nesting levels, hiding the
problem until a conflict occurs.

It is better to design an application to GET only one resource at a time—deadlocks
are impossible in such a system.
Multitasking and Windows 117

SwiftForth Reference Manual
7.2.3 Task Definition and Control

There are two phases to task management: definition and instantiation.

When a task is defined, it gets a dictionary entry containing a Task Control Block, or
TCB, which is the table containing its size and other parameters. This happens
when a SwiftForth program is compiled, and the task’s definition and TCB are per-
manent parts of the SwiftForth dictionary.

When a task is instantiated, Windows is requested to allocate a private stack frame
to it, within which SwiftForth sets up its data and return stacks and user variables.
At this time, the task is also assigned its behavior, or words to execute.

After SwiftForth has instantiated a task, it may communicate with it via the shared
memory that is visible to both SwiftForth and the task, or via the task’s user vari-
ables.

A task is defined using the sequence:

<size> TASK <taskname>

where size is the requested size of its user area and data stack, combined. The min-
imum value for size is 4,096 bytes; a typical value is 8,192 bytes. The task’s return
stack, which is also used for Windows calls, is always 16,384 bytes. When invoked,
taskname will return the address of the task’s TCB.

Task instantiation must be done inside a colon definition, using the form:

: <name> <taskname> ACTIVATE <words to execute> ;

When name is executed, the task taskname will be instantiated and will begin exe-
cuting the words that follow ACTIVATE.

The task’s assigned behavior, represented by words to execute above, may be one of
two types:

• Transitory behavior, which the task simply executes and then terminates.

• Persistent behavior, represented by an infinite (e.g., BEGIN … AGAIN) loop which the
task will perform forever (or until reactivated, killed or halted by another task).

Transitory behavior may be terminated by calling the word TERMINATE or simply by
returning, in which case SwiftForth will automatically terminate it. A task that has
terminated in this fashion may be activated again, to perform the same or a differ-
ent transitory behavior.

Persistent behavior must include the infinite loop and, within that loop, provision
must be made for the task to relinquish the CPU using PAUSE or STOP, or a word that
calls one of these (such as MS). These words are discussed in the glossary below. If
this is not done, the task cannot be halted or killed and the process that owns it will
not terminate properly.

A task that ACTIVATEs another task is that task’s owner. A task may SUSPEND
another task; RESUME it, if it has been SUSPENDed; or KILL (uninstantiate) it. A task
that is SUSPENDed will always RESUME at the point at which it was SUSPENDed.
118 Multitasking and Windows

SwiftForth Reference Manual
A task may also HALT another task, which causes it to cease operation permanently
the next time it executes STOP or PAUSE, but leaves it instantiated. The operational
distinction between HALT and KILL is that the task remains instantiated after HALT,
when it is ACTIVATEd again it will remember any settings in its user variables not
directly affected by the task control words.

A task might manage one or more windows. If it does, it must frequently check its
message queue and process any pending messages. Message management is
described in Section 8.

Glossary

TASK <taskname> (u —)
Define a task,whose dictionary size will be u bytes in size. Invoking taskname
returns the address of the task’s Task Control Block (TCB).

CONSTRUCT (addr —)
Instantiate the user area and dictionary of the task whose TCB is at addr and leave a
pointer to the task's memory in the first cell of the TCB. If the task has already been
instantiated (i.e. the first cell of the TCB is not zero), CONSTRUCT does nothing. The
use of CONSTRUCT is optional; ACTIVATE will do a CONSTRUCT automatically if needed.

ACTIVATE (addr —)
Instantiate the task whose TCB is at addr (if not already done by CONSTRUCT), and
start it executing the words following ACTIVATE. Must be used inside a definition. If
the rest of the definition after ACTIVATE is structured as an infinite loop , it must
call PAUSE or STOP within the loop so task control can function properly.

TERMINATE (—)
Causes the task executing this word to cease operation and release its memory. A
task that terminates itself may be reactivated.

SUSPEND (addr — ior)
Force the task whose TCB is at addr to suspend operation indefinitely.

RESUME (addr — ior)
Cause the task whose TCB is at addr to resume operation at the point at which it
was SUSPENDed (or where the task called STOP).

HALT (addr —)
Cause the task whose TCB is at addr to cease operation permanently at the next
STOP or PAUSE, but to remain instantiated. The task may be reactivated.

KILL (addr —)
Cause the task whose TCB is at addr to cease operation and release all its memory.
The task may be reactivated.

PAUSE (—)
Relinquish the CPU while checking for messages (if the task has a message queue).

STOP (—)
Check for messages (if the task has a message queue) and suspend operation indef-
initely (until restarted by another task, either with RESUME or ACTIVATE).
Multitasking and Windows 119

SwiftForth Reference Manual
Sleep (n — ior)
Relinquish the CPU for approximately n milliseconds. If n is zero, the task relin-
quishes the rest of its time slice. Sleep is a Windows call used by MS and PAUSE, and
is appropriate when the task wishes to avoid checking its message queue.

References MS, used for interval timing, Section 4.4.2
Windows message handling, Section 8.1.3
120 Multitasking and Windows

SwiftForth Reference Manual
Section 8: Windows Programming in SwiftForth

In this section, we describe how to use SwiftForth to access Windows features, as
well as some higher-level implementations of the most common structures.
Because SwiftForth was designed from the outset as a Windows system, great care
has been given to make the interface to Windows as clean and as easy to use as pos-
sible, given the inherent complexity of the Windows environment. We designed this
interface to map closely to the usages documented for the many Windows API com-
mands and the examples in the most popular Windows books.

It is beyond the scope of this book to provide a detailed explanation of Windows
programming. A list of Windows references is provided at www.forth.com/swift-
forth/; we urge you to use one or more of these as your source for Windows func-
tions, parameters, and rules of usage. In addition, Appendix C contains a glossary
of the most common terms used in Windows programming.

8.1 Basic Window Management

The basic definition of a window is a dataset with an associated callback. Most win-
dows have visible features, but visibility is not a necessary attribute. There are
many classes of windows, ranging from very simple to very complex. The Swift-
Forth command window is an example of a complex window made up of multiple
child windows, including the title bar, menu bar, menus, toolbar buttons, horizontal
and vertical thumb bars, each pane of the status bar, and the white space in which
you can type.

Each window is an instance of a particular class of windows defined by the applica-
tion. Each window has a handle. When an event occurs, the OS sends a message to
the task that owns the window, which dispatches the message with the window’s
handle; on receipt of the message, the window’s WindowProc executes. It’s an
entirely event-driven paradigm; a window cannot have a persistent, continuing
behavior in the sense that a task can.

Not all tasks own windows, but most do. If a task has any windows, it must have a
message loop in which it frequently checks for messages and dispatches them to
the appropriate window. The relationship between a task and its windows is much
like the relationship between a program and the interrupt routines that handle
devices the program controls, in that the window message processing is asynchro-
nous to the sequential activities of the task.

When an event occurs, it is initially handled by Windows. Windows assembles a
message—a data packet containing information about the event—and passes it to
the thread (task, discussed in Section 7.2) responsible for it. Determination of
responsibility depends on the nature of the event: keystrokes go to the currently
active window, mouse clicks depend on the screen location, etc. Some events are
acted on immediately; others are posted in the task’s message queue.

A message contains a handle parameter called HWND that identifies which window it
Windows Programming in SwiftForth 121

https://www.forth.com/swiftforth/
https://www.forth.com/swiftforth/

SwiftForth Reference Manual
should go to, a message number called MSG, and other parameters dependent on the
nature of the message.

When a task gets a message, typically in response to the Windows command Get-
Message (which polls its message queue), it dispatches it using the Windows com-
mand DispatchMessage, which sends it to the window to which it belongs (indicated
by HWND). Windows puts the message parameters in a stack frame and calls the Win-
dowProc callback associated with the window, which processes the message.

These are the basic steps that must be followed in order to construct and manage a
window:

1. Define a message handler (typically a single definition or a switch).
2. Define the window’s callback, whose function is to get the message parameter and

process it, usually by calling the message handler.
3. Define and register the window class.
4. Make one or more instances of the class.
5. Destroy the window when it’s no longer needed (or the application shuts down).

These actions, along with related issues, will be discussed in detail in the next sec-
tions.

8.1.1 Parameter Handling

To communicate with Windows, parameters must be passed back and forth. When
you issue a Windows call, often there are quite a few parameters, especially when
describing a window, dialog box, or control you wish Windows to draw and main-
tain. Conversely, when you get a callback, a number of parameters are provided. A
standard window callback has four parameters:

• HWND, the handle of the window to which the message is addressed;

• MSG, the message number;

• WPARAM and LPARAM, parameters whose meaning depends upon the message number.

Other, more specialized, callbacks have different parameters.

All parameters are single, 32-bit stack items. Many are integers; some are absolute
addresses. In some cases, incoming parameters need to be masked to get the high
or (more commonly) low 16-bit “word.” SwiftForth provides words that facilitate
this.

In SwiftForth, all outbound parameters (i.e., to Windows) are passed on the stack.
SwiftForth will take care of putting them in the right place for the call, providing
you supply them in the same order (i.e., the first parameter is lowest, the last on
top) as described in Windows documentation (e.g., the Win32API Help system).

Incoming parameters to callbacks are not passed on Forth’s data stack. Instead,
SwiftForth provides a set of words that fetch the values of the top eight parameters.
They behave like constants, and are read-only. The words that fetch callback
parameters are given in the glossary at the end of this section. Callback parameters
122 Windows Programming in SwiftForth

SwiftForth Reference Manual
remain available for the duration of the callback.

Very few Windows messages require more than eight parameters. Should you
encounter one that does, or should you wish to rename one, you may define addi-
tional parameter names using the form:

<n> NTH_PARAM <name>

…where n is the ordinal position of the parameter in the stack frame (0 is the top-
most item). We recommend using the names used in Windows documentation.

Glossary

HWND (— n)
Return the handle of the window receiving the current message.

MSG (— n)
Return the message number of the current message.

WPARAM (— n)
Return the third parameter for the current message. Its content is message-depen-
dent.

LPARAM (— n)
Return the fourth parameter for the current message. Its content is message-depen-
dent.

_PARAM_0, _PARAM_1, _PARAM_2, _PARAM_3 (— n)
Return the first through the fourth parameters for the current message, respec-
tively. The content of each is message-dependent. These words are synonyms for
HWND, MSG, WPARAM, and LPARAM, respectively, and are available for use when those
names are inappropriate descriptors for the parameters.

_PARAM_4, _PARAM_5, _PARAM_6, _PARAM_7 (— n)
Return the fifth through the eighth parameters for the current message, respec-
tively. The content of each is message-dependent.

NTH_PARAM <name> (n —)
Defines a Windows callback parameter, appearing in the nth position from the top
of the stack frame (0 = top).

LOWORD (n1 — n2)
Return the low-order two bytes of n1 as n2.

HIWORD (n1 — n2)
Return the high-order two bytes of n1 as n2.

HILO (n1 — n2 n3)
Return the upper and lower halves of n1 as n2 (high-order part) and n3 (low-order
part).
Windows Programming in SwiftForth 123

SwiftForth Reference Manual
8.1.2 System Callbacks

A callback is an entry point in your program. It is provided for Windows to call in
certain circumstances. For example, every individual window is required to have a
callback referred to in Windows documentation as WindowProc to handle messages
dispatched to that window; the standard WindowProc mechanism in SwiftForth is a
switch named SFMESSAGES. Some Windows calls require callbacks for local process-
ing; for example, the code given below for listing system fonts requires a callback to
display each individual font line. Many events require callbacks for processing.

A callback is in many respects analogous to an interrupt in other programming
environments, in that the code that responds to it is not executing as a sequential
part of your application. In SwiftForth, callbacks are handled by a synthetic, tran-
sient task with its own stacks and user area, separate from any tasks your applica-
tion may be running and existing only for the duration of the callback function.
Callbacks may execute any reentrant SwiftForth words, but may not directly com-
municate with the running program other than by storing data where the program
may find it.

You may define a callback with any number of parameters, using the form:

<xt> <n> CALLBACK: <name>

where xt identifies the routine to respond to the callback, and n is the number of
parameters in the callback. The most common value for n is four, but some take
more or (rarely) fewer. A callback must always return a single integer result, whose
interpretation is described in Windows documentation depending on the event to
which it is responding. The defining word CALLBACK: “wraps” the execution of the
xt with the necessary code to construct and discard the transient task environment
in which the callback will run.

The Forth data stack on entry to the callback is empty. The parameters passed to
the callback function may be accessed by the words described in Section 8.1.1 in
any routine responding to the callback.

Since SwiftForth has constructed a temporary task area in which the callback exe-
cutes, a callback may use stacks, HERE, PAD, and the output number conversion buf-
fer. Both the data and return stacks are empty on entry to the callback, and its BASE
is decimal. However, the callback has no dictionary or private data space.

No user variables are initialized on entry to the callback except S0, R0, H, and BASE.
You may use other user variables for temporary storage, but remember that the
entire task area will be discarded when the callback exits. You may also use global
data objects (e.g., VARIABLEs), but you must do so with great care, because they will
be shared by all windows of the same class as well as any other code that references
them. If you need persistent data space that is unique for each instance of a win-
dow class, you may ALLOCATE memory when the window is created, and store its
handle in a cell in the window data structure. You must remember to FREE this
space when the window is destroyed!

For example, to enumerate all fonts in the system:
124 Windows Programming in SwiftForth

SwiftForth Reference Manual
: SHOWFONT (-- x) \ Display one line of font data
 HWND MSG WPARAM LPARAM FontFunc
 1 ;

' SHOWFONT 4 CALLBACK: &SHOWFONTS

FUNCTION: EnumFonts (hdc lpFaceName lpFontFunc lParam -- n)

: .FONTS (--)
CR 60 spaces ." ht wide esc ornt wt I U S set p cp q fp"
HWND GetDC \ Get device context
0 \ No particular font name
&SHOWFONTS \ Address of enumerate callback routine
0 \ No application supplied data
EnumFonts \ WINPROC call
DROP ; \ Discard result

This defines a four-parameter Windows callback, &SHOWFONTS, which calls the Forth
routine SHOWFONT. When SHOWFONT executes, it has free access to the four parame-
ters passed to it via the built-in names HWND, MSG, WPARAM, and LPARAM, and it passes
them to FontFunc which uses them to generate one line of the display. The function
.FONTS passes the address of &SHOWFONTS to the Windows API function EnumFonts as
the address for the callback.

To see this in action, INCLUDE %SwiftForth\lib\samples\win32\showfonts.f and
type .FONTS.

When the callback function is relatively simple, it’s convenient to define it with
:NONAME, which returns its execution token, or xt. For example:

:NONAME (-- res)
 MSG LOWORD MY-SWITCH ; 4 CALLBACK: MY-CALLBACK

In this example, the actual callback code only derives the message number, which is
then passed to a switch that executes the appropriate response code for each mes-
sage it supports and returns result code res. This is the most common form of call-
back in SwiftForth.

Glossary

CALLBACK: (xt n —)
Defines a Windows callback, which will execute the code associated with xt and take
n parameters.

References Switch data structures, Section 4.5.4
FUNCTION:, Section 8.2.1
Dynamic memory allocation (ALLOCATE and FREE), Section 5.4.
Memory allocation, Forth Programmer’s Handbook.

8.1.3 System Messages

System messages are usually handled via a compiled switch mechanism (described
in Section 4.5.4), which can be extended to include any new messages that need to
Windows Programming in SwiftForth 125

SwiftForth Reference Manual
be handled. In all cases, a switch used as a message handler expects on the stack a
message number and must return a result, whose meaning depends on the mes-
sage. Consult your Windows documentation for detailed information on any mes-
sage you wish to support.

For example, here is code to extend SwiftForth’s primary Windows message handler
SFMESSAGES to include keystroke events:

[+SWITCH SFMESSAGES (n -- res)
WM_SYSKEYDOWN RUNS KDOWN1
WM_KEYDOWN RUNS KDOWN0
WM_CHAR RUNS CDOWN0
WM_SYSCHAR RUNS CDOWN1

SWITCH]

The message names are all of the form WM_<xxx> and refer to Windows constants
that return a value. These constants are not defined individually in SwiftForth; just
use the documented Windows name, and SwiftForth will find them in the list of
Windows constants supported by WINCON.DLL.

References Switch data structures, Section 4.5.4
Resolution of Windows constant names, Section 5.5.3

8.1.4 Class Registration

Having defined a message handler and callback, you have the minimum infrastruc-
ture required to register a Windows class. Now you can construct an actual window
(an instance of a registered class) as many times as you need to.

To register a class, you must provide the message handler and callback, plus a num-
ber of parameters that describe the class. The general way of doing this in Swift-
Forth is by using the word DefineClass, which takes ten parameters and returns a
handle. This word calls the Windows function RegisterClass. The parameters are
shown in Table 20; to see the details, LOCATE DefineClass.

Because it is fairly cumbersome to specify all these parameters, many of which are
not used by most windows, SwiftForth provides a simpler registration word called
DefaultClass. This takes only two parameters, the address of the zero-terminated
string giving the name of the class and the address of the class callback routine. It
registers a class with the default values shown in Table 20.

Table 20: Class registration parameters, with default values

Parameter
(10 = TOS) Name Description Default value

1 style The class style(s). Styles can be com-
bined by using the bit-wise OR operator.

CS_HREDRAW
CS_VREDRAW
CS_OWNDC

2 callback xt of the window callback procedure. you provide
126 Windows Programming in SwiftForth

SwiftForth Reference Manual
Glossary

DefineClass (x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 — nh)
Accepts parameters on the stack and registers the class. Refer to Table 20 for the
parameter list and descriptions. Returns the class handle.

DefaultClass (addr1 addr2 — nh)
Registers a class whose name is the zero-terminated string at addr1 and whose call-
back routine (defined by CALLBACK:) is addr2, with default parameters as shown in
Table 20. Returns the class handle.

8.1.5 Building a Windows Program

This section presents a step-by-step tutorial describing the steps required to
develop a simple Windows application, which is included as an example. The steps
are in an order that has proven to work, but this is by no means the only order in

3 xclass The number of extra bytes to allocate
following the window-class structure.
The OS initializes the bytes to zero.

0

4 xwin The number of extra bytes to allocate
following the window instance. The OS
initializes the bytes to zero.

0

5 inst The instance the window procedure of
this class is within.

HINST

(of Swift-
Forth)

6 icon The SwiftForth default icon. HINST 101
LoadIcon

7 cursor The class cursor. This must be a
handle of a cursor resource. If this mem-
ber is zero, an application must explic-
itly set the cursor shape
whenever the mouse moves into the
application's window.

IDC_ARROW

(default cur-
sor)

8 brush The class background brush. This mem-
ber can be a handle to the actual brush
to be used for painting the background,
or it can be a color value (1–20).

WHITE_BRUSH

(default
background)

9 menu Address of a zero-terminated character
string that specifies the resource name
of the class menu, as the name appears
in the resource file.

0 (none)

10 name Address of a zero-terminated string giv-
ing the window class name.

you provide

Table 20: Class registration parameters, with default values (continued)

Parameter
(10 = TOS) Name Description Default value
Windows Programming in SwiftForth 127

SwiftForth Reference Manual
which they could be done. The program described here is provided as the file Swift-
Forth\lib\samples\win32\clicks.f.

A Windows program is not like a traditional program that has a single entry point
and that executes more-or-less sequentially till finished. It has an entry point and a
main routine, but almost all the work is accomplished during callbacks in response
to Windows events.

The example program will count mouse clicks (aka button presses) inside a window
and will display the tally for both right and left buttons. To do this, we need the fol-
lowing:

• a window

• a routine to recognize mouse clicks and count them

• a routine to display the results

Here are the steps that provide these things:

• Define the message handler and callback routine, which together constitute a class
of Windows objects.

• Register the class.

• Create and display the window (an instance of the class).

• Run the message loop until the window is closed.

• Encapsulate the functionality provided in steps 1–4 into a program.

• Define the window behavior in terms of message responses.

Note that, in the code that follows, all references of the form WM_<xxx> are con-
stants associated with Windows messages. References to words such as WS_OVER-
LAPPEDWINDOW are also constants. These constants are automatically resolved as
literals by the compiler from the Wincon.dll file, as described in Section 5.5.3.

8.1.5.1 Define the Window Class

Our first steps involve creating a Windows class, which consists of a message han-
dler and callback routine. We will also define a string containing its name, as this
saves the trouble of providing it as a literal string (with consistent spelling!) every
time we need to use it.

This step doesn’t have to be first, but it is convenient to have the framework already
defined, and then to extend it as the program grows. A message switch is required
to define the callback, and the callback is required before the class can be regis-
tered, and the class must be registered before the window can be created.

In the code below, hAPP holds the application handle. This is used to detect that the
application is active, and provides a means for accessing the application from the
SwiftForth interactive environment.

0 VALUE hAPP
CREATE CLASSNAME ,Z" Counting"

The message handler is initially an empty switch (see the discussion of switch struc-
128 Windows Programming in SwiftForth

SwiftForth Reference Manual
tures in Section 4.5.4) whose default behavior is to call the default Windows mes-
sage handler. We will add specific message handlers to the switch later.

[SWITCH MESSAGE-HANDLER DEFWINPROC (-- res)
(no behavior yet)

SWITCH]

Having defined the switch, we can now define the callback. We use the defining
word :NONAME (see “Colon Definitions” in Forth Programmer’s Handbook,), since the
function is useless in any other context.

The parameters to the function are held in the pseudo-values HWND MSG WPARAM and
LPARAM—not on the stack! These parameters (described in Section 8.1.2) are avail-
able to any routine running during the execution of the callback. The function must
return a numeric result, which will later be used with the switch to find the right
behavior.

:NONAME (-- n)
MSG LOWORD MESSAGE-HANDLER ;

4 CALLBACK: APPLICATION-CALLBACK

It is very nice to be able to repeatedly reload an application being debugged. During
the PRUNE operation (described in Section 4.1.1), SwiftForth needs to be able to close
the window if it is open and to unregister the class so things don’t crash. Once a
class is registered, Windows may exercise the callback at any time. If SwiftForth is
going to prune the callback, it must first unregister the class so that Windows will
not attempt to call it.

:PRUNE ?PRUNE -EXIT
hAPP IF hAPP WM_CLOSE 0 0 SendMessage DROP THEN
CLASSNAME HINST UnregisterClass DROP ;

However, depending on the complexity of your program, it may not be practical to
use PRUNE in SwiftForth apps.

8.1.5.2 Register the Class

We register the class here via DefaultClass, described in Section 8.1.4. Note that
DefaultClass is not a Windows function, but an abstraction of the Windows Regis-
terClass function and the Windows WNDCLASS structure. DefaultClass sets the
default parameters shown in Table 20, plus the xt of your callback and your applica-
tion name.

: REGISTER-CLASS (--)
CLASSNAME APPLICATION-CALLBACK DefaultClass
DROP ; \ Discard return parameter

8.1.5.3 Create and Show the Window

Only after the class is registered are we allowed to create a window of that class.
Here we create a window, specifying its styles, size, and title. The return value is a
Windows Programming in SwiftForth 129

SwiftForth Reference Manual
handle to the window.

If we are debugging this application from SwiftForth, and we intend always to run it
from SwiftForth, this is all we need to do. The reason is that SwiftForth already has
a message loop running, and all Windows created by SwiftForth will be processed
automatically.

: CREATE-WINDOW (-- handle)
0 \ extended style
CLASSNAME \ window class name
Z" Counting clicks" \ window caption
WS_OVERLAPPEDWINDOW \ window style
10 10 600 400 \ position and size
0 \ parent window handle
0 \ window menu handle
HINST \ program instance handle
0 \ creation parameter
CreateWindowEx ;

8.1.5.4 Start the Message Loop

We need to chain together the parts defined so far. Note that the message handler
is already linked to the class via the class’s callback routine. We return zero if we
did not create the window, and non-zero (the window’s handle) if we did.

The START routine starts the message loop running. It is usable in the SwiftForth
environment and will allow interactive testing of the running window; i.e., you may
change the value of either variable and execute SHOW and the window will update.

: START (-- flag)
REGISTER-CLASS CREATE-WINDOW DUP IF

DUP SW_NORMAL ShowWindow DROP
DUP UpdateWindow DROP
DUP TO hAPP

THEN ;

START can also be used to start a message loop in a standalone program, as
described next.

8.1.5.5 Encapsulate the Functionality of the Program

If we want to run this as a standalone application, we must provide a full message
loop and application termination.

The word GO below does not return to SwiftForth—on entering it, the system will
run the application until it is closed, and then will close SwiftForth as well. This is
the behavior of a standalone application, and is not useful in the development envi-
ronment.

: GO (--)
 START IF DISPATCHER

ELSE 0 Z" Can't create window" Z" Error" MB_OK
MessageBox

 THEN 'ONSYSEXIT CALLS 0 ExitProcess ;
130 Windows Programming in SwiftForth

SwiftForth Reference Manual
To establish this program as an application, we place the xt of GO into 'MAIN and
save the image via PROGRAM-SEALED. This is appropriate after everything is tested
and you are ready to launch your program as a turnkey (see Section 4.1.2).

 ' GO 'MAIN !
 PROGRAM-SEALED Test.exe

Even though we don’t actually do this until the work described in the next section is
complete, we are bringing this in now so you see how 'MAIN is set, as its content is
checked in the next section.

Glossary

PROGRAM-SEALED <filename>[.<ext>] [<icon>] (—)
Same syntax as PROGRAM (see Section 4.1.2), but generates a “sealed” turnkey image
(a program with no user-level access to the Forth interpreter or dictionary), which
does not request the full dictionary allocation. The virtual memory specified in the
header is the same as the size of the SwiftForth program image.

'MAIN (— addr)
Return the address of an execution vector containing the main program word to be
launched at startup. This will occur after the DLLs have been loaded, but before the
STARTER word set in a turnkey is executed. The default for sf.exe is START-CONSOLE
(which launches the command window).

8.1.5.6 Define Window Behavior

So far, we have defined a very default window with no custom responses to any-
thing. In order for this to be an application, we have to implement message behav-
iors appropriate to our goals.

Almost none of the words described in this section are directly executable from the
Forth interpreter; they must be called via the Windows callback routine. The mes-
sage responses may be either named words referenced by RUNS or un-named and
referenced by RUN: (both described in Section 4.5.4).

This application will simply count left and right mouse clicks in its client area. It is
designed to run directly from SwiftForth, to aid in debugging it, but will have hooks
to let it run as a standalone application when finished.

REFRESH simply tells Windows to update the contents of the current window, which
is identified by HWND.

: REFRESH (--)
HWND 0 0 InvalidateRect DROP ;

Next, we define variables to hold the button-click counts.

VARIABLE RIGHT-CLICKS
VARIABLE LEFT-CLICKS

Mouse-button clicks are sent as messages to the active window—so now we add
message actions for right and left button presses.
Windows Programming in SwiftForth 131

SwiftForth Reference Manual
[+SWITCH MESSAGE-HANDLER (-- res)
WM_RBUTTONDOWN RUN: 1 RIGHT-CLICKS +! REFRESH 0 ;
WM_LBUTTONDOWN RUN: 1 LEFT-CLICKS +! REFRESH 0 ;

SWITCH]

Having provided the ability to count clicks, we consider the problem of displaying
the tallies. Note that normal display words such as EMIT may not be used during a
callback, but output formatting words such as (.) may. HERE is a valid (and reen-
trant) address during a callback, so we build our output string at HERE.

(SHOW-CLICKS) formats the window’s text at HERE, returning the string:

: (SHOW-CLICKS) (-- addr n)
LEFT-CLICKS @ (.) HERE PLACE

S" left right " HERE APPEND
RIGHT-CLICKS @ (.) HERE APPEND

HERE COUNT ;

SHOW-CLICKS is the core of the REPAINT function. It formats the text at HERE, deter-
mines the size of display on which to show the text, and draws the text:

: SHOW-CLICKS (hdc --)
(SHOW-CLICKS)
HWND PAD GetClientRect DROP PAD
DT_SINGLELINE DT_CENTER OR DT_VCENTER OR
DrawText DROP ;

Unfortunately, nothing is automatic in Windows! We can display messages easily,
but if another window obscures our window, the information previously displayed
is lost. We must be able to repaint the window on demand. This means handling
the WM_PAINT message.

: REPAINT (-- res)
HWND PAD BeginPaint (hdc)
HWND HERE GetClientRect DROP
(hdc) SHOW-CLICKS
HWND PAD EndPaint DROP 0 ;

[+SWITCH MESSAGE-HANDLER (-- res)
WM_PAINT RUNS REPAINT

SWITCH]

The last messages we must handle are related to closing the window. We need to
destroy the window and release resources when we receive WM_CLOSE. The act of
destroying the window sends the WM_DESTROY message, which we must also respond
to by posting the quit message, which notifies the dispatcher that the application is
finished.

[+SWITCH MESSAGE-HANDLER (-- res)
WM_CLOSE RUN: HWND DestroyWindow DROP 0 TO hAPP 0 ;
WM_DESTROY RUN: 0 PostQuitMessage DROP 0 ;

SWITCH]

The dispatcher will see PostQuitMessage terminate the application and, as a side-
effect, will terminate SwiftForth as well. This is not acceptable for a development
session, and may not be acceptable even for a main application.
132 Windows Programming in SwiftForth

SwiftForth Reference Manual
To fix this, we will redefine the WM_DESTROY handler to be a little smarter. The new
definition will override the previous one. -APP returns true if we are not a stand-
alone application. We determine this by checking the vector in 'MAIN at run time
against the vector at compile time.

: -APP (-- flag)
'MAIN @ ['MAIN @] LITERAL = ;

[+SWITCH MESSAGE-HANDLER (-- res)
WM_DESTROY RUN: 0 -APP IF EXIT THEN
0 PostQuitMessage DROP ;

SWITCH]

8.2 SwiftForth and DLLs

The dynamic-link library (also written without the hyphen), or DLL, is Microsoft's
implementation of the shared library in the Windows operating system. These
libraries usually have the file extension .dll.

To write Windows applications, you must have access to the functions imported
from DLLs. SwiftForth imports many Windows DLL functions and also supplies a
simple mechanism to import any library functions needed by your application.

SwiftForth also allows you to create DLLs with exported functions.

8.2.1 Importing DLL functions

There are two simple steps to importing a library function:

1. Declare which library functions are to be imported from.
2. Define the function interface.

The word LIBRARY accomplishes the first step:

LIBRARY <filename>

Thereafter, functions in filename will be available for import, using the following
procedure. The default extension for filename is .dll. Windows first searches for
“known” DLLs, such as Kernel32 and User32. It then searches for the DLLs in the
following sequence:

1. The directory where the executable module for the current process is located.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories listed in the PATH environment variable.

To make a Forth word that references a function in a library, use the form:

FUNCTION: <name> (params -- return)
Windows Programming in SwiftForth 133

SwiftForth Reference Manual
The left side of the Forth stack notation used mirrors the parameters in the C func-
tion prototype (usually listed on the function’s documentation page or in a “header”
file). The right side should be a single item (the return value) or it may be empty
(nothing returned).

The names of imported library functions are case sensitive, and must exactly match
the form given in their documentation.

FUNCTION: searches all available DLLs (those declared by LIBRARY) for the named
procedure and, if found, creates a Forth word (with the same name) that calls it. For
example:

FUNCTION: MessageBox (hWnd lpText lpCaption uType -- n)

This defines a call to the MessageBox function, which can then be used simply by ref-
erencing it as a Forth word:

HWND Z" Hello, world!" Z" Greetings" MB_OK MessageBox DROP

The Windows API definition of MessageBox looks like this:

int MessageBox(
 HWND hWnd,
 LPCTSTR lpText,
 LPCTSTR lpCaption,
 UINT uType
);

Note that the order of the parameters in the SwiftForth FUNCTION: definition is the
same left-to-right order specified by the Windows API documentation. Each stack
item is one cell in size and strings are normally null terminated.

FUNCTION: may also be used with AS to provide a different internal Forth name for
an imported function. This is useful when you are importing a function with the
same name as a word already defined in the Forth dictionary.

The syntax is:

AS <Forth-name> FUNCTION: <external-name> (params -- return)

Important: The AS clause and the FUNCTION: definition must be on a single line.

All DLL functions known to SwiftForth may be displayed via the .IMPORTS command,
which displays the resolved address for the routine, the library in which it is found,
and its name. All libraries that have been opened with LIBRARY may be displayed
with .LIBS.

A library or imported function may be marked as optional. For example:

[OPTIONAL] LIBRARY TTY.DLL

[OPTIONAL] Function: MyProc (n -- ior)

If the declared library or imported function is not present at compile time (or when
a turnkey program is launched), no error message is generated. However, a run-time
134 Windows Programming in SwiftForth

SwiftForth Reference Manual
call to an unresolved imported function results in an abort.

Glossary

LIBRARY <filename.dll> (—)
Add filename to the list of DLLs currently available to SwiftForth.

[OPTIONAL] (—)
Specifies that the next library or function declaration is optional.

.LIBS (—)
Display a list of all available libraries (previously defined with LIBRARY).

FUNCTION: <name> <parameter list> (—)
Defines a named call to a library function, which takes the number of parameters
shown in the parameter list, in the form of a stack comment. Imported functions
return at most one value on the stack.

.IMPORTS (—)
Display a list of all currently available imported library functions (previously
defined with FUNCTION:), showing for each its resolved address, the DLL in which it
is defined, and its name.

AS <name> (—)
Provide a different internal Forth name for an imported function, or a different
external name for a function exported from a SwiftForth DLL (Section 8.2.2).

8.2.2 Creating a DLL

SwiftForth can create a DLL with exported functions. A DLL made from SwiftForth

contains the entire system.1

The steps to make a DLL are:

1. Define the Forth functions to be exported in a DLL. DLL functions may take a num-
ber of arguments, but always return exactly one argument. The implication for
Forth functions in DLLs is that the stack within the DLL is not persistent across con-
secutive calls.

2. Export the Forth functions, associating them with case-sensitive names that are
unique for all included DLLs, using AS (if necessary) and EXPORT: as follows for
each Forth function to be exported. Pre-existing Forth functions may be exported
without redefinition. For example, given:

: SQRT (n1 – n2) ... ; \ n2 is the square root of n1

…you could then use the form:

AS <external-name> <n> EXPORT: <Forth-name>

1.In order to comply with FORTH, Inc. licensing policies (see Section 1.5), you may not export any access
to SwiftForth development tools, including the compiler and assembler, without making appropriate
arrangements with FORTH, Inc.
Windows Programming in SwiftForth 135

SwiftForth Reference Manual
…where n is the number of parameters needed by Forth-name. Thus:

AS SquareRoot 1 EXPORT: SQRT

Important: The AS clause and the EXPORT: declaration must be on a single line.

3. Repeat to export other functions.
4. Create a DLL using the PROGRAM function, for example:

PROGRAM CALCULATOR.DLL

Consider this example. A DLL is to be created, having four calculator functions
based on Forth math operators. The functions are exported as follows:

AS Plus 2 EXPORT: +
AS Minus 2 EXPORT: -
AS Times 2 EXPORT: *
AS Divide 2 EXPORT: /

PROGRAM CALC.DLL

Any program capable of calling DLL functions can import the exported functions.
To reference these functions in SwiftForth, use:

LIBRARY CALC

FUNCTION: Plus (n1 n2 -- n3)
FUNCTION: Minus (n1 n2 -- n3)
FUNCTION: Times (n1 n2 -- n3)
FUNCTION: Divide (n1 n2 -- n3)

Strict prohibitions apply against absolute address references in DLLs. See Section
5.1.4.

Glossary

EXPORT: <name> (n —)
Export the function name so it will be available to other programs that load a DLL
you create. n indicates the number of parameters needed by name.

References Memory model and address management, Section 5.1.4
System warning configuration, Section 2.3.5
PROGRAM (turnkey images), Section 4.1.2

8.3 Dynamic Data Exchange (DDE)

DDE is a mechanism by which separate Windows applications can request data from
each other. The requesting program is considered a client, and the program that
manages the data acts as a server.

SwiftForth provides a simple API for client services based on the DDE Management
136 Windows Programming in SwiftForth

SwiftForth Reference Manual
Library (DDEML). This library provides about 30 function calls that are defined in
SwiftForth in the file ddeclient.f.

There are three basic steps in a DDE conversation:

1. The client establishes a relationship with the server. This requires that the server
be running; a 1005 THROW will occur if it is not, or if a link cannot be established for
any other reason.

2. The client establishes a topic on which it wishes to converse. All DDE servers sup-
port at least one topic, and most have several. For example, Excel can discuss its
system functions (e.g., what formats or protocols it supports) as well as individual
worksheets.

3. The client sends specific items (questions) relating to the topic, and the server
responds appropriately.

Using DDEML, inter-application communication consists of the client passing string
handles that specify the server, topic, and item; responses are received as strings, as
well. The SwiftForth words SERVER, TOPIC, and ITEM each take strings from the input
stream (using ZSTRING) and set them up where they may be easily passed to the DDE
functions. The word ZTELL is provided as a diagnostic, to display a received string.

The words DDE-INIT, DDE-REQ, DDE-SEND, and DDE-END conduct specific steps in the
conversation.

As examples of how these may be used, consider this definition of an inquiry:

: ASK (--) \ Request an item from a server
ITEM \ Capture the request from input stream
DDE-INIT \ Initialize the conversation
DDE-REQ \ Send the request, get response
DDE-END \ Terminate the conversation
ZTELL ; \ Display the data

Here is an example using this:

SERVER EXCEL ok
TOPIC SYSTEM
ASK SYSITEMS

SysItems Topics Status Formats Selection Protocols EditEnvItems ok

The last line represents the list of items returned from Excel. Here’s an example
involving sending data:

: TELL (addr n --) \ Send the string addr n
ITEM \ Capture the data from input stream
DDE-INIT \ Initialize the conversation
DDE-SEND \ Send the data
DDE-END ; \ Terminate the conversation

SERVER EXCEL
TOPIC 25JAN98.XLS \ Topic is a worksheet file
ASK R1C1 \ Fetch from row 1, col 1
Name:
Windows Programming in SwiftForth 137

SwiftForth Reference Manual
S\" Rick VanNorman\n" TELL R1C2

In this example, row 1 column 1 contains the heading Name:, and the string Rick
VanNorman is sent to row 1 column 2.

Glossary

SERVER <name> (—)
Set the string name as the server identifier.

TOPIC <string> (—)
Set string as the topic.

ITEM <string> (—)
Set string as a data item to be used as the request or transaction.

DDE-INIT (—)
Check for necessary data (server, topic, item) and open the conversation. If the
server doesn’t respond or doesn’t recognize the topic, a 1005 THROW will occur.

DDE-REQ (— addr)
Send a request item to the server, and receive a response as an ASCIIZ string at addr
(which is at PAD).

DDE-SEND (addr n —)
Send the string addr n to the server.

DDE-END (—)
Terminate the conversation.

8.4 Managing Configuration Parameters

Windows applications can maintain configuration parameters in the Windows regis-
try. SwiftForth uses this facility to maintain a number of different parameters,
including items set from the Options menu and others.

To see dumps of the currently defined configuration parameters, use the command
.CONFIGURATION. When SwiftForth is launched, it automatically initializes its local
copies of these parameters from the registry. The local copies are recorded in the
registry when SwiftForth exits.

SwiftForth provides the defining word CONFIG: for you to add application configura-
tion parameters to this list. This constructs a colon definition whose name is added
to the list of configuration parameters. The behavior of a word defined by CONFIG:
must be to return an address and length in bytes of a parameter or parameter list.

Consider these examples:

Example 1.

CREATE VALS 1 C, 2 C, 3 C, 4 C,
CONFIG: VALS-KEY (-- addr n)
138 Windows Programming in SwiftForth

SwiftForth Reference Manual
 VALS 4 ;

In this example, execution of the name VALS returns the address, and 4 provides the
length.

Example 2.

100 VALUE SIZE
CONFIG: SIZE-KEY (-- addr n)
 ['] SIZE >BODY CELL ;

Here we couldn’t execute SIZE in the definition, because that would have returned
the value. Nor can we compile the address of SIZE in the definition using a phrase
such as [' SIZE >BODY] LITERAL, because that would have compiled the current
absolute address of SIZE which would not be appropriate next time SwiftForth is
booted. The correct approach is to derive the address at run time, as shown in the
example.

Glossary

CONFIG: <name> (—)
Define a word that will be placed in the list of configuration parameters to be main-
tained in the Windows registry. When executed, name must return the address and
length of its data area, which will be recorded and initialized by SwiftForth at
startup.

References Options menu, Section 2.3.5
Addresses of data objects, Sections 5.1.4 and 4.5.2

8.5 Command-line Arguments

The main entry point of a program is called by the operating system using this func-
tion prototype:

int main(int argc, char *argv[])

Although any name could be given to these parameters, they are usually referred to
as argc and argv. The first parameter, argc (argument count) is an integer that indi-
cates how many arguments were entered on the command line when the program
was started. The second parameter, argv (argument vector), is an array of pointers
to arrays of character objects. The array objects are null-terminated strings, repre-
senting the arguments that were entered on the command line when the program
was started.

The first element of the array, argv[0], is a pointer to the character array that con-
tains the program name or invocation name of the program that is being run from
the command line. The second element, argv[1] points to the first argument passed
to the program, argv[2] points to the second argument, and so on.

SwiftForth provides the following words to access the command-line arguments:
Windows Programming in SwiftForth 139

SwiftForth Reference Manual
Glossary

ARGC (addr len — n)
Returns the argument count in the command line buffer addr len.

ARGV (addr1 len1 i — addr2 len2)
Returns argument i from command line add1 len1 as string addr2 len2. If i is an
invalid argument number (i.e., not less than ARGC), a zero-length string is returned.

CMDLINE (— addr len)
Returns its address and count of the command line.

8.6 Environment Queries

The operating system environment variables can be queried with FIND-ENV. For
example, if the environment contains the entry "PATH=C:\Windows" then the query

S" SHELL" FIND-ENV

returns the address and length of the string "C:\Windows". Do not include the “=”
in the search string; FIND-ENV appends it to its search buffer.

The command .ENV displays the entire list of environment variables for diagnostic
purposes.

Glossary

FIND-ENV (addr1 len1 — addr2 len2 flag)
Searches for the string addr1 len1 in the environment and returns its value as string
addr2 len2 and true if found. Returns the original string parameters and false if not
found.

.ENV (—)
Displays the environment for diagnostic purposes.

ATOI (addr len — n)
Converts a counted character string to a single integer. Returns 0 if it fails. “0x”
preceeds hex numbers; all others are decimal.

GETCH (addr1 len1 — addr2 len2 char)
Removes the first character from the string addr1 len1 and returns the remaining
string addr2 len2 and the character.

8.7 A Self-Contained Windows Application

It is possible to define a fully self-contained Windows application that does not
depend in any way upon the SwiftForth command window. A simple example of
140 Windows Programming in SwiftForth

SwiftForth Reference Manual
such a standalone program is SwiftForth\lib\samples\win32\hellowin.f. This pro-
gram is based on a sample program in Petzold, Programming Windows (see refer-
ences at www.forth.com/swiftforth/) that displays a window and plays a WAV file
that says, “Hello, Windows!” If you INCLUDE this file in SwiftForth and then save it as
an executable using the phrase PROGRAM HELLO, the resulting hello.exe is a stand-
alone program that may be run without any other component of SwiftForth, just its
data file hellowin.wav.

The essential features of this standalone program are:

1. A class name, in this case AppName.
2. The switch HELLO-MESSAGES, which handles the callback messages for this class. It is

via these messages that Windows executes a program. The minimum required is
that we handle the WM-DESTROY message, which responds to the close box in the win-
dow’s upper-right corner, among other things.

3. A callback for the class, WNDPROC. It extracts the content of a message and sends it
to HELLO-MESSAGES.

4. A WNDCLASS structure called MYCLASS, which defines the overall characteristics of
the windows we want to define.

5. An instance of the class constructed by MYWINDOW, whose name is the content of
AppName.

6. In this example, we require an external DLL called WINMM.DLL to play the sound. It
must be added, and a procedure from it (PlaySound) defined.

7. We also need a couple of definitions to play the sound and write the message in the
middle of the window; these are TADA and PAINT, respectively.

8. We add two more messages to the switch HELLO-MESSAGES, to run these words.
9. We construct a main program called WINMAIN to launch the whole thing, and attach

it by putting its xt in 'MAIN.

Section 8.1.5.5 (page 130) discusses how to assign a start-up word to a turnkey
application.
Windows Programming in SwiftForth 141

https://www.forth.com/swiftforth/

SwiftForth Reference Manual
142 Windows Programming in SwiftForth

SwiftForth Reference Manual
Section 9: Defining and Managing Windows Features

There are many classes of Windows objects, including windows, dialog boxes, but-
tons, toolbars, status bars, and other kinds of controls. Each is, technically, a “win-
dow,” in that it is a dataset with a callback. Most objects also respond to a set of
messages characteristic of the object’s class. This section discusses the most com-
monly occurring classes of objects; the principles by which SwiftForth handles them
may be straightforwardly applied to other classes of objects described in the Win-
dows API documentation.

9.1 Menus

Creating a menu in SwiftForth involves two steps: building a data structure that
describes the elements of the menu, and instantiating the menu by means of a Win-
dows call. The basic structure of a menu is:

MENU <name>
<items>

END-MENU

MENU is a defining word which starts building a data structure which Windows can
interpret as a menu via the LoadMenuIndirect function. All menus are defined by it.
Although MENU creates a Forth word name for the data structure, there is no Win-
dows-associated text for it.

Two kinds of elements can be referenced inside a MENU … END-MENU structure: sub-
menus (which display a list of choices) and individual menu items.

POPUP … END-POPUP defines a sub-menu. POPUP is followed by the label that will
appear for this sub-menu. The sub-menu is an element within the menu, it is not
itself a named word. It may contain menu items and additional sub-menus. Individ-
ual menu items are created by these words:

• MENU adds a normal, enabled menu item.

• GRAY adds a disabled menu item.

• CHECK adds an enabled menu item which is initially checked.

• SEPARATOR inserts a separator bar into the menu structure.

The syntax of the first three of these is:

 <id> xxxx "text"

where id is simply a user-defined number and text is normal ASCII text surrounded
by quote marks. Note that the leading quote mark requires a space to its left but
none to its right; the trailing quote mark requires no space at all.

A simple, useful example of a menu in the hello.f sample is:

MENU HELLO-MENU
Defining and Managing Windows Features 143

SwiftForth Reference Manual
 POPUP "&File"
 MI_EXIT MENUITEM "E&xit"
 END-POPUP

 POPUP "&Help"
 MI_ABOUT MENUITEM "&About"
 END-POPUP
END-MENU

: CREATE-HELLO-MENU (-- hmenu)
 HELLO-MENU LoadMenuIndirect ;

which assumes that the MI_ items are unique constants. The character preceded by
& will appear underlined and, if that letter plus the Alt key are pressed, Windows
will generate a message that this item has been selected.

This menu’s data structure is named HELLO-MENU and is instantiated by the call to
LoadMenuIndirect. Any menu created by LoadMenuIndirect must eventually be got-
ten rid of by DestroyMenu, except for the primary window menu itself, which will be
automatically destroyed when the window is closed.

This defined a menu and made it appear in the window, but no behavior was
assigned to it. Menu execution is assigned by using the WM_COMMAND message’s
WPARAM parameter. This is normally handled by a set of [SWITCH structures (see Sec-
tion 4.5.4); referring again to the hello.f sample:

[SWITCH HELLO-COMMANDS ZERO
 MI_EXITRUN: (-- res) HELLO-CLOSE 0 ;
 MI_ABOUTRUN: (-- res) HELLO-ABOUT 0 ;
SWITCH]

[SWITCH HELLO-MESSAGES HELLO-DEFAULT

 WM_COMMANDRUN: (-- res) WPARAM LOWORD HELLO-COMMANDS ;
 WM_PAINTRUN: (-- res) HELLO-PAINT 0 ;
 WM_CREATERUN: (-- res) HELLO-CREATE 0 ;
 WM_LBUTTONDOWNRUN: (-- res) PRESSES@ 1+ PRESSES!

1 +TO PRESSES 0 ;
 WM_TIMERRUN: (-- res) HWND 0 1 InvalidateRect DROP 0 ;
 WM_CLOSERUN: (-- res) HELLO-CLOSE 0 ;
SWITCH]

:NONAME (-- res) MSG LOWORD HELLO-MESSAGES ;
4 CALLBACK: HELLO-WNDPROC

Sub-menus can be nested; for example, this defines SwiftForth’s Options menu:

POPUP "&Options"
 MI_FONT MENU "&Font"
 MI_EDITOR MENU "&Editor"
 MI_PREFS MENU "&Preferences"
 MI_WARNCFG MENU "&Warnings"
 MI_MONCFG MENU "&Include monitoring"
 MI_FPOPTIONS GRAY "FP&Math Options"

 POPUP "&Optional packages"
144 Defining and Managing Windows Features

SwiftForth Reference Manual
 MI_EXTENSIONS MENU "&System Options"
 MI_SAMPLES MENU "Generic Samples"
 MI_WINSAMPLES MENU "Win32 Samples"
 MI_WINTEMPLATES MENU "Win32 Templates"
 SEPARATOR
 MI_WINOOP MENU "SFC Packages"
 MI_SFCSAMPLES MENU "SFC Samples"
 END-POPUP
 SEPARATOR
 MI_SAVEOPTIONS MENU "&Save Options"
 END-POPUP

Glossary

MENU <name> (—)
Start building the data structure for a menu. Terminated by END-MENU. Between
MENU and END-MENU may be sub-menus described with POPUP … END-POPUP and indi-
vidual menu items. Use of name will return the data structure’s address.

POPUP <label> (—)
Start building a popup sub-menu whose definition will be terminated by END-POPUP.
Between POPUP and END-POPUP may be individual menu items. The sub-menu will
appear as label on the parent menu. Sub-menus may be nested.

MENUITEM "text" (n —)
Add an enabled menu item whose ID is n, which will be labeled text on the menu.
Must be used within a menu or sub-menu definition.

GRAY "text" (n —)
Add a disabled (gray) menu item whose ID is n, which will be labeled text. Must be
used within a menu or sub-menu definition.

CHECK "text" (n —)
Add an enabled menu item whose ID is n, which will be labeled text. Must be used
within a menu or sub-menu definition. The item will be initially marked with a
checkmark.

SEPARATOR (—)
Add a separator bar at the current position in a menu. Must be used within a menu
or sub-menu definition.

9.2 Dialog Boxes

Dialog boxes are supported via a simple
dialog compiler, which parallels the Mic-
rosoft resource compiler. An example of
a dialog box (shown at right) is given in
the file SwiftForth\lib\samples\win32\
simple.f. The design and management of
dialog boxes is discussed in this section.
Defining and Managing Windows Features 145

SwiftForth Reference Manual
9.2.1 Defining a Dialog Box

Dialog boxes may be of two basic kinds

• Modal dialog boxes must be closed before the user can do anything else in this
application.

• Modeless dialog boxes may remain open until closed.

The dialog box associated with Options > Preferences and the simple.f example are
modal dialogs; SwiftForth’s History window is a modeless dialog.

To define a dialog box, use the form:

DIALOG <name>
[<kind> " <title> " <x> <y> <cx> <cy> <options>]
[<control> ...] (one for each control in your dialog box)

END-DIALOG

...where:

• kind is either MODAL or MODELESS, so you would use the form:

[MODAL ...]or
[MODELESS ...]

• name is its Forth name

• title is the text that will be displayed in the title bar

• x and y are the position of the upper-left corner, in dialog box units (about 1/4 an
average character width in x and 1/8 an average character height in y, for the sys-
tem font)

• cx and cy are the horizontal and vertical sizes, in dialog box units

• options may include font or style modifiers. A font modifier begins with (FONT fol-
lowed by the size parameter and font name, and ends with a). If the specified font
isn’t available on a particular computer, a system default will be substituted. Style
modifiers are described in Section 9.2.2.

The definition is terminated by END-DIALOG. The word DIALOG creates a data struc-
ture whose address is returned by the use of name. It may be used as a parameter
to DialogBoxIndirectParam, which will instantiate it, as we shall see shortly.

The dialog box in simple.f is defined like this:

DIALOG (SIMPLE)
 [MODAL " Press counter" 10 10 160 40
 (FONT 8, MS Sans Serif)]

\ [control " default text" id xpos ypos xsiz ysiz]
 [DEFPUSHBUTTON " OK" IDOK 105 20 45 15]
 [PUSHBUTTON " Clear" 103 05 20 45 15]
 [PUSHBUTTON " Throw" 104 55 20 45 15]
 [RTEXT 101 05 05 18 10]
 [LTEXT " Total errors" 102 25 05 50 10]

END-DIALOG
146 Defining and Managing Windows Features

SwiftForth Reference Manual
Its control specifications are described in Section 9.2.3.

Glossary

DIALOG <name> (—)
Start building the data structure for a dialog box, which will be terminated by END-
DIALOG. This must be followed by a specification for the dialog box using [MODAL or
[MODELESS, and any controls featured in the dialog box. Use of name will return the
data structure’s address.

[MODAL (—)
Begins the specification of parameters for a modal dialog box, which include the
title, location, and size parameters, as well as optional font and style specifiers.
The parameter list is terminated with].

[MODELESS (—)
Begins the specification of parameters for a modeless dialog box, which include the
title, location, and size parameters, as well as optional font and style specifiers.
The parameter list is terminated with].

(FONT (—)
Begins the font specification for a dialog box, followed by the size and font name.
The specification is terminated with).

9.2.2 Dialog Box Styles

When you define a dialog box as described in Section 9.2.1, it uses a template based
on certain defaults. Every dialog box template specifies a combination of style val-
ues that define the appearance and features of the dialog box. The style values can
be window styles, such as WS_POPUP and WS_SYSMENU, and dialog box styles, such as
DS_MODALFRAME. The number and type of styles for a template depends on the type
and purpose of the dialog box.

The default styles set by SwiftForth for modal and modeless dialogs are:

• Modal: WS_POPUP, WS_CAPTION, DS_MODALFRAME, WS_VISIBLE

• Modeless: WS_POPUP, WS_SYSMENU, WS_CAPTION, WS_BORDER, WS_VISIBLE

You may specify styles for your dialog box using (STYLE followed by a list of style
specifier constants terminated by). You may also add or remove style specifiers
using the words (+STYLE and (-STYLE. Each is followed by one or more constants
specifying styles; the list is terminated by a). For example, the sample tabbed dia-
log box in tabbed.f begins with:

DIALOG (TAB1)
 [MODELESS 4 21 172 95
 (STYLE WS_CHILD WS_VISIBLE WS_BORDER)
 (FONT 8, MS Sans Serif)]

Style specifiers may also be used with the controls inside a dialog box. For example,
this tabbed dialog box has an edit text box control specified this way:
Defining and Managing Windows Features 147

SwiftForth Reference Manual
[EDITTEXT IDC_EDIT1 20 17 110 12 (+STYLE ES_AUTOHSCROLL)]

…which automatically scrolls text to the right by 10 characters when the user types
a character at the end of the line.

Glossary

(STYLE (—)
Begins a list of style parameters that will apply to the dialog box or control cur-
rently being built. Parameters are specified by Windows constants that will be ORed
together. The parameter list is terminated with).

(+STYLE (—)
Begins a list of style parameters that will be added to the dialog box or control cur-
rently being built. Parameters are specified by Windows constants that will be ORed
together. The parameter list is terminated with).

(-STYLE (—)
Begins a list of style parameters that will be deleted from the dialog box or control
currently being built. Parameters are specified by Windows constants that will be
ORed together. The parameter list is terminated with).

9.2.3 Dialog Box Controls

Most dialog boxes have controls, which are objects such as pushbuttons, check-
boxes, edit boxes, etc., for user interaction. You may define as many controls as
you like (up to Windows’ limit of 255) for your dialog box. The definition of a con-
trol is similar to that for a dialog box, except it is identified by number rather than
by name. The form is:

<defining word> " <text> " <id> <x> <y> <xc> <yc>]

…where:

• defining word is one of those in Table 21.

• text will be displayed in the control (if there is none, this may be omitted).

• id is the numeric ID of the control; it may be a value predefined in Windows, or may
be programmer-assigned uniquely for this dialog box. (To avoid conflict with IDs
assigned by Windows, we recommend values starting with 100.)

• x and y are the position of the upper-left corner, in dialog box units.

• cx and cy are the horizontal and vertical sizes, in dialog box units.

The dialog box in simple.f has these controls:

Table 21: Dialog box controls

Defining word Description

[AUTO3STATE Checkbox with on/off/gray states.

[AUTOCHECKBOX Checkbox with on/off states.
148 Defining and Managing Windows Features

SwiftForth Reference Manual
\ [control " default text" id xpos ypos xsiz ysiz]
 [DEFPUSHBUTTON " OK" IDOK 105 20 45 15]
 [PUSHBUTTON " Clear" 103 05 20 45 15]
 [PUSHBUTTON " Throw" 104 55 20 45 15]
 [RTEXT 101 05 05 18 10]
 [LTEXT " Total errors" 102 25 05 50 10]

[AUTORADIOBUTTON A radio button in a group,
of which only one can be on.

[CHECKBOX A box that can be checked.

[COMBOBOX Combination of a single-line edit control and list box.

[CTEXT Centered text.

[DEFPUSHBUTTON Default pushbutton (Enter key selects it).

[DRAWNBUTTON Owner-drawn pushbutton.

[EDITBOX Box (usually white) in which you can type multiple
lines.

[EDITTEXT One-line edit control.

[GROUPBOX A thin line around multiple controls to make a visual
grouping.

[HSCROLLBAR Horizontal scroll bar.

[ICON An icon image (e.g., in upper-left corner)

[LISTBOX Drop-down list.

[LTEXT Left-justified text.

[PROGRESS A window that an application can use to indicate the
progress of a lengthy operation. See Section 9.3.

[PUSHBUTTON Non-default pushbutton.

[RADIOBUTTON Radio (round) button.

[RICHBOX A rich text edit box; similar to an edit box, but with
more features.

[RTEXT Right-justified text.

[STATE3 Checkbox without pre-defined behavior.

[STATIC Provides the user with text and graphics that typically
require no response.

[TEXT1BOX Single-line, read-only text box.

[TEXTBOX Multi-line, read-only text box.

[TRACKBAR A window that contains a slider and optional tick
marks. When the user moves the slider, using either
the mouse or the direction keys, the trackbar sends
notification messages to indicate the change.

[UPDOWN The little up and down arrows often attached to a
number in a single-line edit box.

[VSCROLLBAR Vertical scroll bar.

Table 21: Dialog box controls (continued)

Defining word Description
Defining and Managing Windows Features 149

SwiftForth Reference Manual
These provide a default pushbutton (the one “armed” to respond if the user presses
Enter), right-justified text which is blank (in this example, it is where the number of
presses will be displayed), left-justified text, and two more pushbuttons. The OK
pushbutton is an example of a standard Windows button; IDOK is a Windows con-
stant.

The controls provided by SwiftForth are described in Table 21.

9.2.4 Dialog Box Events

When the user does something to your dialog box, you need definitions that will
respond to these events. Here are examples from simple.f:

: SIMPLE-CLOSE (-- res) \ Close the dialog box
HWND 0 EndDialog ;

VARIABLE PRESSES

: .PRESSES (--) \ Display presses counter
HWND 101 PRESSES @ 0 SetDlgItemInt DROP ;

In these definitions, note that HWND is the handle of the dialog box, set by the call-
back that indicates a user action in the box; in .PRESSES, 101 is the numeric ID of
the text control where the number will be displayed.

When an event (such as a user mouse press) occurs in the box, Windows will send it
a message, which will be processed by the switches below. The switch SIMPLE-MES-
SAGES handles the messages, which close the box, start it up, or represent a com-
mand, respectively. If the message is a command, it is masked and sent to the
switch SIMPLE-COMMANDS, which can close it or (in the last case) increment the
presses counter.

[SWITCH SIMPLE-COMMANDS ZERO (-- res)
 IDOK RUN: SIMPLE-CLOSE ;
 IDCANCEL RUN: SIMPLE-CLOSE ;
 103 RUN: PRESSES OFF .PRESSES 0 ;
 104 RUN: STUPID 0 ;
SWITCH]

[SWITCH SIMPLE-MESSAGES ZERO
 WM_CLOSE RUNS SIMPLE-CLOSE
 WM_INITDIALOG RUN: (-- res) 0 PRESSES ! .PRESSES -1 ;
 WM_COMMAND RUN: (-- res) WPARAM LOWORD SIMPLE-COMMANDS ;
SWITCH]

The next step is to define the actual callback routine for the dialog box:

:NONAME (-- res) MSG LOWORD SIMPLE-MESSAGES ; 4 CALLBACK: RUNSIMPLE

The code takes the message (returned by MSG), masks it, and sends it to the
switches. This callback takes four parameters, and is named RUNSIMPLE.

Finally, we have the definition that instantiates the dialog box, the word you type in
the command window to launch it:
150 Defining and Managing Windows Features

SwiftForth Reference Manual
: SIMPLE
HINST (SIMPLE) HWND RUNSIMPLE
0 DialogBoxIndirectParam DROP ;

Note that this use of HWND refers to the command window, since that’s where you
type SIMPLE! This establishes the command window as the “owner” of this dialog
box.

9.3 Progress Bars

SwiftForth provides a simple way of generating and managing progress bars that
show the progress of an operation that may take several seconds or longer. A prog-
ress bar is a specific form of dialog box. Progress bar support may be found in the
file SwiftForth\lib\options\win32\progress.f.

To launch a progress bar, use the form:

Z" <title text>" +PROGRESS

...where title text will be displayed on the title bar. When you are ready to close it,
you may do so with -PROGRESS. SwiftForth supports only one progress bar at a time
using these words.

Figure 21. Progress bar

In the progress bar are two pre-defined areas in which you can display information.
The most important is the horizontal area where you show progress toward comple-
tion of an operation. You may write to this area using the form:

<n> .PROGRESS

...where n is a number in the range 0–100, representing the percentage of comple-
tion, which will be represented as a filled percentage of the area.

The second writable region is a text area just below the progress area. You may put
a message there using the form:

Z" <message text>" PROGRESS-TEXT

This will display message text.

The progress bar in Figure 21 was constructed using the following sequence:

Z" My Progress Bar" +PROGRESS
40 .PROGRESS
Z" Optional text" PROGRESS-TEXT
Defining and Managing Windows Features 151

SwiftForth Reference Manual
You may wish to display progress data with your text message. The easiest way to
do this is to concatenate your data with the text portion of your message in an
ASCIIZ string that you then pass to PROGRESS-TEXT. Here’s an example:

99 (.) PAD ZPLACE
S" seconds remaining" PAD ZAPPEND
PAD PROGRESS-TEXT

Here we used (.) to convert the integer to a string, leaving its address and length.
The string was placed at PAD, and the text message appended to it. Note the extra
space at the beginning of the text string, to provide one space after the number and
before the text.

If the user presses Cancel while the operation is in progress, SwiftForth issues an
IOR_BREAK THROW. To process this (and other possible THROWs) in your application
code, execute the code containing the progress bar from within a CATCH (see Section
4.7). Otherwise, SwiftForth will simply abort the current operation, which is equiva-
lent to pressing the Break button on the toolbar.

Glossary

+PROGRESS (addr —)
Launch a progress bar, with the ASCIIZ string whose address is given displayed in
the title bar.

-PROGRESS (—)
Close a current progress bar, if there is one. Does nothing otherwise.

.PROGRESS (n —)
Display gray bars in the horizontal progress area reflecting n percent (0–100) com-
pletion.

PROGRESS-NAME (addr —)
Display the ASCIIZ string, whose address is given, in the title bar (replacing any pre-
vious title).

PROGRESS-TEXT (addr —)
Display the ASCIIZ string, whose address is given, in the text field below the prog-
ress area.

(.) (n — addr u)
Convert n to characters, without punctuation, as for . (dot), returning the address
and length of the resulting string.

References Output number conversions, Forth Programmer’s Handbook
String operations in SwiftForth, Section 4.5.1
Exception handling and THROW codes, Section 4.7

9.4 SwiftForth’s Status Bar

SwiftForth’s status bar, described in Section 2.3.1, contains six parts, of which three
152 Defining and Managing Windows Features

SwiftForth Reference Manual
are used (for the stack display, current number conversion base, and editing mode).
The stack display region resizes dynamically when the command window is resized;
the others are of constant size.

Each part can display a string, and can respond to left or right mouse clicks in its
area. You may change the behavior of any of these parts, using integers 0 through 5
to select a part (numbered from left to right). For example, to display the message
“System Ready” to the right of the number base, you could use:

Z" System Ready" 2 .SPART

To set a mouse-click behavior, store the xt of a word to be executed in the appropri-
ate status bar control cell. You can get the correct address using:

<part#> SBLEFT or <part#> SBRIGHT

For example:

: LEFT Z" Left button" 2 .SPART ;
: RIGHT Z" Right button" 2 .SPART ;
: PART2 ['] LEFT 2 SBLEFT ! ['] RIGHT 2 SBRIGHT ! ;

To test, execute PART2 and click in the region to the right of the stack display.

Glossary

.SPART (addr n —)
Display, in part n (0 through 5) of the status bar, the zero-terminated string located
at addr.

SBLEFT (n — addr)
Return the address of the cell containing the xt of the behavior for a left mouse click
in status bar part n.

SBRIGHT (n — addr)
Return the address of the cell containing the xt of the behavior for a right mouse
click in status bar part n.
Defining and Managing Windows Features 153

SwiftForth Reference Manual
154 Defining and Managing Windows Features

SwiftForth Reference Manual
Section 10: SwiftForth Object-Oriented Programming
(SWOOP)

SwiftForth includes an object-oriented programming package called SWOOP1, Swift-
Forth Object-Oriented Programming. It includes all the essential features of object-
oriented programming, including:

• Encapsulation: combining data and methods into a single package that responds to
messages.

• Information hiding: the ability of an object to possess data and methods that are
not accessible outside its class.

• Inheritance: the ability to define a new class based on a previously defined (“par-
ent”) class. The new class automatically possesses all members of the parent; it may
add to or replace these members, or define behaviors for deferred members.

• Polymorphism: the ability of different sub-classes of a class to respond to the same
message in different ways. For example, all vehicles can steer, but bicycles do it dif-
ferently from automobiles.

This section describes the essential features of SWOOP.

10.1 Basic Components

This section will present a simple example of a class for the purpose of discussing
its members, an instantiation of the class, and its use. This example will be
extended in various ways in subsequent sections.

10.1.1 A Simple Example

POINT (defined below) is a simple class we shall use as a primary building-block
example for SWOOP. It demonstrates two of the five basic class member types: data
and colon.

The word following CLASS is the name of the class; all definitions between CLASS and
END-CLASS belong to it. These definitions are referred to as the members of the
class. When a class name is executed, it leaves its handle (hclass) on the stack. The
constructor words are the primary consumers of this handle.

CLASS POINT
VARIABLE X
VARIABLE Y
: SHOW (--) X @ . Y @ . ;
: DOT (--) ." Point at " SHOW ;

END-CLASS

1.Portions of this chapter adapted, with permission, from material that originally appeared in Forth
Dimensions, a publication of the not-for-profit Forth Interest Group (www.forth.org).
SwiftForth Object-Oriented Programming (SWOOP) 155

http:\\www.forth.org

SwiftForth Reference Manual
The class definition itself does not allocate any instance storage; it only records
how much storage is required for each instance of the class. VARIABLE reserves a cell
of space and associates it with a member name.

The colon members SHOW and DOT are like normal Forth colon definitions, but are
only valid in the execution context of an object of type POINT. X and Y also behave
exactly like normal Forth VARIABLEs.

There are five kinds of members:

1. Data members include all data definitions. Available data-member-defining words
include CREATE (normally followed by data compiled with , or C,), BUFFER: (an array
whose length is specified in address units), VARIABLE, CVARIABLE (single char), or
CONSTANTs.

2. Colon members are definitions that may act on or use data members.
3. Other previously defined objects, available within this object. These are dis-

cussed in Section 10.1.4.
4. Deferred members are colon-like definitions with default behaviors that can be ref-

erenced while defining the class, but which may have substitute behaviors defined
by sub-classes defined later. These allow for polymorphism and late binding, and
will be discussed in Section 10.1.6.

5. Messages are un-named responses to arbitrary numeric message values (such as
Windows messages), and are discussed in Section 10.1.7.

Glossary

CLASS <name> (—)
Begin a class definition that will be terminated by END-CLASS. All definitions
between CLASS and END-CLASS are members of the class name. Invoking name
returns the handle (hclass) of this class.

END-CLASS (—)
End a class definition.

10.1.2 Static Instances of a Class

Having defined a class, we can create an instance of it. BUILDS is the static instance
constructor in SWOOP; it is a Forth defining word and requires the handle of a class
on the stack when executed. For example:

POINT BUILDS ORIGIN

…defines an object named ORIGIN that is a static instance of the POINT class. Now,
any members of POINT (e.g., the X and Y variables defined in the earlier example)
may be referenced in the context of ORIGIN. For example:

5 ORIGIN X !
8 ORIGIN Y !
ORIGIN DOT

X and Y are data members of ORIGIN that were inherited from POINT and the values
156 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
stored into them here are completely independent of the X and Y members of any
other instances of the POINT class. X and Y have no existence independent of an
instance of POINT.

DOT is a colon member of the POINT class. When it executes in the context of a spe-
cific instance of POINT such as ORIGIN, it will use the addresses for the versions of X
and Y belonging to ORIGIN.

When the name of an object is executed, two things happen: first, the Forth inter-
preter’s context is modified to include the name space of the class that created it.
Second, the address of the object is placed on the stack.

Each of the members of the class acts on this address: members that represent data
simply add an offset to it; members that are defer or colon definitions push the
address into 'SELF (see Section 10.3.1)—which holds the current object address—
before executing, and restore it afterwards.

You can build an array of objects of the same class using BUILDS[]. Individual
instances of such an array must be provided with an index. For example:

20 POINT BUILDS[] ICOSOHEDRON[]
0 ICOSOHEDRON[] DOT
1 ICOSOHEDRON[] DOT
...
19 ICOSOHEDRON[] DOT

(The [] in the name is used as a reminder that this is an array.)

Glossary

BUILDS <name> (hclass —)
Constructs a static instance of the class identified by hclass. Use of name returns
the address of the instance and changes the search order context to reflect the
members and methods of the class.

Usage: <classname> BUILDS <instance-name>

BUILDS[] <name> (n hclass —)
Constructs an array of n static instances of the class identified by hclass. When
invoked, name expects an index into the array, and will return the address of the
indexed instance.

Usage: <size> <classname> BUILDS[] <instance-name>

10.1.3 Dynamic Objects

We can also create a temporary context in which to reference the members of a
class. NEW is a dynamic constructor that will build a temporary instance of a class; it
is not a defining word, but is a memory management word similar to ALLOCATE. It
requires a class handle on the stack, and returns an address. When the object is no
longer needed, it can be disposed of with DESTROY.
SwiftForth Object-Oriented Programming (SWOOP) 157

SwiftForth Reference Manual
USING parses the word following it, and (assuming that it is the name of a class)
makes its members available for use on data at a specified address. For example:

0 VALUE FOO \ Contains pointer to instance
POINT NEW TO FOO \ Construct instance of class POINT
8 FOO USING POINT X ! \ Store data in X
99 FOO USING POINT Y ! \ Store data in Y
FOO USING POINT DOT \ Display X and Y
FOO USING POINT DESTROY 0 TO FOO \ Release space

This example uses FOO to hold the address of an instance of POINT. After the
instance is created, it may be manipulated (with a slight change in syntax) in the
same way that a static instance of POINT is. When it’s no longer needed, the instance
is destroyed, and the address kept in FOO invalidated.

Objects constructed by NEW do not exist in the Forth dictionary, and must be explic-
itly destroyed when no longer used.

Another form of dynamic object instantiation is local objects. These, like local vari-
ables, are available only inside a single colon definition, and are instantiated only
while the definition is being executed. Here’s an example:

: TEST (--)
 [OBJECTS POINT MAKES JOE OBJECTS]
 JOE DOT ;

You can define as many local objects as you need between [OBJECTS and OBJECTS].
They will all be instantiated when TEST is executed, and destroyed when it is com-
pleted. This is particularly useful in Windows programming, as these objects can be
used in Windows callback routines.

In the example of TEST, the address of POINT’s data space is valid while TEST is exe-
cuting, but its namespace is only available within the definition of TEST itself. In
order to make it possible for a word such as TEST to pass addresses within POINT to
words it may call, there is a second form of local object called NAMES that names an
arbitrary address and makes members of a specified class available for it. Like
MAKES, it’s used between [OBJECTS and OBJECTS] inside a definition, and its scope is
local to the definition in which it’s defined. For example:

: TRY (addr --)
 [OBJECTS POINT NAMES SAM OBJECTS]
 SAM DOT ;

: TEST (--)
 [OBJECTS POINT MAKES JOE OBJECTS]
 JOE ADDR TRY ;

Data space was allocated only once, for JOE in TEST. Its address was passed to TRY,
which applied POINT’s member DOT to the data structure at the address passed to it
from TEST.

MAKES and NAMES may both be used within the scope of a single [OBJECTS ... OBJECTS]
pair.
158 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
Glossary

NEW (hclass — addr)
Constructs a temporary (dynamic) instance of the class identified by hclass and allo-
cates memory for it, returning the address of the start of the data.

DESTROY (addr —)
Releases the dynamically allocated memory at addr.

[OBJECTS (—)
Begins instantiation of local objects, which will be terminated by OBJECTS]. It must
be used inside a definition. There may be multiple objects instantiated or named
(using MAKES and/or NAMES) between [OBJECTS and OBJECTS], but there may be only
one such region in a definition.

OBJECTS] (—)
Terminates the instantiation of local objects inside a definition.

MAKES <name> (hclass — addr)
Constructs a local (dynamic) instance of the class identified by hclass. Use of name
returns the handle of the instance name.

MAKES must be used inside a definition, between [OBJECTS and OBJECTS], and name
cannot be used outside the definition in which it is instantiated. Memory is allo-
cated for name only while the definition in which it is instantiated is being exe-
cuted. In all other respects, local objects follow the same rules of usage as static
objects.

NAMES <name> (addr hclass —)
Provides local access to members of the class identified by hclass applicable to the
data space at addr, assuming addr is an instance of the class hclass. Use of name
returns the address of this data space.

NAMES must be used inside a definition, between [OBJECTS and OBJECTS], and name
cannot be used outside the definition in which it is defined. No memory is allocated
for name, and no assumption is made about the persistence of this data space
except while this definition is executing.

USING <classname> (addr — addr)
Make the members of classname available to operate on the dynamic data structure
at addr, as though addr represents an instance of classname.

References Local variables, Section 4.5.6
Dynamic memory allocation, Forth Programmer’s Handbook

10.1.4 Embedded Objects

Previously defined classes may be used as members of other classes. The syntax for
using one is the same as for defining static objects. These objects are not static;
they will be constructed only when their container is instantiated.
SwiftForth Object-Oriented Programming (SWOOP) 159

SwiftForth Reference Manual
CLASS RECTANGLE
 POINT BUILDS UL
 POINT BUILDS LR
 : SHOW (--) UL DOT LR DOT ;
 : DOT (--) ." Rectangle, " SHOW ;
END-CLASS

In this example, the points giving the upper-left and lower-right corners of the rect-
angle are instantiated as POINT objects. The members of RECTANGLE may reference
them by name, and may use any of the members of POINT to manipulate them. In
this example, SHOW references the DOT member of POINT to print UL and LR; this mem-
ber is not the same as the DOT member of RECTANGLE.

These embedded objects are exactly like data allocations in the class: they simply
add their data space to the object’s data, and the enclosing object has all of the pub-
lic members of its embedded objects available in addition to its own.

10.1.5 Information Hiding

Thus far, all named members of a class have been visible in any reference to that
class or to an object of that class. Even though member names are hidden from
casual reference by the user (i.e., to follow from the earlier example in Section
10.1.1, attempting to invoke X or Y outside the context of an instance of the POINT
class), the information-hiding requirements of object-oriented programming are
more stringent.

In true object-oriented programming, classes must have the ability to hide members
from external access. SWOOP accomplishes this using three key words:

• PUBLIC identifies members that can be accessed globally.

• PROTECTED identifies members available only within the class in which they are
defined and in its sub-classes.

• PRIVATE identifies members available only within the defining class.

When a class definition begins, all member names default to being PUBLIC (i.e., visi-
ble outside the class definition). PRIVATE or PROTECTED changes the level of visibility
of the members.

CLASS POINT
PRIVATE

VARIABLE X
VARIABLE Y
: SHOW (--) X @ . Y @ . ;

PUBLIC
: GET (-- x y) X @ Y @ ;
: PUT (x y --) Y ! X ! ;
: DOT (--) ." Point at " SHOW ;

END-CLASS

In this definition of POINT, the members X, Y, and SHOW are now private, available to
local use while defining POINT but hidden from view afterwards. Because a point is
relatively useless unless its location can be set and read, members that can do this
160 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
are provided in the public section. However, these definitions achieve the desired
information hiding: the actual data storage is unavailable to the user and may only
be accessed through the members provided for that purpose.

Glossary

PUBLIC (—)
Asserts that following class members will be globally available. This is the default
mode. Must be used inside a class definition.

PROTECTED (—)
Asserts that following class members will be available only in sub-classes of the cur-
rent class. Must be used inside a class definition.

PRIVATE (—)
Asserts that following class members will be available only within the current class.
Must be used inside a class definition.

10.1.6 Inheritance and Polymorphism

Inheritance means the ability to define a new class based on an existing class. The
new subclass initially has exactly the same members as its parent, but can replace
some inherited members or add new ones. If the subclass redefines an existing
member, all further use within that subclass will reference the new member; how-
ever, all prior references were already bound and continue to reference the previous
member.

Polymorphism goes a step further than inheritance. In it, a new class inherits all the
members of its parents, but may also redefine any deferred members of its parents.
A deferred member is defined like a normal colon method, except the defining word
used is DEFER: and it is followed by a default behavior. The default behavior will be
used whenever no overriding behavior has been defined by a subclass.

For example, our previous example could be written this way:

CLASS POINT
VARIABLE X
VARIABLE Y
DEFER: SHOW (--) X @ . Y @ . ;
: DOT (--) ." Point at " SHOW ;

END-CLASS

Then you could make a subclass like this:

POINT SUBCLASS LABEL-POINT
: SHOW (--) ." X" X @ . ." Y" Y @ . ;

END-CLASS

LABEL-POINT BUILDS POO

POO DOT

The original definition DOT in the parent class POINT will still reference SHOW, but
SwiftForth Object-Oriented Programming (SWOOP) 161

SwiftForth Reference Manual
when it is executed for an instance of LABEL-POINT, the new behavior will automat-
ically be substituted, so POO DOT will print the labeled coordinates.

Glossary

DEFER: <name> (—)
Begin defining a deferred member. The content of this definition, following the
name, is the default behavior of the member. Subclasses of the class in which name
is defined may make overriding colon definitions for name, which will automati-
cally be substituted for the default behavior for any reference to name in either the
subclass or members of the parent class that are called in the context of the sub-
class.

SUBCLASS <name> (hclass —)
Begin defining a class which will inherit all members of the superclass identified by
hclass. In all other respects, its use is the same as that of CLASS (Section 10.1.1).

SUPREME (— hclass)
Return the handle of the ultimate superclass in SWOOP. All classes defined by CLASS
are subclasses of SUPREME.

10.1.7 Numeric Messages

All the members we’ve discussed so far are named definitions. Use of a member
name returns a member ID which can be matched against members in one of the
member chains associated with a class. It is also possible, however, to make mem-
bers that don’t have names and which, instead, are identified by an arbitrary
numeric value that in SwiftForth terms is called a message. This strategy is particu-
larly useful for handling the vast number of Windows message constants and other
numeric identifiers.

The form of a numeric message definition is:

<value> MESSAGE: <words to be executed> ;

For example, the class SIMPLE-TEST in the mouse-tracking example program Swift-
Forth\unsupported\sfc\samples\mousecap.f defines the following:

 WM_CREATE MESSAGE: (-- res) LPARAM
 DROP TITLED TRACKING OFF 0 ;

When the window is created, this code will set the title and initialize tracking.

Whereas named members are invoked by name, numeric messages are dispatched
to an object using the word SENDMSG, which takes as arguments the handle to an
object and the message value.

Glossary

MESSAGE: (n —)
Define an unnamed member whose behavior (words following MESSAGE:) will be exe-
162 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
cuted when an object containing it is sent the message n (which is equivalent to a
message ID of n).

SENDMSG (addr n —)
Execute the member represented by n, in the context of the object represented by
addr. This is equivalent to sending a message to the object. In this case, n is equiva-
lent to a member ID, and will be treated as such by the object.

10.1.8 Early and Late Binding

Binding refers to the way a member behaves when referenced; this may be decided
at compile time or at run time.

If the decision is made at compile time, it is known as early binding and assumes
that a specific, known member is being referenced. This provides for simple compi-
lation and for the best performance when executed.

If the decision is made at run time, it is known as late binding, which assumes that
the member to be referenced is not known at compile time and must therefore be
looked up at run time. This is slower than early binding because of the run-time
lookup, but it is more general. Because of its interactive nature, this behavior paral-
lels the use of the Forth interpreter to reference members.

SWOOP is primarily an early-binding system, but makes several provisions for late
binding. The first is deferred members, a technique that parallels the Forth concept
of a deferred word. This implements the facet of late binding in which the member
name to be referenced is known, but the behavior is not yet determined when the
reference is made. The second is the word SENDMSG (described in Section 10.1.7),
which sends an arbitrary message ID to an arbitrary object. This strategy makes it
possible, for example, to send Windows message constants to a window object for
processing.

Of the two strategies for using dynamic objects discussed in Section 10.1.3, USING is
an example of early binding, whereas CALLING and -> are late binding. The distinc-
tion is based on the fact that the class is known at compile time with USING, but only
at run time with CALLING.

10.2 Data Structures

This section will describe the basic data structures involved in classes and mem-
bers, as a foundation for discussing the more-detailed implementation strategies
underlying SWOOP.

10.2.1 Classes

The data representation of a class is shown in Figure 22. Each class is composed of
a ten-cell structure. All classes are linked in a single list that originates in the list
SwiftForth Object-Oriented Programming (SWOOP) 163

SwiftForth Reference Manual
head CLASSES.

Typing CLASSES on the command line allows the user to display the hierarchy of all
created classes.

Figure 22. Structure of a class

Each class has a unique handle. When executed, a class name will return this handle.
The handle also happens to be the xt that is returned by ticking the class name. For
example, if POINT is a class, then:

' POINT .

prints the same value as:

POINT .

Each class (except SUPREME) has a superclass. By default, it is SUPREME, but a class can
be a child of any pre-existing class. The value in the Super field is the handle (hclass)
of the superclass.

Classes are composed of members, divided into four lists, or chains—public, pro-
tected, private, and anonymous. The lists are identical in structure and treatment,
but differ in their level of information hiding (discussed in Section 10.1.5). Each list
has a head in the class data structure. With inheritance, these lists may chain back
into the superclass, and into its superclass, etc., all the way back to SUPREME.

The public, protected, and private lists, in conjunction with the class handle and the
wordlist MEMBERS, define the class namespace.

(MEMBERS is a wordlist that contains one entry for every name used in every class. If
X is defined in multiple classes, there is only one entry for X in MEMBERS. If you say
ORIGIN X, then MEMBERS becomes part of the search order and X is found; its xt is
then used to search the member lists belonging to the class of which ORIGIN is a
member, to see if ORIGIN has an X. If it does, its offset (since it’s a data object) is
added to the base address of the instance ORIGIN. If not, SwiftForth treats it as an
ordinary Forth word and searches for it in the remaining available wordlists.)

The anonymous field is used to organize unnamed members (discussed in Section
10.1.7), which make up another list like the three just discussed but which are of
primary use for handling Windows message constants and other messages which
consist solely of a numerical ID and parameters. Note that there are actually three
anonymous chains but they are shown here as a single item for simplicity. Consult
the source code for details about these three chains.

The size field represents the size in bytes required by a single instance of the class.

Link Handle Super Public Private Size Objects

Next class Last public
member

Last
Private

member

Protec-
ted

Last
protected
member

Tag
Anony-
mous

Last
Unnamed
member
164 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
This value is the sum of all explicitly referenced data in the class itself, plus the size
of its superclass.

When objects with embedded objects (i.e., objects that contain other objects) are
CONSTRUCTed, the embedded objects must also be constructed. The list represented
by the object field links all of the objects embedded in a class, so that they can be
CONSTRUCTed also.

The class tag is just a constant used to identify the data structure as a valid class.

A class definition is begun by CLASS or SUBCLASS and is ended by END-CLASS. While a
class is being defined, the normal Forth interpreter/compiler is used; its behavior is
modified by changing the search order to include the class namespace and the
wordlist CC-WORDS (described in Section 10.3.1).

All links in this system are relative, and all handles are execution tokens (xt). This
means that objects created in the interactive system at a given address will work
when saved as a DLL, which is loaded at an arbitrary address by Windows.

10.2.2 Members

Members are defined between CLASS and END-CLASS. They parallel the basic Forth
constructs of variables, colon definitions, and deferred words. The definition of a
member has two parts. First is the member’s name, which exists in the wordlist MEM-
BERS. The xt of this name is used as the member ID when it is referenced. Second is
the member’s data structure. This contains information about how to compile and
execute the member. Each member is of the general format shown in Figure 23; the
specific format of some member types is shown in Figure 24.

Figure 23. Basic structure of a member

The data structure associated with a member has five fields: member compiler, link,
message ID, member run time, and data. The data field is not of fixed length; its
content depends on the compiler and run-time routines.

The compiler-xt is the early binding behavior for members, and the runtime-xt is the
late binding behavior. Each variety of member has a unique compiler-xt and runtime-
xt; both expect the address of the member’s data field on the stack when executed.
The message ID in each entry is the xt given by the member’s name in the MEMBERS
wordlist.

Compiler
xt Link Message

id
Run-time

xt Data...

Next member
SwiftForth Object-Oriented Programming (SWOOP) 165

SwiftForth Reference Manual
Figure 24. Data structures for various member types

The data field contents vary depending on what type of member the structure rep-
resents. For data members, the data field contains the offset in the current object.
For colon members, it contains the xt that will be executed to perform the actions
defined for the member. In deferred members, the data field also contains an xt, but
it is only used if the defer is not extended beyond its default behavior. In object
members, the data field contains both the offset in the current object of the mem-
ber and the class handle of the member.

10.2.3 Instance Structures

The structure of an instantiated object is largely dependent on the members
defined in the object. To a great extent, members can be applied to arbitrary mem-
ory addresses. However, formal instantiation does add useful information.

Static objects, instantiated by BUILDS, have the handle (xt) of the object and handle
(hclass) of the class in the first two cells. Dynamic objects, instantiated by NEW or
MAKES, have only a class handle in the first cell. The object handle of a static object
is primarily used at compile time. The class handle, however, is used at run time to
ensure the validity of a member being applied to an object (i.e., the member’s xt
must appear in one of the visible chains, e.g., PUBLIC, of the class of which it is an
instance). For this reason, it is better to use formal instantiation and apply members
with CALLING or ->, even though you can apply any class’s members to any arbitrary
address (e.g., PAD, HERE) with USING.

10.3 Implementation Strategies

Having discussed the basic syntax and data structures involved in SWOOP, we can
now consider the underlying mechanisms in the system.

compile-
colon Link Message id Run-colon xt

compiler-
defer Link Message id Run-colon xt

compile-
data Link Message id Run- data offset

compile-
object Link Message id Run-object offset

Colon

Defer

Data

Object class construct link
166 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
10.3.1 Global State Information

In some OOP implementations, classes are composed of instance data, methods
that can act on the data, and messages corresponding to these methods that can be
sent to objects derived from the class.

In SWOOP, instance data and methods are combined into a single orthogonal con-
cept: members. Each member has a unique identifier which can be used as a mes-
sage. Members exist as created names in a special wordlist called MEMBERS; each
member’s xt is its identifier. A given name will exist only once in MEMBERS; a member
name always corresponds to the same identifier (i.e., xt) regardless of the class or
context in which it is referenced. (See also Section 10.2.1.)

A second special wordlist called CC-WORDS contains the compiler words used to con-
struct the definitions of the members of classes.

Classes are composed of members organized in the public, protected, and private
lists. The structure of a class is shown in Figure 22. The member lists of a class are
based on switches (see Section 4.5.4) and use a member identifier as a key. A class
doesn’t know the names of its members, only their identifiers.

SWOOP depends on two variables for its behavior during compilation and execu-
tion. 'THIS contains the handle of the active class, and 'SELF has the active object’s
data address. These are user variables, so object code is reentrant.

Glossary

MEMBERS (—)
Select the wordlist containing all members of all classes. A defined member name
has a unique entry in this list, even though it may have different definitions in dif-
ferent classes. The entry in the MEMBERS wordlist returns an identifier that can be
sought in the list of defined members in the current class; if a match is found, it will
link to the appropriate definition for that class.

This wordlist is automatically added to the search order whenever a class name is
invoked.

CC-WORDS (—)
Select the wordlist containing compiling words used to construct member defini-
tions. This wordlist is automatically added to the search order between CLASS or
SUBCLASS and END-CLASS, to define members of the class.

'THIS (— addr)
Return the address containing the handle of the current class. This provides access
to its members.

'SELF (— addr)
Return the address containing a pointer to the data space of the current class.

CSTATE (— addr)
Return the address of this variable. During definition of class members, it contains
the handle of the class being defined. At all other times, it is zero.
SwiftForth Object-Oriented Programming (SWOOP) 167

SwiftForth Reference Manual
References Search orders, Section 5.5.2
User variables, Section 7.2.1

10.3.2 Compilation Strategy

A class’s namespace is defined by all words in the MEMBERS wordlist whose handles
match keys in the class’s lists of members.

The executable definitions associated with entries in MEMBERS are immediate. When
MEMBERS is part of the search order, a reference to a member may be found there,
and it will be executed. When executed, it will search for a match on its handle in
the list of keys in the member lists for the current class (identified by 'THIS). If a
match is found, the compilation or execution xt associated with the matching mem-
ber will be executed, depending on STATE. If there is no match in the current class,
the name will be re-asserted in the input stream and the Forth interpreter will be
invoked to search for it in other wordlists, handling it subsequently in normal fash-
ion.

During compilation of a class, certain of the normal Forth defining words are super-
seded by SWOOP-specific versions in a wordlist called CC-WORDS. These member-
defining words are only present in the search order while compiling a class—that is,
between CLASS or SUBCLASS and the terminating END-CLASS.

The simplest way to discuss the compiler is to walk through its operation as a class
is built. So, we define a simple class:

CLASS POINT
VARIABLE X
VARIABLE Y
: DOT (--) X @ . Y @ . ;

END-CLASS

The phrase CLASS POINT creates a class data structure named POINT, links it into the
CLASSES list, adds CC-WORDS and MEMBERS to the search order, and sets 'THIS and
CSTATE to the handle of POINT. The variable CSTATE contains the handle of the cur-
rent class being defined, and remains non-zero until END-CLASS is encountered.
This is used by the various member compilers to decide what member references
mean, and how to compile them.

VARIABLE X (and, likewise, Y) executes the member-defining word VARIABLE in CC-
WORDS, which adds a member name to MEMBERS and to the chain of public members
for POINT.

Although the colon definition DOT looks like a normal Forth definition, its critical
components : and ; are highly specialized in the CC-WORDS wordlist. This version of
: searches for the name DOT in the MEMBERS wordlist; if there is already one, it uses
its handle as the message ID for the member being defined. Otherwise, it constructs
a name in MEMBERS (rather than with the class definitions being built), keeping its
handle. Then it begins a :NONAME definition, which is terminated by the ;. This ver-
sion of ; not only completes the definition, it uses its xt along with the message ID
to construct the entry in the appropriate members chain for DOT.
168 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
When a class member is referenced (such as in the reference to X in DOT), its com-
piler method is executed. The compiler method constructs the appropriate kind of
reference to the member (e.g., via COLON-METHOD or DATA-METHOD).

10.3.3 Self

Notice that we have seemingly inconsistent use of our members. While defining
POINT, we can simply reference X; while not defining POINT, we must reference an
object prior to X. This problem is resolved in some systems by requiring the word
SELF to appear as an object proxy during the definition of the class.

: DOT (--) SELF X @ . SELF Y @ . ;

This results in a more consistent syntax, but is wordy and repetitive. However, to
the compiler, the reference to X is not ambiguous, so the explicit reference to SELF is
unnecessary. While a class is being defined, SWOOP notices that X (or any other
member) is indeed a reference to a member of the class being defined and automat-
ically inserts SELF before the reference is compiled. This results in a simpler presen-
tation of the routine, and makes the code inside a class look like it would if were not
part of a class definition at all.

10.4 Tools

DUMP-OBJECT is provided as a method of the SUPREME class (the super class from
which all other classes inherit the original methods and data). You can invoke this
dump method to show the entire data area of an object like this:

<object> DUMP-OBJECT

SUPREME also supplies a zero-length data object named ADDR, which has the effect of
returning the start address of the data area of an object.

If you wish to dump memory in only part of an object’s data area, use ADDR to get
the address followed by one of the standard SwiftForth memory dump words:

<object> ADDR <n> DUMP

Reference Static memory dumps, Section 2.4.5
SwiftForth Object-Oriented Programming (SWOOP) 169

SwiftForth Reference Manual
170 SwiftForth Object-Oriented Programming (SWOOP)

SwiftForth Reference Manual
Section 11: Windows Objects

SwiftForth includes a number of pre-defined object classes. Although some of
these are for internal SwiftForth use only, many represent classes discussed in the
Windows API and functions that are potentially useful to SwiftForth programmers.
These are discussed in this section.

11.1 Standard Windows Data Structures

SwiftForth provides a number of classes consisting of standard Windows data struc-
tures described in the Win32API and other Windows reference materials. We have
not attempted to implement an exhaustive set of such classes, but believe we have
provided enough to serve as good examples. Those provided are listed in Table 22.
Further information regarding the content and use of these structures may be
found in Windows documentation.

The Forth names for the members of these data structures differ from the names in
Windows documentation, although their sizes and use conform exactly. To see the
details of these structures, use the command:

EDIT <classname>

Table 22: SwiftForth classes for Windows data structures

Class Name Description

BITMAPHEADER BITMAPFILEHEADER plus BITMAPINFOHEADER. The BITMAPFILEHEADER
structure contains information about the type, size, and layout of
bitmap; the BITMAPINFOHEADER structure contains information
about the dimensions and color format of a bitmap file.

CHARFORMAT Contains information about character formatting in a
rich edit control.

CHARRANGE Specifies a range of characters in a rich edit control.

CHOOSE-FONT Contains information that the ChooseFont function uses to initial-
ize the Font common dialog box. After the user closes the dialog
box, the system returns information about the user’s selection in
this structure. Note that this is renamed from Windows’ CHOOSE-
FONT to avoid conflict when case-insensitive.

DEVMODE Contains information about the device initialization and environ-
ment of a printer.

DOCINFO Contains the input and output filenames and other information
used by the StartDoc function.

EDITSTREAM Contains information about a data stream used with a
rich edit control.

FILETIME A 64-bit value representing the number of 100-nanosecond inter-
vals since January 1, 1601.
Windows Objects 171

SwiftForth Reference Manual
FORMATRANGE Contains information that a rich edit control uses to format its out-
put for a particular device. This structure is used with the EM_FOR-
MATRANGE message.

LOGICAL-FONT Defines the attributes of a font. Note that this is renamed from
Windows’ LOGFONT to avoid conflict when case-insensitive.

NMHDR Contains information about a notification message. The pointer to
this structure is specified as the lParam member of the WM_NOTIFY
message.

OPENFILENAME Contains information that the GetOpenFileName and GetSaveFile-
Name functions use to initialize an Open or Save As… dialog box.
After the user closes the dialog box, the system returns informa-
tion about the user’s selection in this structure.

PAGESETUPDIALOG Contains information the PageSetupDlg function uses to initialize
the Page Setup common dialog box. After the user closes the dia-
log box, the system returns information about the user-defined
page parameters in this structure. Note that this is renamed from
Windows’ PAGESETUPDLG to avoid conflict when case-insensitive.

PARAFORMAT Contains information about paragraph formatting attributes in a
rich edit control. This structure is used with the EM_GETPARAFORMAT
and EM_SETPARAFORMAT messages.

POINT Defines the x- and y- coordinates of a point.

PRINTDIALOG Contains information used by the PrintDlg function to initialize
the Print common dialog box. After the user closes the dialog box,
the system returns information about the user-defined print selec-
tions in this structure. Note that this is renamed from Windows’
PRINTDLG to avoid conflict when case-insensitive.

RECT Defines the coordinates of the upper-left and lower-right corners
of a rectangle.

REQRESIZE Contains the requested size of a rich edit control. A rich edit con-
trol sends this structure to its parent window as part of an EN_RE-
QUESTRESIZE notification message.

RGBQUAD Describes a color consisting of relative intensities of red, green,
and blue.

TEXTMETRIC Contains basic information about a physical font. All sizes are
given in logical units; that is, they depend on the current mapping
mode of the display context.

WIN32_FIND_DATA Describes a file found by the FindFirstFile or
FindNextFile function.

WNDCLASS Contains the window class attributes registered by the Register-
Class function.

Table 22: SwiftForth classes for Windows data structures (continued)

Class Name Description
172 Windows Objects

SwiftForth Reference Manual
11.2 Example: File-Handling Dialogs

An excellent example of the use of SWOOP objects to support Windows functions
may be found in SwiftForth’s support for file-handling functions, INCLUDE, EDIT, etc.
All of these feature a need to let the user “browse” to a particular file or directory
path, a function for which Windows provides a basic customizable dialog box.

The class hierarchy used to implement these functions is shown in Figure 25.

The basic factoring of the code to support these file functions includes the follow-
ing layers:

1. The Windows data structure OPENFILENAME.
2. The sub-class FILENAME-DIALOG that provides all the common support functionality

required for performing the set of functions needed by SwiftForth based on the
OPENFILENAME data structure. The features that differ (the actual Windows function
to be invoked, various options specified by flags, the names of the dialog boxes) are
factored into the two DEFER members, CUSTOM and ACTION. This class also provides
the critical word CHOOSE that manages the overall operation of the dialog box, pre-
senting the dialog box configured by CUSTOM for the user’s choice, and calling ACTION
to implement that choice.

3. Two subclasses of FILENAME-DIALOG that differ only in that they provide alternative
definitions for ACTION, consisting of the two possible Windows calls.

4. Subclasses of each of these two classes that specify individual names for the dialog
box and flags denoting each one’s specific functions.

5. Program interface words, that can be called in response to user commands, menu
selections, etc., that locally instantiate and use each of the five lowest-level sub-
classes in the hierarchy.

Figure 25. Class hierarchy supporting file-handling features

OPENFILENAME

FILENAME-
DIALOG

OFN-DIALOG

INCLUDE-FILE-
DIALOG

EDIT-FILE-
DIALOG

RUN-PROGRAM-
DIALOG

SFN-DIALOG

RUN-PROGRAM-
DIALOG

SAVE-TEXT-
DIALOG

Basic data structure, from WIN32API.

Adds buffer for filename, defines relevant
flags, defines supported file types, sets
defaults, provides DEFERs CUSTOM and
ACTION, and defines CHOOSE to effect
user selection.

ACTIONs are
GetOpenFileName

and
GetSaveFileName,

respectively
CUSTOM
definitions
give dialog box title
(e.g., "Include file"),
set filters for
desired options.
Windows Objects 173

SwiftForth Reference Manual
The program interface words vary, but all follow a general pattern of which the sim-
plest example is CHOOSE-EDIT-FILE (part of the response to the File > Edit menu
selection or toolbar button):

: CHOOSE-EDIT-FILE (--)
 [OBJECTS
 EDIT-FILE-DIALOG MAKES EFD
 OBJECTS]
 EFD CHOOSE IF
 0 EFD FILENAME ZCOUNT EDIT-FILE
 THEN ;

In this definition, we see a local instantiation of an EDIT-FILE-DIALOG object, which
is used to obtain a filename to be passed to EDIT-FILE, in order to proceed with
issuing the message to your linked editor to open the file.

11.3 Color Management

SwiftForth supports color selection for various Windows features. These include
names for the 20 standard Windows colors, and examples showing how SwiftForth
uses them to manage colored items like the screen background and text, high-
lighted text, etc.

The color names and general support words may be found in the file Swift-
Forth\src\ide\win32\colors.f. The dialog box used to select colors for SwiftForth is
in SwiftForth\src\ide\win32\pkcolor.f. SwiftForth uses five named color styles for
text, described in Table 23.

These may be used before any output word (such as ., .”, or TYPE) to specify the
way the next output of text will be displayed. Each of these modes will stay set until
changed. NORMAL is the default, and need not be specified unless you’ve selected
another mode. For example, the word EMPHASIZED will display a string in BOLD style:

: EMPHASIZED (addr len --)
 BOLD TYPE NORMAL ;

To preserve NORMAL as the default, always restore the style to NORMAL when you
change it temporarily!

Table 23: SwiftForth color attributes

Defaults

Name Description Background Foreground

NORMAL Normal text display. White Black

INVERSE Selected items Black White

BOLD Highlighted items White Red

BRIGHT Highlighted items White Blue

INVISIBLE Invisible text White White
174 Windows Objects

SwiftForth Reference Manual
11.4 Rich Edit Controls

Swif tForth inc ludes support for r ich edi t controls in the f i le Swi f t -
Forth\src\ide\win32\richedit.f. Primary documentation for rich edit controls may
be found in the Win32API. This section provides a brief description of SwiftForth’s
support for these features.

Rich edit controls support almost all of the messages and notification messages
used with multi-line edit controls. Applications that already use edit controls can be
easily changed to use rich edit controls. An application can send messages to a rich
edit control to perform such operations as formatting text, printing, and saving. In
addition, an application can process notifications to filter keyboard and mouse
input, to permit or deny changes to protected text, or to resize the control as
needed to fit its content. Rich edit controls support most of the window styles used
with edit controls as well as additional styles, including font selection, font styles
(e.g., bold, italic), and many other features.

The two classes defined in richedit.f are:

• PARAFORMAT manages paragraph formatting issues including indentation, margin off-
sets, tabs, alignment, and bullets or numbering.

• CHARFORMAT manages character formatting issues such as font, size, color, style
(bold, italic, etc.).

The various specifications used by these classes are controlled by bit masks defined
as constants, using the names given in the Win32API. These attributes may be com-
bined to provide masks that describe the current settings for paragraphs and char-
acters, respectively. Both classes include methods GET and SET which issue the
Windows calls to fetch and set current masks, as well as methods for adding and
subtracting various bit masks representing features.

All sizes used in rich edit controls are specified internally in units known as twips.
A twip is a unit of measurement equal to 1/20th of a printer’s point. There are
1440 twips to an inch, 567 twips to a centimeter.

The words INCHES, POINTS, and CMS are provided to scale numbers in more conve-
nient units to twips by providing the appropriate conversion factors. These words
will automatically scale the input number if it has any decimal places. For example,
the phrase:

10 POINTS HIGH

…will set the height of the current font, while the phrase:

.25 INCHES INDENT-LEFT

…will set the left margin of paragraphs to 1/4 in.

For details on the commands provided, refer to the file richedit.f.
Windows Objects 175

SwiftForth Reference Manual
11.5 Other Available Resources

In addition to the predefined data structures discussed in Section 11.1, SwiftForth
includes a number of other pre-defined classes that may be helpful to you. Some of
these are described in Table 24.

Here’s an example showing the use of the FONT-PICKER class to specify a font for an
arbitrary window with text in it:

1. Load and start a sample application. For example:
REQUIRES CLICKS

START DROP(the DROP discards an unneeded application handle)

2. Create a font data structure:
FONT-PICKER BUILDS CLICKS-FONT

3. Create a font description for the application window:
HAPP CLICKS-FONT SELECT (-- flag) DROP

This sends the application handle HAPP to the CLICKS-FONT member of FONT-PICKER,
which returns a result flag.

4. Create the actual font by passing the address of the data structure to Windows,
which returns a handle:

CLICKS-FONT 'FONT CreateFontIndirect (-- hfont)

'FONT is another member of FONT-PICKER that returns the font size.

5. Make the application use the new font:
HAPP GetDC SWAP SelectObject DROP

This passes the font handle from Step 4 and device context to SelectObject, which
installs the font. The window is now using the selected font.

Table 24: More useful pre-defined classes

Class Name Description

I-TO-Z A class supporting output formatting of integers to
zero-terminated strings without using global system
resources such as the standard Forth number-conver-
sion buffer.

FILENAME-BUFFER A buffer whose size is MAX_PATH, used to contain
filenames with path information.

FONT-PICKER A subclass of the data structure CHOOSE-FONT that pro-
vides the logic for handling the common dialog box for
selecting a font.
176 Windows Objects

SwiftForth Reference Manual
Section 12: Floating-Point Math Library

SwiftForth’s floating-point math library is a system option providing support for
the Intel Architecture Floating-Point Unit (FPU). See Section 2.3.5 for instructions
for configuring SwiftForth to use this option.

12.1 The Intel FPU

The Intel Architecture Floating-Point Unit (FPU) provides high-performance floating-
point processing capabilities. It supports the real, integer, and BCD-integer data
types and the floating-point processing algorithms and exception-handling architec-
ture defined in the IEEE 754 and 854 Standards for Floating-Point Arithmetic. The
FPU executes instructions from the processor’s normal instruction stream and
greatly improves the efficiency of Intel architecture processors in handling the
types of high-precision, floating-point operations commonly found in scientific,
engineering, and business applications.

Support for the FPU adds an important computational dimension to SwiftForth.
The SwiftForth implementation makes use of the FPU’s 80-bit wide by eight deep
hardware stack only during primitive operations. Each task has its own floating-
point stack, which is #NS bytes long and is located at the bottom of a task’s data
space (below HERE). #NS is sized for 32 80-bit stack elements. A task’s numeric
stack is referred to as the numeric stack or N-stack; the numeric stack internal to the
FPU is referred to as the hardware stack.

Floating-point primitives transfer the number of stack items they require to the
hardware stack and return the result to the numeric stack when finished. Floating-
point numbers are converted directly on the hardware stack, extending input con-
version to a full 80 bits. Integers and double-precision integers are converted, as
always, on the data stack. The primary goals in the development of the FPU co-pro-
cessor support package were high throughput, precision, and code compatibility
with standard integer SwiftForth.

12.2 Use of the Math Co-processor Option

Operation of the FPU requires only that its file fpmath.f be loaded. You may
INCLUDE it directly, or load it using the Options > Optional Packages > System
Options dialog box. If this file is included, the FPU will be initialized as part of the
system initialization. If you will be using this package regularly, you may find it
convenient to make a turnkey program containing it, as described in Section 2.3.5.

The set of user-level words in this option is fully compliant with ANS Forth, and all
the documentation on floating point in Forth Programmer’s Handbook applies;
material discussed in that section is not repeated here. The default length of float-
ing-point memory operations (e.g., F@, F!, etc.) is 64 bits, the same as the IEEE long
floating-point format. This option includes an extended set of commands not dis-
Floating-Point Math Library 177

SwiftForth Reference Manual
cussed in Forth Programmer’s Handbook, as well as features particular to the FPU/
80486 processor; these additional commands and features are described in the fol-
lowing sections.

12.2.1 Configuring the Floating-Point Options

The dialog box shown in Figure 26 is automatically displayed the first time you load
the FPMath option, and may be recalled thereafter by using the Options > FPMath
menu selection. It allows you to configure the settings described below.

Figure 26. Configure floating-point options

Stack: The FPU has an on-board stack with a theoretical capacity of eight floating-
point numbers. Of these eight positions, only seven are practically useful, and any
output routine will consume at least one, leaving six for algorithmic use. If your
algorithm can work within this limitation (and most can), your code will run signifi-
cantly faster if you select the hardware stack. The software stack has a depth of 32
items.

Note: the FPU does not generate an exception on hardware stack overflow or under-
flow, which means these conditions cannot be automatically detected. SwiftForth
provides the word ?FSTACK, which THROWs on overflow or underflow. When the
FPMath option is loaded, this is included in SwiftForth’s normal stack check in the
text interpreter, and also in the floating output routines FS., FE., etc. You may wish
to add it to your application code in routines that may require more than a few
stack positions.

WAIT on exceptions, when checked, causes an FWAIT instruction to be executed fol-
lowing any FPU instructions, in order to ensure that any FPU exception will be
detected before any non-FPU instructions are executed. This option is useful during
178 Floating-Point Math Library

SwiftForth Reference Manual
debugging, but will slow the code slightly.

Note: any change in the above two options will not take effect until the floating-
point option is re-loaded.

Display Format: This section configures the output word N. (Section 12.2.3) by
selecting the number of significant digits to be displayed and the format. The Engi-
neering option selects FE., Scientific selects FS., and Fixed selects F. (all discussed
in the Forth Programmers’ Handbook). Specification of output format has no effect
on the internal representation of floating-point numbers.

Rounding Precision: The internal format maintains a 64-bit mantissa and 16-bit
exponent (80 bits total). If you convert to a single or double integer format, round-
ing will occur. This option specifies the size of the mantissa: 64 bits is full preci-
sion, 53 bits corresponds to a double integer (64 bits total), and 24 bits corresponds
to a single integer (32 bits total).

Rounding Control: The SwiftForth default is to truncate. The configurable alterna-
tives are:

• Round-to-nearest, and at the boundary round to even.

• Round down, or floor (1.5 rounds to 1 and -1.5 rounds to -2).

• Round up (-1.5 would round to -1).

Rounding operations are always done with the default precision and exception
masking. These can be changed by adjusting the values in FP-ROUND. Note that, per
ANS Forth requirements, the word F>D (page 184) will always truncate, as will the
non-ANS Forth word S>D.

12.2.2 Input Number Conversion

The text interpreter in SwiftForth handles floating-point numbers as specified by
ANS Forth. They must contain an E or an e (signifying an exponent), and must begin
with a digit (optionally preceded by an algebraic sign). For example, -0.5e0 is valid,
but .2e0 is not. A number does not need to contain a decimal point or a value for
the exponent; if there is no exponent value, it is assumed to be zero (multiplier of
one). Punctuation other than a decimal point is not allowed in a floating-point
number.

SwiftForth will only attempt to convert a number in floating point if BASE is decimal.
If it is not, or if the number is not a valid floating-point number, then the default
number-conversion rules described in Section 4.3 apply.

The conversion of floating number strings is performed by the word (REAL). (REAL)
performs the conversion directly on the hardware stack of the co-processor to sim-
plify the task and to extend the accuracy to the full 80 bits.

This system also supports the ANS extended conversion word >FLOAT. >FLOAT is
more general than the text interpreter and will convert nearly any reasonably con-
structed number. See the Handbook for details.
Floating-Point Math Library 179

SwiftForth Reference Manual
References Input number conversions in SwiftForth, Section 4.3

12.2.3 Output Formats

Some additional output words are provided for the display of floating-point num-
bers beyond those described in Forth Programmer’s Handbook. The phrases:

<n> F.R
<n> FS.R

display the top item on the numeric stack right-justified field of n characters in F.
and FS. formats.

If all the significant digits are too far behind the decimal point, the displayed num-
ber will be all zeroes. If the digits to the left of the decimal won't fit in the space,
they will be printed regardless.

The programmable display word N. allows you to select the output format and
number of significant digits at run time. N. is useful as a general-purpose numeric
stack output word, and finds its greatest utility in compiled definitions in which the
output format can be set at run time before executing the definition.

Glossary

F.R (n —); (F: r —)
Display r in the F. output format, right-justified in a field n characters wide.

FS.R (n —); (F: r —)
Display r in the FS. output format, right-justified in a field n characters wide.

N. (—); (F: r —)
Display r in a format selected by FIX, SCI, or ENG.

FIX (n —)
Configure N. to use the F. output format with n significant digits.

SCI (n —)
Configure N. to use the FS. output format with n significant digits.

ENG (n —)
Configure N. to use the FE. output format with n significant digits.

SET-PRECISION (n —)
Set the default output precision for the above formatting words to n.

12.2.4 Real Literals

Floating-point literals may be compiled in one of four data types: integer, double
integer, short, and long. Words for managing them are described in the glossary
below.
180 Floating-Point Math Library

SwiftForth Reference Manual
Glossary

DFLITERAL (—); (F: r —)
Compile the number on the floating-point stack as a 64-bit floating-point literal.

FLITERAL (—); (F: r —)
Same as DFLITERAL.

SFLITERAL (—); (F: r —)
Compile the number on the floating-point stack as a 32-bit floating-point literal.

FILITERAL (—); (F: r —)
Compile the number on the floating-point stack as a 32-bit or 64-bit two’s comple-
ment rounded integer. A double-length (64-bit) integer is compiled if the number
exceeds 32 bits.

12.2.5 Floating-Point Constants and Variables

In addition to the defining words FCONSTANT and FVARIABLE in Forth Programmer’s
Handbook, which are implemented here as 64-bit quantities, this system provides
the corresponding IEEE standard format words SFCONSTANT (32 bits), DFCONSTANT (64
bits), SFVARIABLE (32 bits), and DFVARIABLE (64 bits). In this system, FCONSTANT and
DFCONSTANT are identical, as are FVARIABLE and DFVARIABLE.

Although the FPU co-processor also supports 80-bit floating and 80-bit packed BCD
data types, these are usually found in specific applications and are not supported in
this option. The programmer may easily incorporate these functions through sim-
ple CODE definitions.

Glossary

SFCONSTANT <name> (—); (F: r —)
Define a floating-point constant with the given name whose value is r, compiled in
short (32-bit) format. When name is executed, r will be returned on the floating-
point stack.

DFCONSTANT <name> (—); (F: r —)
Define a floating-point constant with the given name whose value is r, compiled in
double (64-bit) format. When name is executed, r will be returned on the floating-
point stack.

SFVARIABLE <name> (—)
Define a floating-point variable with the given name, allocating space to store val-
ues in short (32-bit) format. When name is executed, the address of its data space
will be returned on the data stack.

DFVARIABLE <name> (—)
Define a floating-point variable with the given name, allocating space to store val-
ues in double (64-bit) format. When name is executed, the address of its data space
will be returned on the data stack.
Floating-Point Math Library 181

SwiftForth Reference Manual
12.2.6 Memory Access

Memory access words similar to those in standard SwiftForth are provided for float-
ing-point data types. These obtain addresses from the data stack and transfer data
to and from the numeric stack.

In addition to the words documented in Forth Programmer’s Handbook, the follow-
ing are provided:

Glossary

F+! (addr —) (F: r —)
Add the top floating-point stack value to the 64-bit contents of the address on the
data stack. “Floating plus store”

DF+! (addr —) (F: r —)
Same as F+!.

SF+! (addr —) (F: r —)
The 32-bit equivalent of F+!. “Short floating plus store”

F, (—) (F: r —)
Compile the top 64-bit floating-point stack value into the dictionary. “Floating
comma”

FL, (—) (F: r —)
Same as F,.

FS, (—) (F: r —)
The 32-bit equivalent of F,. “Floating short comma”

Integer Transfers To and From the Numeric Stack

FI@ (addr —) (F: — r)
Push on the floating-point stack the 64-bit data specified by the address on the data
stack. “Integer fetch”

SFI@ (addr —) (F: — r)
Push on the floating-point stack the 32-bit data specified by the address on the data
stack. “Single fetch”

DFI@ (addr —) (F: — r)
On this system, the same as FI@. “Double fetch”

FI! (addr —) (F: r —)
Store the top floating-point stack item, rounded to a 64-bit integer, in the address
on the data stack. “Integer store”

DFI! (addr —) (F: r —)
On this system, the same as FI!. “Double store”

SFI! (addr —) (F: r —)
Store the top floating-point stack item, rounded to a 32-bit integer, in the address
182 Floating-Point Math Library

SwiftForth Reference Manual
given on the data stack. “Single store”

FI, (—) (F: r —)
Convert the top floating-point stack value to a rounded 64-bit integer and compile it
into the dictionary. “Integer comma”

DFI, (—) (F: r —)
On this system, the same as FI,. “Double comma”

SFI, (—) (F: r —)
Convert the top floating-point stack value to a rounded 32-bit integer and compile it
into the dictionary. “Single comma”

12.2.6.1 Stack Operators

The SwiftForth floating-point option contains the words MAKE-FLOOR and MAKE-
ROUND. These allow you to control whether truncation or rounding takes place when
transferring numbers from the floating-point stack to the integer data stack. Com-
pliance with ANS Forth requires truncation, so the floating-point option executes
MAKE-FLOOR when it is loaded.

These words are supplied in addition to operators documented in Forth
Programmer’s Handbook.

Glossary

F2DUP (—) (F: r1 r2 — r1 r2 r1 r2)
Duplicate the top two floating-point stack items.

F?DUP (— flag) (F: r — r |)
Test the top of the floating-point stack for non-zero. If the number is non-zero, it is
left and a true value is placed on the data stack; if the number is zero, it is popped
and a zero (false) is placed on the data stack.

FWITHIN (— flag) (F: r l h)
Return a true value on the data stack if the floating-point value r lies between the
floating-point values l and h, otherwise return false.

/FSTACK (—) (F: i*r —)
Clear the numeric stack.

?FSTACK (—) (F: i*r — i*r)
Check the numeric stack and abort if there are no numbers on it.

MAKE-FLOOR (—)
Configure SwiftForth to use truncation when transferring numbers from the float-
ing-point stack to the data stack. This is the ANS Forth convention, and is the
default in SwiftForth.

MAKE-ROUND (—)
Configure SwiftForth to use rounding when transferring numbers from the floating-
point stack to the data stack. This is the FPU convention.
Floating-Point Math Library 183

SwiftForth Reference Manual
S>F (n —) (F: — r)
Remove a 32-bit value from the data stack and push it on the floating-point stack.

F>S (— n) (F: r —)
Remove the top floating-point stack value, round it to a 32-bit integer, and push it
on the data stack.

D>F (d —) (F: — r)
Remove a 64-bit value from the data stack and push it on the floating-point stack.

F>D (— d) (F: r —)
Remove the top floating-point stack value, round it to a 64-bit integer, and push it
on the data stack.

F2* (—) (F: r1 — r2)
Multiply the top floating-point stack value by 2.

F2/ (—) (F: r1 — r2)
Divide the top floating-point stack value by 2.

1/N (—) (F: r1 — r2)
Replace the top floating-point stack value with its reciprocal value.

SIN (—) (F: x — r)
Return the sine of x, where x is in degrees.

COS (—) (F: x — r)
Return the cosine of x, where x is in degrees.

TAN (—) (F: x — r)
Return the tangent of x, where x is in degrees.

COT (—) (F: x — r)
Return the cotangent of x, where x is in degrees.

SEC (—) (F: x — r)
Return the secant of x, where x is in degrees.

CSC (—) (F: x — r)
Return the cosecant of x, where x is in degrees.

12.2.6.2 Matrix-Defining Words

Two-dimensional matrix data structures are supported by the floating-point math
option. A matrix is constructed as a standard dictionary entry, with the number of
bytes per row stored in the first cell of the parameter field. The first matrix storage
location follows the count and, thus, is located at <parameter field address
CELL+>. Matrix storage locations are arranged with column indices varying more
rapidly then row indices. The relative address of any element is thus:

<row index> × <# of bytes per row> + <column index>

Matrices for 32-bit and 64-bit floating-point data types are constructed and dis-
played with the words in the glossary at the end of this section.
184 Floating-Point Math Library

SwiftForth Reference Manual
When words defined by SMATRIX and LMATRIX are referenced by name, each returns
the memory address of the specified matrix row and column. Subscripts range from
zero to one less than the declared row or column sizes. For example, if you define:

3 4 SMATRIX DATA

you have a matrix whose name is DATA, with three rows of four columns each. The
phrase 0 0 DATA returns the address of the first value, and 2 3 DATA returns the
address of the last value. No subscript range checking is performed.

Glossary

SMATRIX <name> (nr nc —)
Construct a matrix containing space for nr rows and nc columns, with 32 bits per
entry.

LMATRIX <name> (nr nc —)
Construct a similar matrix with 64-bit storage locations.

SMD <name> (nr nc —)
Display a previously defined short (32-bit entries) matrix. The number of rows and
columns must agree with the number in the definition.

LMD <name> (nr nc —)
Similar to SMD but displays a long (64-bit entries) matrix.

12.3 FPU Assembler

The FPU assembler extends the instruction set with floating-point instructions.
Most FPU instructions are implemented. The memory reference addressing modes
are a subset of the CPU modes, because the FPU relies on the CPU to generate the
address of memory operands. This documentation is intended as a supplement to
the SwiftForth i386 assembler; see Section 12.3.3.3 for further references.

References i386 assembler, Section Section 6:

12.3.1 FPU Hardware Stack

The FPU assembler instructions work on the FPU’s internal hardware stack and are
not directly connected with the task-specific numeric stacks implemented in Swift-
Forth. Thus, before the FPU instructions can work on numeric stack items, the
items must be transferred to the hardware stack. Likewise, the results must be
returned to a task’s numeric stack after an instruction has been completed.

To facilitate this process, four macros assemble the necessary FPU instructions to
perform these transfers. They are listed in the glossary below.

Either >f or >fs should be used at the beginning of floating-point primitives, and f>
or fs> should be used at the end.
Floating-Point Math Library 185

SwiftForth Reference Manual
Glossary

>f (—)
Assemble FPU instructions to transfer one numeric stack item to the hardware
stack.

f> (—)
Assemble FPU instructions to transfer one hardware stack item to the numeric
stack.

>fs (n —)
Assemble FPU instructions to transfer n numeric stack items to the hardware stack.
Stack order is preserved.

fs> (n —)
Assemble FPU instructions to transfer n hardware stack items to the numeric stack.
Stack order is preserved.

12.3.2 CPU Synchronization

The FPU assembler functions as part of the SwiftForth i386 assembler. FPU instruc-
tions are assembled in the same manner and format.

For maximum throughput, FPU instructions are not synchronized with the CPU
unless specifically coded. When a CPU memory reference instruction that operates
on data to or from the FPU is needed, you should explicitly code a WAIT instruction
to synchronize the transfer.

All CODE words that use FPU instructions should end with FNEXT.

12.3.3 Addressing Modes

The FPU employs two types of addressing modes:

• memory reference

• hardware stack top relative

Memory reference modes use the i386 operand formats, whereas the hardware
stack top relative mode is unique to the FPU.

12.3.3.1 Memory Reference

The FPU uses the i386 operand addressing modes to transfer data to and from
memory. There are three valid operand types:

• Register indirect

• Register indexed with displacement

• Direct
186 Floating-Point Math Library

SwiftForth Reference Manual
Register indirect and register indexed with displacement use the same format as the
SwiftForth i386 assembler; see Section 6.3 for SwiftForth register usage. The direct
addressing mode specifies an absolute memory address.

Some FPU opcodes require a memory format specifier to select data size and type.
These specifiers are listed in Table 25.

The format specifier must precede the addressing operand of the FPU instruction.
Here’s an example of a FPU memory reference:

CODE SF@ (a --) (-- r) \ Fetch real from addr
0 [EBX] DWORD FLD \ Load 32-bit real from addr
0 [EBP] EBX MOV 4 # EBP ADD \ Pop data stack
f> FNEXT \ Real to local FP stack

12.3.3.2 Stack Top Relative Addressing

FPU hardware stack operations that deal with two stack parameters have an oper-
and format that specifies the location of the item relative to the top of the numeric
stack. ST(0) references the top stack item, ST(1) references the second item, etc.
Some examples of stack addressing are given in Table 26.

12.3.3.3 FPU References

For more information concerning the details of the operation and accuracy of the
FPU, consult the Intel 64 and IA-32 Architectures Software Developer's Manuals.
Links to these manuals can be found on the SwiftForth page of www.forth.com.

Table 25: Memory-format specifiers

Format Code Meaning

WORD 16-bit integer

DWORD 32-bit integer or floating

QWORD 64-bit floating

Table 26: Examples of FPU stack addressing

Command Action

ST(1) FXCH Equivalent code for hardware stack SWAP.

ST(0) FLD Equivalent code for hardware stack DUP.

ST(1) FLD Equivalent code for hardware stack OVER.

ST(0) FSTP Equivalent code for hardware stack DROP.
Floating-Point Math Library 187

https://www.forth.com/swiftforth/

SwiftForth Reference Manual
188 Floating-Point Math Library

SwiftForth Reference Manual
Section 13: Recompiling SwiftForth

There are two binary program files included in the SwiftForth distribution; all three
are installed in the SwiftForth\bin directory:

• sfk.exe — The SwiftForth kernel with no extensions loaded. This is a “bare-bones”
Windows console application.

• sf.exe — The extended SwiftForth interactive development environment. Includes
many features beyond the basic kernel: debug tools, Windows API interface, SWOOP,
turnkey program generator, and DLL exports, just to name a few. This is a “turnkey”
Windows GUI application.

The complete source code for all of these components is supplied with the Swift-
Forth distribution. The following sections detail how to recompile part or all of the
SwiftForth binaries.

13.1 Recompiling the SwiftForth Turnkey

Launch the SwiftForth kernel console window, SwiftForth\bin\sfk.exe. Then compile
your electives. This is most easily done by typing the HI command. HI looks for the
source file hi.f first in the current working directory, then in the default location,
SwiftForth\src\ide\win32.

If you are generating a customized interactive development environment, you
should make your customizations and load them from a “local” hi.f in your own
directory, away from the SwiftForth-installed file hierarchy. Use these local copies
to avoid losing your changes when you update SwiftForth.

After loading the electives, save a new turnkey with the PROGRAM command as
detailed in Section 4.1.2.

The batch file SwiftForth\bin\turnkey.bat is supplied as an example of how to
recompile the sf.exe turnkey program.

13.2 Recompiling the Kernel

The full source to the SwiftForth kernel is supplied in the directory SwiftForth\src\
kernel. The “target compiler” used to generate sfk.exe is in SwiftForth\xcomp. To
recompile the kernel, launch the full sf.exe turnkey (sfk.exe by itself does not have
enough extensions loaded to support the target compiler) with the working direc-
tory set to SwiftForth\src\kernel\win32, then include the “make” file:

INCLUDE MAKE

The output will be saved in SwiftForth\bin\sfk.exe and the SwiftForth turnkey will
exit. You can change the output file name and destination directory by editing the
source file make.f included above.
Recompiling SwiftForth 189

SwiftForth Reference Manual
The batch file SwiftForth\bin\make.bat recompiles the kernel and then uses the new
kernel to recompile the sf.exe turnkey program. Before recompiling the kernel, it
pops up a Notepad editor window in which the release version number can be
edited. If you’re making your own customize kernel, append something (like “-L1”)
to the end of the version string to indicate that this is a custom “local” version. We
recommend that you do not change the version number itself.

SwiftForth is a copyrighted work and FORTH, Inc. reserves all rights to its use.
Please do not modify the copyright notice in the kernel.
190 Recompiling SwiftForth

SwiftForth Reference Manual
Appendix A: Block File Support

Early Forth systems ran in “native” mode on computers, meaning there was no oper-
ating system other than Forth. These systems organized disk in “blocks” of 1024
bytes each. Blocks were mapped to physical addresses on the disk drive, so there
was no disk directory. These systems were extremely fast and reliable.

However, most modern Forth implementation run under general-purpose, file-ori-
ented operating systems. In order to maintain portability between native and OS-
based Forths, the concept of block-oriented disk access was preserved, but blocks
reside in OS files. Nowadays block-oriented Forths are sufficiently rare that most
Forths (including SwiftForth) have elected to manage disk only as OS files, without
the block layer.

To maintain portability between SwiftForth and block-based Forths, optional sup-
port for block files is provided, along with a block editor and block-oriented source-
management tools, described here. Basic principles of block handling are described
in Forth Programmer’s Handbook.

A.1 MANAGING DISK BLOCKS

To load the block-handling features, use the Tools > Optional Packages > Generic
Options dialog box. Select BLOCKEDIT to load the full block-support package
including the block editor. Select BLOCKS to load block support, but not the block
editor. (You can start with BLOCKS and add BLOCKEDIT later with no penalty.)

From a source file, you can load the optional block and block editor support like
this:

REQUIRES BLOCKEDIT

...to load the full block-support package, including the block editor.

REQUIRES BLOCKS

...to load block support without the editor.

In SwiftForth, Forth blocks are held in files and are accessed through the operating
system. Multiple files may be open at once; the blocks occupying a single file are
referred to as a numbered part (of all accessible blocks).

The correspondence between Forth block numbers and Windows files is called the
blockmap and is maintained in an array named PARTS. For each file, the blockmap
contains:

• a reference to the filename

• the file handle used for OS calls

• access mode (read/write or read-only)

• starting (absolute) block number for the file

• number of blocks in the file
Block File Support 191

SwiftForth Reference Manual
The system as shipped is capable of mapping 256 files into the blockmap. The
word CHART takes care of the assignment of block numbers to files. Files with the
extension .src are assumed to contain source and shadow blocks.

PART sets the value of OFFSET equal to the starting block number of the given part
and makes the given part current. For example, the phrase:

2 PART 1 LIST

will display Block 1 of the file mapped to Part 2. Note, however, that PART numbers
have absolutely no relationship to block numbers unless you enforce such a rela-
tionship. Otherwise you must treat them as arbitrary handles (as does the system).
The first file mapped is in Part 0.

The entries in the blockmap are shown in Table 27. Each item occupies one cell.

The command <n> >PART where n is the part number, ranging from 0 to the number
of parts minus one, will vector these names to refer to the information for the given
numbered part.

To change the blockmap, there are a number of words for mapping and unmapping
parts. The word MAPS (or MAPS" inside a definition) takes an unused PART number,
reads a previously created filename, and sets up the mapping data for opening that
file. UNMAP takes a part number and unmaps the corresponding file, FLUSHes, marks
the part unused, and closes the file. The access words READONLY and MODIFY each
take the starting block number of the file. They open the file with Windows read or
modify access, and finally enter the block offset, completing the blockmap entry.
For example:

2 MAPS \USER\APPL.SRC 1200 MODIFY

Note that the filename can be an unambiguous filename or a full Windows path-
name. The above example assumes you have created a file called APPL.SRC in the
USER subdirectory.

To review the mapping of files to parts and block numbers, use the word .MAP. It
displays a table with one entry for each part. Each entry indicates the starting block
number, access type, file size, and filename for the part.

New block files can be created and mapped with NEWFILE, which expects the number
of blocks to be created in a new file. The file is created and then opened for modi-

Table 27: Blockmap format

Name Description

#BLOCK Starting block number (-1 if unused part).

#LIMIT Ending block number + 1.

FILE-HANDLE File handle.

FILE-UPDATED Flag: set to 1 when file is UPDATEd (written) but not FLUSHed.

FILE-MODE Fail access mode (R/O, R/W, etc.)

#FILENAME Index into the 'FILENAMES array of pointers to counted file-
name strings.
192 Block File Support

SwiftForth Reference Manual
fying. If a filename extension is given, it will be used; if it is omitted, the extension
.src will be added. For example:

60 NEWFILE My

creates a new file called My.src containing 60 Forth blocks that will be mapped
starting at the next available block in the parts map.

The filename created by NEWFILE is compiled into the dictionary and, thus, a subse-
quent EMPTY (such as that executed by loading a utility—see Section 4.1.1) will
remove the file from the blockmap unless there has been an intervening GILD.

The most common words used with disk block mapping are given in the glossary
below.

Glossary

PART (n —)
Set OFFSET to the start of part n.

MAPS <name> (n —)
Given a free part number and a file name in the input stream, map the file. For
example:

UNMAPPED MAPS FORTH.SRC

MAPS" <name>" (n —)
Same as MAPS, but used inside a colon definition.

USING <name> (— n)
Take a file name, and return the part number where that file is mapped. CHARTs the
file if it is not found in the current block map.

CHART <name> (—)
Map the file name into the lowest free part. When used interpretively, does a .MAP.
If the file extension is omitted, a .src extension is assumed; you must include the
dot (.) in the filename to override this feature.

.PARTS (—)
Display the file-mapping information.

.MAP (—)
Display the file-mapping information and reset the screen scrolling region to the
top of the screen in order to display a large number of files.

UNMAP (n —)
Take a part number and remove it from the blockmap.

UNMAPS (n1 n2 —)
Take a range of part numbers, starting with n1 and ending with n2, and remove them
from the blockmap.

-LOAD (n —)
Take a block number, load the block, and then unmap the file it is in, unless the file
Block File Support 193

SwiftForth Reference Manual
is in 0 PART, in which case it is retained.

NEWFILE <name> (n —)
Take a file name and create a file with n blocks. Print the starting block and map-
ping part number. If the file extension is omitted, a .src extension is assumed.
You must include the dot (.) in the filename to override this feature.

FLUSH (—)
Write all updated buffers to disk.

READONLY (n —)
Given a relative starting block number, open the file for reading.

MODIFY (n —)
Given a relative starting block number, open the file for reading and writing.

LOADUSING <name> (n —)
Take a file name, open the file for reading, and LOAD block n. If the file extension is
omitted, a .src extension is assumed; you must include the dot (.) in the filename to
override this feature.

-MAPPED (addr n — f)
If the ASCII filename at address addr and of length n is not in the current parts
map, return true. Otherwise, return false and select the part where this file is
mapped.

UNMAPPED (— n)
Return the number of the lowest free PART.

AFTER (— n)
Return the lowest block number beyond all mapped blocks.

?PART (n — n1)
Take an absolute block number and return the number of the PART which maps it.
This is useful in UNMAPping a file whose PART number is unknown.

A.2 SOURCE BLOCK EDITOR

This system provides a resident string editor for editing source kept in blocks.
Before any of the commands described in this section may be issued, it is necessary
to select a program block for editing. Then, to obtain access to the string editor
vocabulary, type EDITOR. Note that, for convenience, T and L (described below) are
in the vocabulary FORTH—use of either of these will automatically select EDITOR for
you.

References Vocabularies, Section 5.5.2

A.2.1 Block Display

To display a block and at the same time select it for future editing, type:
194 Block File Support

SwiftForth Reference Manual
<n> LIST

where n is the logical block number of the desired block.

Once selected, the current program block may be (re)displayed (and the EDITOR
selected) by the following command:

L

The number of the block is displayed on the first line; the block is displayed below
it, formatted as sixteen lines of 64 ASCII characters.

Each line is numbered on the left side as 0–15 or 0–F, depending on whether the
user is currently in DECIMAL or HEX base. These line numbers are not stored with the
text but are added to the display for easy reference.

The characters ok will appear at the end of the final line of the block, indicating that
the display is complete and that Forth is ready for another command. Regardless of
the position in which they appear in the display, these characters do not appear in
the actual text of the block.

The current block number is kept in the user variable SCR. SCR is set by LIST or
LOCATE; all editing commands operate on the block specified by SCR.

Before a program block has been used, it contains data of an undefined nature. The
command WIPE will fill the block with ASCII spaces. The block is considered unused
if the entire first line (first 64 characters) of the block are all ASCII spaces, so when
editing a block do not leave this line entirely blank.

For convenience, three additional block display commands exist: N, B, and Q. N
(Next) adds 1 to SCR, then displays the next block. B (Back) subtracts 1 from SCR, to
display the previous block. Q adds or subtracts the current documentation shadow
block offset into SCR, so typing Q alternates the block display between a source
block and its documentation shadow block.

A.2.2 String Buffer Management

The string EDITOR contains two buffers used by most of the editing commands.
These are called the find buffer and the insert buffer. The find buffer is used to save
the string that was searched for most recently by one of the three character-editing
commands F, D, or TILL; it is at least sixty-four characters in length. The insert buf-
fer is also at least sixty-four characters long; it contains the string that was most
recently inserted into a line by the character-editing commands I or R, or the line
most recently inserted or deleted by the line editing commands X, U, or P. The com-
mand K interchanges the contents of the find and insert buffers, without affecting
the text in the block.

The existence of these buffers allows multiple commands to work with the same
string; understanding which commands use which buffers will enable you to use the
EDITOR more economically. The convention is this: commands that may accept a
string as input will expect to be followed immediately either by a space (the com-
mand’s delimiter) and one or more additional characters followed by a carriage
Block File Support 195

SwiftForth Reference Manual
return, or by a carriage return only.

In the former case, the string will be used and will also be placed in the string buffer
that corresponds to the command (find or insert). In the latter case (carriage return
only), the string that is currently in the appropriate buffer will be used (and will
remain unchanged).

For example, the character-editing command:

F WORDS TO FIND

will place WORDS TO FIND in the find buffer and will find the next occurrence of the
string WORDS TO FIND. Subsequent use of the command F immediately followed by a
carriage return will find the next occurrence of WORDS TO FIND. Table 28 summarizes
buffer usage.

A.2.3 Line Display

Any single line of the current block (whose number is in SCR) may be selected by
using the following command:

<n> T

where n (which must be in the range 0–15) is the line number to be selected.

The T (Type) command sets the user variable CHR to the character position of the
beginning of the line. This value may later be used to identify the line to be
changed, using the commands defined in the following section. Since CHR is used to
store the cursor position for the character-editing commands, using T (i.e., initializ-
ing CHR) specifies that any search will start at the beginning of that line. The new
cursor position is marked in some convenient way.

The contents of the string buffers and of the block are unchanged by use of T.

A.2.4 Line Replacement

The command P (“Place”) will replace an entire line with the text that follows it, leav-
ing a copy of that new text in the insert buffer, or with the current content of the
insert buffer (if P is followed by a carriage return).

Table 28: Block-editor commands and string buffer use

Find Buffer Insert Buffer

F I

S R

D X

TILL U

K P

K

196 Block File Support

SwiftForth Reference Manual
The line number used by the P command is computed from the value in CHR. P is
normally used after the T command, as illustrated by the following example:

4 T (command)
^THIS IS THE OLD LINE 4(response)
P THIS IS THE NEW LINE 4(command + text)

Thus, a line may be placed in several locations in a block by the use of:

• P followed by text (the first time).

• Alternate use of T (to select the line and confirm that this is the line to be replaced)
and P followed by a carriage return.

A P followed by two or more spaces and a carriage return will fill the line with
spaces. This is useful for blanking single lines.

A.2.5 Line Insertion or Move

The command U (“Under”) is used to insert either the text that follows or the current
contents of the insert buffer into the current program block under the line in which
the current value of CHR falls. Normally U is used immediately after the T command,
where the line number specifies the line under which a new line is to be inserted.

Handling of text and the insert buffer is the same for U as for the command P.

The word M (“Move”) in the editor brings lines into the block you’re currently dis-
playing. If you wish to move one or more lines from one block to another, first list
the source block. Note the block number and the first line number. Next, list the
destination block and select the line just above where you want the line you’re
going to bring in to be inserted. Now enter <blk#> <line#> M. The designated
source line will be inserted below the current line. It won’t be removed from the
source block. The current line will be one below where it was before. Additionally,
the source block number and line number will still be on the stack but the line num-
ber will be incremented—this sets you up to do another M without entering addi-
tional arguments. The word M checks the stack to be certain it contains only two
arguments. It ABORTs if the depth isn’t two. This saves you from accidentally
knocking the last line off your block by inadvertently entering an M.

A.2.6 Line Deletion

You may use the command X to delete the current line (i.e., the line in which the cur-
rent value of CHR falls). You will normally use X immediately after a T command that
specifies the line to be deleted.

When a line is deleted, all higher-numbered lines shift up by one line, and Line 15 is
cleared to spaces. In addition, the contents of the deleted line are placed in the
insert buffer, where they may be used by a later command. Thus, X may be com-
bined with T followed by P or U to allow movement of one line within a block. The
following sequence would move Line 9 to Line 4, changing only the ordering of
Block File Support 197

SwiftForth Reference Manual
Lines 4 through 9.

9 T X 3 T U

Note that if a line is being moved to a position later in the block, the X operation will
change the positions of the later lines. To move the current Line 4 to a position
after the current Line 13, use the following command sequence:

4 T X 12 T U

Line 12 is specified as the insert position, since the X operation moves the current
Line 13 to the new Line 12.

A.2.7 Character Editing

The string EDITOR vocabulary also includes commands to permit editing at the char-
acter level. Except in the case of F and S, the character-editing commands work
within a specified range, controlled by the user variable EXTENT. EXTENT is normally
set by default to 64, so that the range will be confined to the current line of the cur-
rent block. The line is selected by the regular EDITOR command:

<line#> T

A cursor (indicated by a ^ or some form of highlighting) marks the position within
the line at which insertions will take place and from which searches will begin. The
T command sets this cursor to the beginning of the line.

When EXTENT is set to 64, insertions will cause characters at the end of the line to be
lost; they will not spill over onto the next line. Deletions will cause blank fill on the
right end of the line.

EXTENT’s value may be set to 1024 in some situations (such as word processing or
multiple-line operations) when it’s desirable to allow edits to propagate through the
entire block. The command CLIP sets EXTENT to 64 (one line), and the command
WRAP sets EXTENT to 1024 (one block).

In the list of commands below, text indicates a string of text. If the text is omitted,
the current contents of the find buffer will be used (for the commands F, S, D, and
TILL) or the current contents of the insert buffer will be used (for I). If text is pres-
ent, it will be left in the appropriate buffer.

The maximum length of a string is determined by the length of the two string buf-
fers being used, at least 64 characters. In all cases, the string is terminated by a car-
riage return or a caret. If a string is typed that is too long, the string will be
truncated to the buffer’s size.
198 Block File Support

SwiftForth Reference Manual
Appendix B: Standard Forth Documentation
Requirements

This section provides the detailed documentation requirements specified in Stan-
dard (ANSI and ISO) Forth. General system documentation is provided first, fol-
lowed by sections for each wordset with specific documentation requirements. See
Section 4.8 for a list of wordsets supported.

References to sections in the Standard are shown in bold, with the section number
followed by its heading.

B.1 SYSTEM DOCUMENTATION

This section provides the required system documentation.

Table 29: Implementation-defined options in SwiftForth

Option SwiftForth Support

Aligned address requirements
(3.1.3.3 Addresses)

No requirement

Behavior of 6.1.1320 EMIT for non-
graphic characters

All characters transmitted.

Character editing of 6.1.0695 ACCEPT
and 6.2.1390 EXPECT

ACCEPT: BS deletes; CR terminates.
Horizontal arrow keys move cursor;
typing behavior depends on INS/OVR
selection. EXPECT: not supported.

Character set (3.1.2 Character types,
6.1.1320 EMIT, 6.1.1750 KEY)

7-bit ASCII

Character-aligned address require-
ments (3.1.3.3 Addresses)

No requirement

Character-set-extensions matching
characteristics (3.4.2 Finding defini-
tion names)

Case-sensitivity is optional
(see Section 2.3.5). Standard words
are defined and used in upper case.

Conditions under which control char-
acters match a space delimiter
(3.4.1.1 Delimiters)

When interpreting a text file, all char-
acters with values lower than BL (20H)
are
interpreted as spaces, with the excep-
tion of CR (0DH), which is a line termi-
nator.

Format of the control-flow stack
(3.2.3.2 Control-flow stack)

On data stack during compilation;
contains addresses.

Conversion of digits larger than
thirty-five (3.2.1.2 Digit conversion)

Number conversion follows case-
sensitivity preference; otherwise,
characters beyond Z not accepted.
Standard Forth Documentation Requirements 199

SwiftForth Reference Manual
Display after input terminates in
6.1.0695 ACCEPT and 6.2.1390 EXPECT

ACCEPT: in command window,
text is displayed following receipt of
each character.
EXPECT: not supported.

Exception abort sequence
(as in 6.1.0680 ABORT")

Implemented as -2 THROW; displays
the
last word typed followed by the
string, in a dialog box and the com-
mand window.

Input line terminator
(3.2.4.1 User input device)

Enter key

Maximum size of a counted string,
in characters
(3.1.3.4 Counted strings, 6.1.2450
WORD)

255

Maximum size of a parsed string
(3.4.1 Parsing)

255

Maximum size of a definition name,
in characters (3.3.1.2 Definition
names)

254

Maximum string length for
6.1.1345 ENVIRONMENT?, in characters

254

Method of selecting
3.2.4.1 User input device

Set keyboard vectors in “personality”
(see Section 5.6.1).

Method of selecting
3.2.4.2 User output device

Set display vectors in “personality”
(see Section 5.6.1).

Methods of dictionary compilation
(3.3 The Forth dictionary)

The implementation model is subrou-
tine-threaded. See Section 5.5 for
information on dictionary structure.

Number of bits in one address unit
(3.1.3.3 Addresses)

8

Number representation and arithme-
tic (3.2.1.1 Internal number repre-
sentation)

Two’s complement

Ranges for n, +n, u, d, +d, and ud
(3.1.3 Single-cell types, 3.1.4 Cell-
pair types)

Single: 32 bits
Double: 64 bits

Read-only data-space regions
(3.3.3 Data space)

None

Size of buffer at 6.1.2450 WORD
(3.3.3.6 Other transient regions)

At least 256 bytes.

Size of one cell in address units
(3.1.3 Single-cell types)

4

Table 29: Implementation-defined options in SwiftForth (continued)

Option SwiftForth Support
200 Standard Forth Documentation Requirements

SwiftForth Reference Manual
Size of one character in address units
(3.1.2 Character types)

1

Size of the keyboard terminal input
buffer (3.3.3.5 Input buffers)

256 bytes

Size of the pictured numeric output
string buffer (3.3.3.6 Other transient
regions)

68 bytes

Size of the scratch area whose
address is returned by 6.2.2000 PAD
(3.3.3.6 Other transient regions)

256 bytes

System case-sensitivity characteris-
tics
(3.4.2 Finding definition names)

Case-sensitivity is optional (see Sec-
tion 2.3.5). Default is case-insensitive.

System prompt (3.4 The Forth text
interpreter, 6.1.2050 QUIT)

“ok” CR LF

Type of division rounding (3.2.2.1
Integer division, 6.1.0100 */,
6.1.0110 */MOD, 6.1.0230 /, 6.1.0240
/MOD, 6.1.1890 MOD)

Symmetric

Values of 6.1.2250 STATE when true -1 (true)

Values returned after arithmetic over-
flow (3.2.2.2 Other integer opera-
tions)

Two’s complement “wrapped” result

Whether the current definition can be
found after 6.1.1250 DOES> (6.1.0450
:).

No

Table 30: SwiftForth action on ambiguous conditions

Condition Action

A name is neither a valid definition name
nor a valid number during text interpreta-
tion
(3.4 The Forth text interpreter)

See Section 5.5.5.
If all searches fail, a -13 THROW
occurs.

A definition name exceeded the maximum
length allowed (3.3.1.2 Definition names)

Name is truncated.

Addressing a region not listed in
3.3.3 Data Space

Addressing is allowed to the
extent
supported by Windows.

Argument type incompatible with speci-
fied input parameter, e.g., passing a flag
to a word expecting an n (3.1 Data types)

Ignore and continue.

Table 29: Implementation-defined options in SwiftForth (continued)

Option SwiftForth Support
Standard Forth Documentation Requirements 201

SwiftForth Reference Manual
Attempting to obtain the execution token,
(e.g., with 6.1.0070 ', 6.1.1550 FIND, etc.)
of a definition with undefined interpreta-
tion semantics

Allowed

Dividing by zero (6.1.0100 */, 6.1.0110 */
MOD, 6.1.0230 /, 6.1.0240 /MOD,
6.1.1561 FM/MOD, 6.1.1890 MOD, 6.1.2214
SM/REM, 6.1.2370 UM/MOD, 8.6.1.1820 M*/)

-10 THROW

Insufficient data-stack space or
return-stack space (stack overflow)

Ignore and continue.

Insufficient space for loop-control
parameters

Ignore and continue.

Insufficient space in the dictionary -8 THROW

Interpreting a word with undefined
interpretation semantics

Compilation semantics are exe-
cuted.

Modifying the contents of the input buffer
or a string literal (3.3.3.4 Text-literal
regions,
3.3.3.5 Input buffers)

Ignore and continue.

Overflow of a pictured numeric output
string

Ignore and continue.

Parsed string overflow Truncated to 255 characters.

Producing a result out of range, e.g.,
multiplication (using *) results in a value
too big to be represented by a single-cell
integer
(6.1.0090 *, 6.1.0100 */, 6.1.0110 */MOD,
6.1.0570 >NUMBER, 6.1.1561 FM/MOD,
6.1.2214 SM/REM, 6.1.2370 UM/MOD,
6.2.0970 CONVERT, 8.6.1.1820 M*/)

Two’s complement “wrapping”

Reading from an empty data stack or
return stack (stack underflow)

Data stack checked by text inter-
preter;
-4 THROW on detected underflow.
Return stack not checked.

Unexpected end of input buffer, resulting
in an attempt to use a zero-length string
as a name

-16 THROW

>IN greater than size of input buffer
(3.4.1 Parsing)

Abort

6.1.2120 RECURSE appears after 6.1.1250
DOES>

Ignore and continue.

Argument input source different than cur-
rent input source for 6.2.2148 RESTORE-
INPUT

ABORT

Table 30: SwiftForth action on ambiguous conditions (continued)

Condition Action
202 Standard Forth Documentation Requirements

SwiftForth Reference Manual
Data space containing definitions is
de-allocated (3.3.3.2 Contiguous regions)

Ignore and continue.

Data space read/write with incorrect
alignment (3.3.3.1 Address alignment)

Allowed (no alignment required)

Data-space pointer not properly aligned
(6.1.0150 ,, 6.1.0860 C,)

Allowed (no alignment required)

Less than u+2 stack items
(6.2.2030 PICK, 6.2.2150 ROLL)

Ignore and continue.

Loop-control parameters not available
(6.1.0140 +LOOP, 6.1.1680 I, 6.1.1730 J,
6.1.1760 LEAVE, 6.1.1800 LOOP, 6.1.2380
UNLOOP)

Ignore and continue.

Most recent definition does not have a
name (6.1.1710 IMMEDIATE)

Ignore and continue;
IMMEDIATE has no effect.

Name not defined by 6.2.2405 VALUE used
by 6.2.2295 TO

-32 THROW

Name not found (6.1.0070 ', 6.1.2033
POSTPONE, 6.1.2510 ['], 6.2.2530 [COM-
PILE])

-13 THROW

Parameters are not of the same type
(6.1.1240 DO, 6.2.0620 ?DO, 6.2.2440
WITHIN)

Allowed

6.1.2033 POSTPONE or 6.2.2530 [COMPILE]
applied to 6.2.2295 TO

[COMPILE] not supported;
POSTPONE not allowed with TO.

String longer than a counted string
returned by 6.1.2450 WORD

Length truncated

u greater than or equal to the number of
bits in a cell (6.1.1805 LSHIFT, 6.1.2162
RSHIFT)

Shift is modulo cell size.

Word not defined via 6.1.1000 CREATE
(6.1.0550 >BODY, 6.1.1250 DOES>)

Allowed

Words improperly used outside
6.1.0490 <# and 6.1.0040 #> (6.1.0030 #,
6.1.0050 #S, 6.1.1670 HOLD, 6.1.2210 SIGN)

Allowed

Table 31: Other system documentation

Requirement SwiftForth information

List of non-standard words using 6.2.2000
PAD
(3.3.3.6 Other transient regions)

To obtain list of references,
type WH PAD and follow line#
links
(see Section 2.4.3)

Operator’s terminal facilities available See Section 2.3.1 and Section
2.4.8

Table 30: SwiftForth action on ambiguous conditions (continued)

Condition Action
Standard Forth Documentation Requirements 203

SwiftForth Reference Manual
B.2 BLOCK WORDSET DOCUMENTATION

Program data space available, in address
units

1 MB default; see Section 5.2.

Return stack space available, in cells 16,384

Stack space available, in cells 4,096

System dictionary space required, in
address units

About 300K bytes

Table 31: Other system documentation (continued)

Requirement SwiftForth information

Table 32: Block wordset implementation-defined options

Option SwiftForth support

The format used for display by
7.6.2.1770 LIST (if implemented)

16 lines by 64 characters, with line
numbers.

The length of a line affected by
7.6.2.2535 \ (if implemented)

64 characters

Table 33: Block wordset ambiguous conditions

Condition Action

Correct block read was not possible ABORT

I/O exception in block transfer ABORT

Invalid block number (7.6.1.0800 BLOCK,
7.6.1.0820 BUFFER, 7.6.1.1790 LOAD)

ABORT

A program directly alters the contents of
7.6.1.0790 BLK

Ignore and continue.

No current block buffer for 7.6.1.2400
UPDATE

There is always a current block
buffer.

Table 34: Other block wordset documentation

Item SwiftForth information

Any restrictions a multiprogramming
system places on the use of buffer
addresses

Valid only within a “critical section”
or as controlled by DISK GET/DISK
RELEASE (see Section 7.2.2).

The number of blocks available for
source text and data

User specified; see Section A.1.
204 Standard Forth Documentation Requirements

SwiftForth Reference Manual
B.3 DOUBLE NUMBER WORDSET DOCUMENTATION

B.4 EXCEPTION WORDSET DOCUMENTATION

B.5 FACILITY WORDSET DOCUMENTATION

Table 35: Double-number wordset ambiguous conditions

Condition Action

d outside range of n in 8.6.1.1140
D>S.

Value truncated.

Table 36: Exception wordset implementation-defined options

Option SwiftForth support

Values used in the system by
9.6.1.0875 CATCH and 9.6.1.2275
THROW (9.3.1 THROW values, 9.3.5 Pos-
sible actions on an ambiguous con-
dition).

See the source file:
SwiftForth\src\ide\errmessages.f

Table 37: Facility wordset implementation-defined options

Option SwiftForth support

Encoding of keyboard events
(10.6.2.1305 EKEY)

See Section 5.5.2.

Duration of a system clock tick Varies; typically 1 ms. to 55 ms.

Repeatability to be expected from exe-
cution of 10.6.2.1905 MS.

At least the requested number of
milliseconds, depending on what else
is
running under Windows.

Table 38: Facility wordset ambiguous conditions

Condition Action

10.6.1.0742 AT-XY operation can’t be
performed on user output device.

Ignore and continue.
Standard Forth Documentation Requirements 205

SwiftForth Reference Manual
B.6 FILE-ACCESS WORDSET DOCUMENTATION

Table 39: File-access wordset implementation-defined options

Option

File access methods used by
11.6.1.0765 BIN, 11.6.1.1010 CREATE-
FILE, 11.6.1.1970 OPEN-FILE,
11.6.1.2054 R/O, 11.6.1.2056 R/W,
and 11.6.1.2425 W/O

Methods are defined in terms of GENER-
IC_READ and GENERIC_WRITE.
The BIN method is a no-op, as all access
is binary.

File exceptions -36 " Invalid file position"
-37 " File I/O exception"
-38 " Non-existent file"
-39 " Unexpected end of file"

File line terminator
(11.6.1.2090 READ-LINE)

CR (0DH)

File name format (11.3.1.4 File
names)

Windows standard.

Information returned by
11.6.2.1524 FILE-STATUS

Zero if available; otherwise, ior is
encoded per the list below.

Input file state after an exception
(11.6.1.1717 INCLUDE-FILE,
11.6.1.1718 INCLUDED)

Closed automatically if the error was
THROWn.

ior values and meaning
(11.3.1.2 I/O results)

-191 Can’t delete file (DELETE-FILE)
-192 Can’t rename file (RENAME-FILE)
-193 Can’t resize file (RESIZE-FILE)
-194 Can’t flush file (FLUSH-FILE)
-195 Can’t read file (READ-FILE, READ-
LINE)
-196 Can’t write file (WRITE-FILE)
-197 Can’t close file (CLOSE-FILE)
-198 Can’t create file (CREATE-FILE)
-199 Can’t open file (OPEN-FILE,
INCLUDE-FILE)

These always return 0 (success, or ignore
and continue)
FILE-POSITION
REPOSITION-FILE

SEEK-FILE
FILE-SIZE

Maximum depth of file input nesting
(11.3.4 Input source)

16

Maximum size of input line
(11.3.6 Parsing)

256
206 Standard Forth Documentation Requirements

SwiftForth Reference Manual
B.7 FLOATING POINT WORDSET DOCUMENTATION

Methods for mapping block ranges to
files (11.3.2 Blocks in files)

See Section A.1.

Number of string buffers provided
(11.6.1.2165 S")

8

Size of string buffer used by
11.6.1.2165 S".

128 each

Table 40: File-access wordset, ambiguous conditions

Condition Action

Attempting to position a file outside
its boundaries (11.6.1.2142 REPOSITION-FILE)

No error; file at EOF.

Attempting to read from file positions not yet
written (11.6.1.2080 READ-FILE, 11.6.1.2090 READ-
LINE)

No error; no bytes read,
zero length returned.

Fileid is invalid (11.6.1.1717 INCLUDE-FILE) Dependent on value of fil-
eid;
system will attempt to use
it.

I/O exception reading or closing fileid
(11.6.1.1717 INCLUDE-FILE, 11.6.1.1718 INCLUDED)

-37 THROW

Named file cannot be opened (11.6.1.1718
INCLUDED)

-38 THROW

Requesting an unmapped block number
(11.3.2 Blocks in files)

ABORT

Using 11.6.1.2218 SOURCE-ID when
7.6.1.0790 BLK is not zero.

The block source has prior-
ity.

Table 39: File-access wordset implementation-defined options (continued)

Option

Table 41: Floating-point wordset, implementation-defined options

Option Swiftforth support

Format and range of floating-point
numbers (12.3.1 Data types,
12.6.1.2143 REPRESENT)

IEEE 64-bit floating point numbers;
see Section 12.1.

Results of 12.6.1.2143 REPRESENT when
float is out of range

FPU trap
Standard Forth Documentation Requirements 207

SwiftForth Reference Manual

Rounding or truncation of floating-
point numbers (12.3.1.2 Floating-point
numbers)

See Section 12.2.

Size of floating-point stack
(12.3.3 Floating-point stack)

32 items (may be one for each task)

Width of floating-point stack
(12.3.3 Floating-point stack).

80 bits

Table 42: Floating-point wordset ambiguous conditions

Condition Action

DF@ or DF! is used with an address that is not
double-float aligned

No alignment require-
ment.

F@ or F! is used with an address that is not float
aligned

No alignment require-
ment.

Floating point result out of range (e.g., in 12.6.1.1430
F/)

FPU trap

SF@ or SF! is used with an address that is not
single-float aligned

No alignment require-
ment.

BASE is not decimal (12.6.1.2143 REPRESENT,
12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.)

Ignore and continue.

Both arguments equal zero (12.6.2.1489 FATAN2) Ignore and continue.

Cosine of argument is zero for 12.6.2.1625 FTAN Ignore and continue.

d can't be precisely represented as float in
12.6.1.1130 D>F

Ignore and continue.

Dividing by zero (12.6.1.1430 F/) FPU trap

Exponent too big for conversion (12.6.2.1203 DF!,
12.6.2.1204 DF@, 12.6.2.2202 SF!, 12.6.2.2203 SF@)

Ignore and continue.

float less than one (12.6.2.1477 FACOSH) FPU trap

float less than or equal to minus-one (12.6.2.1554
FLNP1)

FPU trap

float less than or equal to zero
(12.6.2.1553 FLN, 12.6.2.1557 FLOG)

FPU trap

float less than zero (12.6.2.1487 FASINH, 12.6.2.1618
FSQRT)

FPU trap

float magnitude greater than one
(12.6.2.1476 FACOS, 12.6.2.1486 FASIN, 12.6.2.1491
FATANH)

FPU trap

Integer part of float can't be represented by d in
12.6.1.1470 F>D

Truncated; invalid data.

Table 41: Floating-point wordset, implementation-defined options (continued)

Option Swiftforth support
208 Standard Forth Documentation Requirements

SwiftForth Reference Manual
B.8 LOCAL VARIABLES WORDSET DOCUMENTATION

B.9 MEMORY ALLOCATION WORDSET DOCUMENTATION

String larger than pictured-numeric output area
(12.6.2.1427 F., 12.6.2.1513 FE., 12.6.2.1613 FS.)

Ignore and continue.

Table 42: Floating-point wordset ambiguous conditions (continued)

Condition Action

Table 43: Local variables wordset implementation-defined options

Option SwiftForth Support

Maximum number of locals in a definition
(13.3.3 Processing locals, 13.6.2.1795
LOCALS|)

16

Table 44: Local variables ambiguous conditions

Condition Action

Executing a named local while in inter-
pretation state (13.6.1.0086 (LOCAL))

Outside a definition: name not found.
Inside a definition (e.g., after [):
compiles a reference.

Name not defined by VALUE or LOCAL
(13.6.1.2295 TO)

-32 THROW

Table 45: Memory allocation wordset implementation-defined options

Option Swiftforth support

Values and meaning of ior
(14.3.1 I/O Results data type,
14.6.1.0707 ALLOCATE, 14.6.1.1605
FREE,
14.6.1.2145 RESIZE).

Zero indicates success.
ALLOCATE returns -100 on failure;
FREE returns -102 on failure;
RESIZE calls ALLOCATE and FREE.
Standard Forth Documentation Requirements 209

SwiftForth Reference Manual
B.10 PROGRAMMING TOOLS WORDSET DOCUMENTATION

Note: the obsolescent word FORGET is not supported by SwiftForth.

B.11 SEARCH-ORDER WORDSET DOCUMENTATION

Table 46: Programming tools wordset implementation-defined options

Option SwiftForth support

Ending sequence for input following
15.6.2.0470 CODE and 15.6.2.0930 CODE

END-CODE (see Section 6.2)

Manner of processing input following
15.6.2.0470 CODE and 15.6.2.0930 CODE

Assembles instructions, as
described in Section Section
6:.

Search-order capability for 15.6.2.1300 EDITOR
and
15.6.2.0740 ASSEMBLER (15.3.3 The Forth dictio-
nary)

Both supported. EDITOR
provides access to a block
editor (see Section A.2).

Source and format of display by
15.6.1.2194 SEE.

See example in Section
2.4.3.

Table 47: Programming tools wordset ambiguous conditions

Condition Action

Deleting the compilation word-list (15.6.2.1580 FORGET) FORGET not supported.

Fewer than u+1 items on control-flow stack
(15.6.2.1015 CSPICK, 15.6.2.1020 CSROLL)

Ignore and continue.

name can’t be found (15.6.2.1580 FORGET) FORGET not supported.

name not defined via 6.1.1000 CREATE (15.6.2.0470
;CODE)

Allowed

6.1.2033 POSTPONE applied to 15.6.2.2532 [IF] Ignore and continue.

Reaching the end of the input source before matching
15.6.2.2531 [ELSE] or 15.6.2.2533 [THEN] (15.6.2.2532
[IF])

Ignore and continue.

Removing a needed definition (15.6.2.1580 FORGET). FORGET not supported.

Table 48: Search-order wordset implementation-defined options

Option SwiftForth support

Maximum number of word lists in the search order
(16.3.3 Finding definition names, 16.6.1.2197 SET-
ORDER)

16

Minimum search order
(16.6.1.2197 SET-ORDER, 16.6.2.1965 ONLY).

FORTH
210 Standard Forth Documentation Requirements

SwiftForth Reference Manual

Table 49: Search-order wordset ambiguous conditions

Condition Action

Changing the compilation word list
(16.3.3 Finding definition names)

Ignore and continue.

Search order empty (16.6.2.2037 PREVIOUS) Can’t find any words.

Too many word lists in search order (16.6.2.0715
ALSO).

Ignore and continue.
Standard Forth Documentation Requirements 211

SwiftForth Reference Manual
212 Standard Forth Documentation Requirements

SwiftForth Reference Manual
Appendix C: Glossary of Windows Terms

• API — generally speaking, a set of function calls through which a system provides
services to applications. For example, Forth provides a serial API consisting of TYPE,
EMIT, KEY, ACCEPT, etc. In this context, however, we’re usually referring to a very spe-
cific API called Win32. This is a vast collection of functions (over 3,500) provided
with current Windows versions.

• Callback — an entry point associated with a window capable of processing a mes-
sage from the OS. A pointer to a callback is often passed to Windows as part of a
call from SwiftForth, so that Windows can respond directly, for example, with
requested information. Some callbacks handle a single function; more commonly, a
callback must determine which of several possible messages has been received and
respond accordingly.

• Control — a special type of window1 supporting a specific user interaction. Exam-
ples include pushbuttons, scroll bars, edit boxes, checkboxes, and radio buttons.

• Device context — a data structure associated with Windows’ “Graphics Device Inter-
face“ (GDI, a subset of the Win32API). A device context (sometimes abbreviated DC)
controls a particular display device, such as a printer, plotter, or a window. Values
in a device context are called attributes, and define how various GDI drawing func-
tions will behave for this particular device.

• Dialog box — a type of window that supports interaction between the program and
the user, typically via controls.

• DLL — a “dynamically linked library,“ a binary image of code in a format that can be
linked to your program, temporarily or permanently, to perform certain services. A
DLL’s services are made available through its exports or entry points, which must be
defined in your program as imports. Windows provides hundreds of DLLs, and
most programs or libraries come with still more.

• Focus — The place in an active window or dialog box where the next action will be
recorded. For example, if there are several boxes where you can type, the one with
focus is where the next keystroke will go. Similarly, of several windows that might
be open at one time, the one with focus is the active one.

• Handle — a number used to reference an object. Windows, files, and other objects
all have handles assigned by the OS when the object is opened or created. Handles
are important message parameters. A window handle is called HWND, and a device
context handle is called HDC.

• Message — in addition to the specific meaning this has in SWOOP and in object-ori-
ented programming in general, this is a communication from the OS to the applica-
tion, usually reporting some event such as a keypress or mouse click. Windows
calls an entry point you provide in your program, sending information about the
event. A message is analogous to an interrupt in non-Windows environments.

• Message loop — code in your program that retrieves messages from the message
queue and dispatch them to the appropriate callback routine. Just as a message is
analogous to an interrupt, the message loop is analogous to an interrupt-polling
routine which routes interrupts to the appropriate service code.

1.This term potentially is confusing because the technical definition of “window” is “a dataset with a call-
back,” therefore controls qualify as a type of window.
Glossary of Windows Terms 213

SwiftForth Reference Manual
• Message queue — a path set up by the OS when your program begins execution, by
which your program can receive messages. Certain classes of messages are sent
directly to the appropriate callback, but most go into the queue, awaiting process-
ing by your program's message loop.

• Process — a program launched by Windows. It has various resources, including pro-
gram memory, stacks, the ability to open files, etc. A process has at least one execu-
tion thread and usually (though not always) a message loop; it may launch other
threads, which will share its program memory and open files, but which may have
private stacks and message loops. If Windows launches multiple instances of a pro-
gram, each of them is a process.

• Thread — normally a subordinate component of a process, with some resources of
its own but usually executing some of its parent process’ code, and executing con-
currently with other threads or programs. A process has at least one thread, but
may also launch additional threads that all share resources (such as program mem-
ory and open files) with their parent process. A thread may have one or more win-
dows, in which case it may have its own message loop (although it may also
continue to depend on its parent process’ message loop). A thread with no win-
dows (e.g., doing background number crunching) doesn’t need a message loop. A
thread has its own stacks, may have local variables, and has its own processor state
that is saved and restored during thread switches.

• Window — used in many contexts with a bewildering set of meanings, it specifically
refers to a rectangular area on the screen maintained by and communicating with
the OS on behalf of a running application. The term is also applied to functioning
elements (more properly referred to as “child windows“) within a main window,
such as menus, toolbar, buttons, etc.

• Window class — a style or type of window, defined by parameters that control the
appearance and behavior of windows belonging to that class. Thus, windows of a
particular class will share common characteristics; a sub-class may be created to
augment or alter those characteristics. To make a window, you first define its class,
register the class with the OS, and then construct one or more instances of the class
(which will actually appear and begin to function).

• Window procedure — a procedure associated with a window, often abbreviated as
“WinProc.” When Windows sends a message to your program regarding a window, it
is calling its relevant procedure, which could be in your program itself, or in a DLL.
214 Glossary of Windows Terms

SwiftForth Reference Manual
Appendix D: Forth Words Index

This section provides an alphabetical index to the Forth words that appear in the
glossaries in this book. Each word is shown with its stack arguments and with a
page number where you may find more information. If you’re viewing the PDF ver-
sion of this document, you can click on the Forth word name to go to its glossary
definition.

The table does not include Windows messages, constants, or procedures, although
these can be referred to in SwiftForth as though they were defined Forth words.
They are documented in Windows documentation or the Windows API Help system.

The stack-argument notation is described in Table 50. Where several arguments are
of the same type, and clarity demands that they be distinguished, numeric sub-
scripts are used.

Table 50: Notation used for data types of stack arguments

Notation Description

addr A cell-wide byte address.

b A byte, stored as the least-significant 8 bits of a stack entry. The remaining
bits of the stack entry are zero in results or are ignored in arguments.

c An ASCII character, stored as a byte (see above) with the parity bit reset to
zero.

d A double-precision, signed, 2’s complement integer, stored as two stack
entries (least-significant cell underneath the most-significant cell).
On 32-bit machines, the range is from -2**63 through +2**63-1.

flag A single-precision Boolean truth flag
(zero means false, non-zero means true).

i*x, j*x, etc. Zero or more cells of unspecified data type.

n A signed, single-precision, 2’s complement number. On 32-bit machines, the
range is from -2**31 through +2**31-1. (Note that Forth arithmetic rarely
checks for integer overflow.) If a stack comment is shown as n, u is also
implied unless specifically stated otherwise (e.g., + may be used to add either
signed or unsigned numbers). If there is more than one input argument,
signed and unsigned types may not be mixed.

+n A single-precision, unsigned number with the same positive range as n above.
An input stack argument shown as +n must not be negative.

r A floating-point number in IEEE long floating-point format
(ANS/IEEE 754-1985), as discussed in Section 12.2.2.

u A single-precision, unsigned number with a range from
0 through 2**32-1 on 32-bit machines.

ud A double-precision, unsigned integer with a range from
0 through 2**64-1 on 32-bit machines.

x A cell (single stack item), otherwise unspecified.
Forth Words Index 215

SwiftForth Reference Manual
xt Execution token. This is a value that identifies the execution behavior of a
definition. When this value is passed to EXECUTE, the definition’s execution
behavior is performed.

Table 50: Notation used for data types of stack arguments (continued)

Notation Description

Table 51:

Word Stack Page

++ (addr —) 72

(.) (n — addr u) 154

_PARAM_0, _PARAM_1, _PARAM_2, _PARAM_3 (— n) 125

_PARAM_4, _PARAM_5, _PARAM_6, _PARAM_7 (— n) 125

-? (—) 54

-BALANCE (—) 83

-LOAD (n —) 195

-MAPPED (addr n — f) 196

-ORIGIN (addr — xt) 82

-PROGRESS (—) 154

-SMUDGE (—) 84

," <string> " (—) 66

,\" <string> " (—) 66

,REL (addr —) 67

,U" <string> " (—) 65

,U\" <string> " (—) 65

,Z" <string> " (—) 65

,Z\" <string> " (—) 65

:PRUNE (addr1 — addr2) 51

:REMEMBER (—) 51

!+ (addr x — addr+4) 72

!NOW (ud u —) 60

!REL (addr1 addr2 —) 67

!TIME&DATE (u1 u2 u3 u4 u5 u6 —) 60

?FSTACK (—) (F: i*r — i*r) 185

?PART (n — n1) 196

?PRUNE (— flag) 51

?PRUNED (addr — flag) 51

.\” (—) 66

.DATE (u —) 61

.ENV (—) 142
216 Forth Words Index

SwiftForth Reference Manual
.IMPORTS (—) 137

.LIBS (—) 137

.MAP (—) 195

.PARTS (—) 195

.PROGRESS (n —) 154

.SPART (addr n —) 155

.TIME (ud —) 60

'MAIN (— addr) 133

'SELF (— addr) 169

'THIS (— addr) 169

(-STYLE (—) 150

(+STYLE (—) 150

(DATE) (u1 — addr u2) 61

(DD-MMM-YYYY) (u1 — addr u2) 61

(FONT (—) 149

(MM/DD/YYYY) (u1 — addr u2) 61

(STYLE (—) 150

(TIME) (ud — addr u) 60

(WID-CREATE) (addr u wid —) 86

(WINLONGDATE) (u1 — addr u2) 61

(WINSHORTDATE) (u1 — addr u2) 61

[+ASSEMBLER] (—) 113

[+SWITCH <name> (— switch-sys addr) 69

[C (—) 119

[FORTH] (—) 113

[MODAL (—) 149

[MODELESS (—) 149

[OBJECTS (—) 161

[OPTIONAL] (—) 137

[PREVIOUS] (—) 113

[SWITCH <name> (— switch-sys addr) 69

[U] (addr — +addr) 104

{ (—) 44

@+ (addr — addr+4 x) 72

@DATE (— u) 60

@EXECUTE (addr —) 70

@NOW (— ud u) 60

@REL (addr1 — addr2) 67

Table 51:

Word Stack Page
Forth Words Index 217

SwiftForth Reference Manual
@TIME (— ud) 60

/ALLOT (n —) 72

/FSTACK (—) (F: i*r —) 185

\\ (—) 44

&OF <name> (— addr) 71

#STRANDS (— addr) 86

#USER (— n) 118

+BALANCE (—) 83

+ORIGIN (xt — addr) 82

+PROGRESS (addr —) 154

+SMUDGE (—) 84

+TO <name> (n —) 71

+USER (n1 n2 — n3) 117

< (— cc) 110

<= (— cc) 110

<LINK (addr —) 68

> (— cc) 110

>= (— cc) 110

>BODY (xt — addr) 84

>CODE (xt — addr) 84

>f (—) 188

>fs (n —) 188

>LINK (addr —) 67

>NAME (xt — addr) 84

>NUMBER (ud1 addr1 u1 — ud2 addr2 u2) 57

>PRINT <commands> (—) 93

>THROW (n addr u — n) 75

~!+ (x addr — addr+4) 72

0< (— cc) 109

0<> (— cc) 110

0= (— cc) 109

0> (— cc) 110

0>= (— cc) 110

1/N (—) (F: r1 — r2) 186

3DROP (x1 x2 x3 —) 72

3DUP (x1 x2 x3 — x1 x2 x3 x1 x2 x3) 72

ACTIVATE (addr —) 121

ADDR (addr reg —) 101

Table 51:

Word Stack Page
218 Forth Words Index

SwiftForth Reference Manual
AFTER (— n) 196

AGAIN (addr —) 109

APPEND (addr1 u addr2 —) 66

ARGC (addr len — n) 142

ARGV (addr1 len1 i — addr2 len2) 142

AS <name> (—) 137

ASSEMBLER (—) 113

ATOI (addr len — n) 142

B (—) 33

BASE (— addr) 57

BEGIN (— addr) 109

BINARY (—) 57

BODY> (addr — xt) 84

BUFFER: <name> (n —) 64

BUILDS <name> (hclass —) 159

BUILDS[] <name> (n hclass —) 159

C] (—) 119

C\" <string> " (— addr) 66

CALLBACK: (xt n —) 127

CALLS (addr —) 68

CC (— cc) 110

CC-WORDS (—) 169

CHART <name> (—) 195

CHECK "text" (n —) 147

CLASS <name> (—) 158

CLOSE-PERSONALITY (—) 91

CMDLINE (— addr len) 142

CODE <name> (—) 97

CODE> (addr — xt) 84

CONFIG: <name> (—) 141

CONSTRUCT (addr —) 121

COS (—) (F: x — r) 186

COT (—) (F: x — r) 186

COUNTER (— u) 62

CS (— cc) 110

CSC (—) (F: x — r) 186

CSTATE (— addr) 169

D/M/Y (u1 u2 u3 — u4) 60

Table 51:

Word Stack Page
Forth Words Index 219

SwiftForth Reference Manual
D>F (d —) (F: — r) 186

DASM (addr —) 36

DATE (—) 61

DDE-END (—) 140

DDE-INIT (—) 140

DDE-REQ (— addr) 140

DDE-SEND (addr n —) 140

DECIMAL (—) 57

DefaultClass (addr1 addr2 — nh) 129

DEFER <name> (—) 70

DEFER: <name> (—) 164

DefineClass (x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 — nh) 129

DESTROY (addr —) 161

DF+! (addr —) (F: r —) 184

DFCONSTANT <name> (—); (F: r —) 183

DFI, (—) (F: r —) 185

DFI! (addr —) (F: r —) 184

DFI@ (addr —) (F: — r) 184

DFLITERAL (—); (F: r —) 183

DFVARIABLE <name> (—) 183

DIALOG <name> (—) 149

DPL (— addr) 58

DUMP (addr u —) 37

ECXNZ (— cc) 111

EDIT <name> (—) 33

ELSE (addr1 — addr2) 109

EMPTY (—) 48

END-CLASS (—) 158

END-CODE (—) 97

END-PACKAGE (tag —) 88

ENG (n —) 182

ENUM <name> (n1 — n2) 72

ENUM4 <name> (n1 — n2) 72

EXPIRED (u — flag) 62

EXPORT: <name> (n —) 138

F, (—) (F: r —) 184

F?DUP (— flag) (F: r — r |) 185

F.R (n —); (F: r —) 182

Table 51:

Word Stack Page
220 Forth Words Index

SwiftForth Reference Manual
F+! (addr —) (F: r —) 184

f> (—) 188

F>D (— d) (F: r —) 186

F>S (— n) (F: r —) 186

F2* (—) (F: r1 — r2) 186

F2/ (—) (F: r1 — r2) 186

F2DUP (—) (F: r1 r2 — r1 r2 r1 r2) 185

FI, (—) (F: r —) 185

FI! (addr —) (F: r —) 184

FI@ (addr —) (F: — r) 184

FILITERAL (—); (F: r —) 183

FIND-ENV (addr1 len1 — addr2 len2 flag) 142

FIX (n —) 182

FL, (—) (F: r —) 184

FLITERAL (—); (F: r —) 183

FLUSH (—) 196

FS, (—) (F: r —) 184

FS.R (n —); (F: r —) 182

fs> (n —) 188

FUNCTION: <name> <parameter list> (—) 137

FWITHIN (— flag) (F: r l h) 185

FYI (—) 82

G (—) 33

GET (addr —) 119

GET-XY (— nx ny) 72

GETCH (addr1 len1 — addr2 len2 char) 142

GILD (—) 48

GRAY "text" (n —) 147

HALT (addr —) 121

HDUMP (addr u —) 37

HEX (—) 57

HILO (n1 — n2 n3) 125

HIS (addr1 addr2 — addr3) 118

HIWORD (n1 — n2) 125

HOURS (ud —) 60

HWND (— n) 125

ICODE <name> (—) 97

IDUMP (addr u —) 37

Table 51:

Word Stack Page
Forth Words Index 221

SwiftForth Reference Manual
IF (cc — addr) 109

IMMEDIATE (—) 84

INCLUDE <filename>[<.ext>] (—) 43

INCLUDING (— c-addr u) 43

IS <name> (xt —) 70

ITEM <string> (—) 140

KILL (addr —) 121

KNOWN-VKEYS (— addr) 93

L (—) 33

L: (n —) 106

L# (n — addr) 106

LABEL <name> (—) 97

LIBRARY <filename.dll> (—) 137

LMATRIX <name> (nr nc —) 187

LMD <name> (nr nc —) 187

LOADUSING <name> (n —) 196

LOCALS| <name1> <name2> ... <namen> | (xn ... x2 x1 —) 71

LOCATE <name> (—) 33

LOWORD (n1 — n2) 125

LPARAM (— n) 125

M/D/Y (ud — u) 60

MAKE-FLOOR (—) 185

MAKE-ROUND (—) 185

MAKES <name> (hclass — addr) 161

MAPS <name> (n —) 195

MAPS" <name>" (n —) 195

MEMBERS (—) 169

MEMTOP (— addr) 82

MENU <name> (—) 147

MENUITEM "text" (n —) 147

MESSAGE: (n —) 164

MODIFY (n —) 196

MS (n —) 62

MSG (— n) 125

N (—) 33

N. (—); (F: r —) 182

NAME> (addr — xt) 85

NAMES <name> (addr hclass —) 161

Table 51:

Word Stack Page
222 Forth Words Index

SwiftForth Reference Manual
NEVER (— cc) 111

NEW (hclass — addr) 161

NEWFILE <name> (n —) 196

NEXT-WORD (— addr u) 72

NH (— addr) 58

NOT (cc1 — cc2) 111

NOW (ud —) 61

NTH_PARAM <name> (n —) 125

NUMBER (addr u — n | d) 57

NUMBER? (addr u — 0 | n 1 | d 2) 57

OBJECTS] (—) 161

OCTAL (—) 57

OFF (addr —) 54

ON (addr —) 54

OPEN-PERSONALITY (addr —) 91

OPTIONAL <name> <description> (—) 43

ORIGIN (— addr) 82

OV (— cc) 111

PACKAGE <name> (— tag) 87

PAD (— addr) 64

PART (n —) 195

PAUSE (—) 121

PE (— cc) 111

PLACE (addr1 u addr2 —) 66

PO (— cc) 111

POPPATH (—) 44

POPUP <label> (—) 147

PRIVATE (tag — tag) 87

PRIVATE (—) 163

PROGRAM <filename>[.<ext>] [<icon>] (—) 52

PROGRAM-SEALED <filename>[.<ext>]
[<icon>]

(—) 133

PROGRESS-NAME (addr —) 154

PROGRESS-TEXT (addr —) 154

PROTECTED (—) 163

PUBLIC (tag — tag) 87

PUBLIC (—) 163

PUSHPATH (—) 44

Table 51:

Word Stack Page
Forth Words Index 223

SwiftForth Reference Manual
READONLY (n —) 196

RELEASE (addr —) 119

REMEMBER <name> (—) 51

REPEAT (addr2 addr1 —) 109

REQUIRES <filename>[<.ext>] (—) 44

RESUME (addr — ior) 121

RUN: <words> ; (switch-sys addr n — switch-sys addr) 70

RUNS <word> (switch-sys addr n — switch-sys addr) 69

S\" <string> " (— addr n) 66

S>F (n —) (F: — r) 186

SBLEFT (n — addr) 155

SBRIGHT (n — addr) 155

SCAN (addr1 len1 char -- addr2 len2) 66

SCI (n —) 182

SEARCH-WORDLIST (addr u wid — 0 | xt 1 | xt -1) 86

SEC (—) (F: x — r) 186

SEE <name> (—) 36

SENDMSG (addr n —) 165

SEPARATOR (—) 147

SERVER <name> (—) 140

SET-PRECISION (n —) 182

SF+! (addr —) (F: r —) 184

SFCONSTANT <name> (—); (F: r —) 183

SFI, (—) (F: r —) 185

SFI! (addr —) (F: r —) 184

SFI@ (addr —) (F: — r) 184

SFLITERAL (—); (F: r —) 183

SFVARIABLE <name> (—) 183

SILENT (—) 45

SIN (—) (F: x — r) 186

SKIP (addr1 len1 char -- addr2 len2) 66

Sleep (n — ior) 122

SMATRIX <name> (nr nc —) 187

SMD <name> (nr nc —) 187

STOP (—) 121

STRING, (addr u —) 66

SUBCLASS <name> (hclass —) 164

SUPREME (— hclass) 164

Table 51:

Word Stack Page
224 Forth Words Index

SwiftForth Reference Manual
SUSPEND (addr — ior) 121

SWITCH] (switch-sys addr —) 69

TAN (—) (F: x — r) 186

TASK <taskname> (u —) 121

TERMINATE (—) 121

THEN (addr —) 109

TIME (—) 60

TIME&DATE (— u1 u2 u3 u4 u5 u6) 60

TIMER (u —) 62

TO <name> (x —) 71

TOPIC <string> (—) 140

U< (— cc) 110

U<= (— cc) 110

U> (— cc) 110

U>= (— cc) 110

uCOUNTER (— d) 63

UDUMP (addr u —) 37

UNCALLED (—) 35

UNMAP (n —) 195

UNMAPPED (— n) 196

UNMAPS (n1 n2 —) 195

UNTIL (addr cc —) 109

UNUSED (— n) 82

USING <classname> (addr — addr) 161

USING <name> (— n) 195

uTIMER (d —) 63

VERBOSE (—) 45

WARNING (— addr) 53

WHERE <name>, WH <name> (—) 35

WHILE (addr1 cc — addr2 addr1) 109

WINERROR (— addr u) 75

WORDLIST (— wid) 86

WPARAM (— n) 125

Z" <string> " (— addr) 65

Z\" <string> " (— addr) 65

ZAPPEND (addr1 u addr2 —) 66

ZERO (x — 0) 72

ZPLACE (addr1 u addr2 —) 66

Table 51:

Word Stack Page
Forth Words Index 225

SwiftForth Reference Manual
226 Forth Words Index

SwiftForth Reference Manual
Index

For a comprehensive index of SwiftForth commands, see Appendix D.

:PRUNE 47
:REMEMBER 47
’FILENAMES array 192
& 53
53

in assembler 97
#BLOCK 192
#FILENAME 192
#LIMIT 192
% 53
%, in directory paths 40
<, assembler version 108
<=, assembler version 108
>, assembler version 108
>=, assembler version 108
$ 53, 97

0<, assembler version 107
0<>, assembler version 108
0=, assembler version 107
0>, assembler version 108
0>=, assembler version 108

A abort 24, 28, 152
in code 99

ACTION 173
ADDR, assembler macro 99
address interpreter 75
addresses

32-bit 77
absolute and relative 65, 77–78

and DLLs 136
derive at run time 139

alignment 79
and DLLs 78
convert absolute to relative 80, 99
disassemble 35
returned by data objects 78

addressing modes
notation 98–103

AGAIN 107
alignment 79
ANS Forth 19, 73–74

required documentation 199–211
ANSI X3.215-1994 73
API 213
application, steps to create 127–133
ASCIIZ strings 62
Index 227

SwiftForth Reference Manual
assembler
accessing data structures 98–99
addressing-mode specifier 96

displacement 97
index register 97
offset 99–100
stack-based 100–101

condition codes 105
data size/type 187
I/O operands 98
immediate operands 97
instruction components 96–97
instruction prefix 96
macros

ADDR 99
search order 110
writing 109–111

memory operands 98–101
direct 98
offset 99–100
size specifiers 102–103
stack-based 100–101

mnemonics 93
mode specifiers 102–103
named, local locations 104
numeric base and 97
opcode 97
operand

implicit 97
order 97
register 97

postfix notation 93
register specifier 96
strings

repeat prefixes 103
structures 103, 104–109

assembly language 94–95

B background task 113
base (See number conversion)
BEGIN 107
binding 163
bitmap

information about 171
BITMAPFILEHEADER 171
BITMAPHEADER 171
BITMAPINFOHEADER 171
blocks 39

blockmap 191–192
create new file of 192
editor 194–198
load support for 191

bootable programs (See turnkey)
branches

(See also structure words)
228 Index

SwiftForth Reference Manual
in assembler 105
direct 103

break 152
bye

menu equivalent 24

C calendar 56
date output format 57
day of week 57
set system date 57

CALL 103
callback 121, 124–125, 213

define 124
display output during 132

case-sensitivity 15, 25
in Windows calls 15

CATCH and THROW 71–73
in application code 152

CC, in assembler 108
CC-WORDS 165, 168
CD, usage restrictions 40
character

format in rich edit control 171, 175
I/O 86

CHARFORMAT 171, 175
CHARRANGE 171
CHOOSE-FONT 171, 176
ChooseFont 171
class

(See also instance, members)
compilation of and wordlists 168
constructor words 155
definition 128–129
display hierarchy 163, 164
handle 155, 156, 164
instance structure 166
member types 156
members 155
namespace 168
registration 126–127, 129
search order 164
static instance 156–157
structure 163

CLASSES 164
client 136
clock (See system clock, timers, timing)
CMS 175
CODE 94, 95

vs. ICODE 94
vs. LABEL 94

code
(See also source code)
assembly language 94–95
find a word

in compiled 34–35
Index 229

SwiftForth Reference Manual
in source 22, 31–32, ??–33
named routines 94, 103

code field 75
colon members 155, 156
colors 25, 27

default 174
define as RGB 172
names and support words 174
styles 174
words 33

command window 20, 38
history 21, 38
history of user commands 21

command completion 21
keyboard controls 23
print contents 23
record history 28
save contents 24, 38
select font 25
status bar 21

comments
multi-line 42

compiler
(See also conditional compilation)
and class members 169
class-member constructors 167
control 39
error recovery 32
warning flag 51

condition codes 93
and NOT 105
usage 105

conditional
(See also structure words)
branches 105
compilation 52
jumps 93
transfers, in assembler 105

configuration
of interface 25
parameters 138
save 27

control, Window element 213
copy

by right clicking 22
count byte, in word header 82
counted strings 64
critical section 117
cross-reference

generate by right clicking 22
CS, in assembler 108
CUSTOM 173
customize SwiftForth 28–31

D DASM 35
230 Index

SwiftForth Reference Manual
data
instance, in SwiftForth 167
objects

addresses 78
shared 116

data members 155, 156, 166
defining words 156

data stack
pointer 101

assembler macros 101
top item in register 77, 101

data structures
accessing in assembler 98–99
matrices 184

date
(See also calendar)
input format 56

DDE 136–138
deadlocks 117
debug tools 31

cross-reference 34
disassembler/decompiler 35
L 32
LOCATE 31
reloading an application 129

deferred members 156, 161, 163
deferred words 68
definitions

(See also CODE, colon members)
header (See dictionary)
re-defining/restoring 49, 51–52
ways to add new 16

device context 213
devices

I/O 87–89
shared by tasks 116

DEVMODE 171
dialog boxes 145, 145–151, 213

controls 148–150
style specifiers 147

events 150–151
Font, initialize 171
handle 150
instantiate 150
Open, initialize 172
Page Setup, initialize 172
Print, initialize 172
Save As, initialize 172
size units 146
template 147

DialogBoxIndirectParam 146
dictionary

(See also overlays)
available memory 80
discard definitions 45
Index 231

SwiftForth Reference Manual
display/adjust size 79–??
header fields in 81
in memory 77
linked lists in 83
markers 45–46
memory management 79
pruning 47
saving context 47
search mechanism 86

local variables 69
size of 79
structure 79
Windows constants 86

direct branches 103–104
directory paths 39
directory paths, relative 40
disassemble

an address 35
by right clicking 22

disassembler/decompiler 35
DispatchMessage 122
displacement 97, 100
DLLs 213

absolute addresses 136
access to ??–135
create 135–136
display functions 134
export functions 135
Forth word names 134
rename functions 135

DOCINFO 171
double-precision vs. single-precision 53

converting 55
drivers, custom I/O 92
dynamic constructor 157
dynamic memory allocation 81

for callback 124
dynamic objects 166

E early binding 163, 165
ECXNZ, in assembler 109
edit controls

and rich edit 175
editor 32

assign link to 15
blocks 194–198
default 15, 25
invoke by right clicking 22
select and configure 25–26
specify parameters 26

EDITSTREAM 171
ELSE, assembler version 107
EM_FORMATRANGE 172
EM_GETPARAFORMAT 172
EM_SETPARAFORMAT 172
232 Index

SwiftForth Reference Manual
EMPTY 49
EN_REQUESTRESIZE 172
encapsulation 155
END-CODE 94, 95
error handling (See exceptions)
error messages

Source file not available 22
Unbalanced control structure 80

ESP 100
use restriction 95

events
dialog box 150–151
processing 124–125

exceptions 71–73
and Windows exception handler 72
FPU stack 178
manual abort 24, 28

executable (See turnkey)
execute

by right clicking 22
execution token 165

and addressing 78
convert to address 80, 98
store into a vector 68

EXIT 75

F facility variables 116
FCONSTANT 181
file

edit 23
load 23

File menu 23, 38
FILE-HANDLE 192
file-handling functions 173–174
FILE-MODE 192
FILENAME-BUFFER 176
FILENAME-DIALOG 173
filenames

and path information 176
extension 39

files
(See also source code, blocks)
loading 39–42

monitor 43
FILETIME 171
FILE-UPDATED 192
find

block editor’s buffer 195
in compiled code 34–35
in source code 31–32, ??–33
references to a word 34
unused words 34
words containing a string 33

FindFirstFile 172
FindNextFile 172
Index 233

SwiftForth Reference Manual
flags byte, in word header 82
floating point

configuration options 28
constants and variables 181
co-processor, utilizing (See also FPU) 177
customize 25
input format 179
literals, data types 180
load support for 25
matrices 184–185
memory operations 182–183
output

formats 180
precision 179

precision 177, 179
output 179
rounding 179

primitives 185
punctuation 179
rounding precision 179
stack 177

and multitasking 177
operators 183–184

vs. integer in assembler 187
focus 213
Font dialog boxes 176

initialize 171
FONT-PICKER 176
fonts 25, 124

define attributes of 172
logic for selecting 176
metrics 172
point size 175
return the size 176
size in rich edit controls 175

FORGET (See overlays, EMPTY, MARKER)
FORMATRANGE 172
Forth

virtual machine 75, 78
Forth Scientific Library 30
FPU 177–178

(See also floating point)
assembler 185–187
data size/type 187
data transfers 186
hardware stack 177, 185
instructions, synchronizing with CPU 186
numeric stack 177
register access 186
stack addressing 187
stack depth 178
stack under/overflow 178
vs. software stack 178

FVARIABLE 181
234 Index

SwiftForth Reference Manual
G GetMessage 122
GetOpenFileName 172
GetSaveFileName 172
global variables 114
golden state 45

H handle 213
class 156
window 121

hardware stack 177
headers (See dictionary)
Help menu 31
high-performance timer 92
history 38

command window 21
of user commands 21, 38

I I 77
I/O (See devices)
ICODE 94
icon

for a turnkey program 50
IF, assembler version 107

condition code specifiers 106
INCHES 175
INCLUDE

diagnostic features 25
menu equivalent 23
monitor progress 43
vs. menu/toolbar 39

INCLUDING 40
information hiding 155, 160
inheritance 155, 161
inline expansion 75, 82

and word header 82
of assembler routines 94

insert buffer 195
installation instructions 14
instance

dynamic 157
static 156
storage 156

instantiation 166
integers

output formatting 176
inter-application communication (See DDE)
ISO/IEC 15145:1997 73

required documentation 199–211
I-TO-Z 176

J jumps
(See also structure words)
assembled as offsets 98
conditional 93
in assembler 103
Index 235

SwiftForth Reference Manual
local branch in code 104

K keyboard
Ctrl, Alt, Shift, Fn 90–91

keyboard events 90

L L 32
L# 104
LABEL 94, 95, 103

vs. CODE 94
late binding 156, 163, 165
libraries

select 28
license agreement 17
linked lists 65–66

dictionary 83
LOADED-OPTIONS 41
local objects 158
local variables 68–69

and return stack 69, 78
when interpreting 69

LOCATE 31, 35
by right clicking 22

log
entire session 24
session activity 38
typed commands 24

LOGFONT 172
LOGICAL-FONT 172
loops (See structure words, assembler)
lParam 172

M macros
and search order 110
writing in assembler 109–111

MARKER 46, 49
marker byte, in word header 82
math co-processor (See FPU, floating point)
matrix data structures 184
MEMBERS 164
members

access restrictions 160
arrays of 157
class 155
colon 155
combine methods and instance data 167
data 155, 166
deferred 161, 163
ID 162, 165, 167
names 167
object 166
structure of 165
types, described 156

memory
class definitions 156
236 Index

SwiftForth Reference Manual
committed 80
display statistics 80
dump 169
dynamic allocation 81

for callback 124
map 79
shared, and tasks 118
virtual, allocation 81

menu
defining 143–145
File 23, 38
Help 31
Options 25
Tools 28

message handler 126
linked to class 130

message loop 213
message queue 119, 121, 214
messages 121, 156, 172, 213

handle 121
ID 165, 168
number 122
numeric 162
system 25, 125

methods, in SwiftForth 167
mode specifiers 102–103
modified Julian date (MJD) 56
multimedia timer 92
multitasking

(See also task, user variables)
and shared memory 118
inter-task control 118
resource sharing 118
tasks can conflict 117

N named locations 94, 103
local, in code 104

named Windows constants 90
namespace 168
NEVER, in assembler 109
NMHDR 172
NORMAL 174
NOT 105

assembler version 109
notification message 172
number conversion 52–56

compiling vs. interpreting 53
floating point 179–180

rounding 179
integer to string 176
punctuation 53, 53–55

in floating point 179
single- to double-precision 55
THROW on failure 55

numeric stack 177
Index 237

SwiftForth Reference Manual
clearing 183
data transfers 182

O object-oriented programming 155
objects

dynamic 157
embedded 159, 165
formal instantiation 166
local 158
members 166
pre-defined classes 171
search order 164
static 156, 166

opcodes (See assembler)
OPENFILENAME 172, 173
optimization, code 75
Options menu 25

add to Optional Packages dialogs 41
output, re-direct 91
OV, in assembler 109
overlays 45–49

P PAD, use of 61
Page Setup 172
PAGESETUPDIALOG 172
PageSetupDlg 172
PARAFORMAT 172, 175
paragraph formatting 172, 175
paste

by right clicking 22
in command window 24

path name 40
and including files 24, 39

PE, in assembler 109
personality

example 89
for I/O device 87–89

PO, in assembler 109
POINT 172
point coordinates 172
point size, fonts 175
pointers

CPU stack (ESP) 77
in linked list 65
in switches 66
return stack 77

POINTS 175
polymorphism 155, 156, 161
print 23
Print dialog box 172
PRINTDIALOG 172
PrintDlg 172
printer support 91

initialization and environment 171
printf string conventions 62
238 Index

SwiftForth Reference Manual
process 113, 214
progress bars 151–152
project directory 40
protected mode 93
punctuation

(See also number conversion)
in floating point 179
valid types in numbers 54

pushbutton (See dialog boxes)

R RECT 172
rectangle, coordinates 172
re-entrant code 114
RegisterClass 172
registers 95–96

and ALU operations 95
assigned 77, 96

REPEAT, assembler version 107
REQRESIZE 172
resource compiler 145
resource sharing 116
return stack

and local variables 69
CPU stack pointer 77
pointer 100
restrictions 78
size, for tasks 118

RGBQUAD 172
rich edit control

and data stream 171
character formats in 171
output format 172
paragraph formatting 172
range of characters in 171
size of 172
support for 175

right mouse button 21
round-robin 113

(See also multitasking)
RUN 28

S ”Save Command Window” 38
”Save Keyboard History” 38
search order 83

and assembler macros 110
and local variables 69
and objects 164
class definitions 168

section, critical 117
SEE 35
serial port I/O 91
server 136
”Session Log” 38
SIB (scale, index, base) byte 97
sleep timer 92
Index 239

SwiftForth Reference Manual
snapshot (See turnkey)
source code 20

(See also file)
block and file support 39
filenames 39
find a word 31–32, ??–33
load options 28
loading 39–42

avoid loading files twice 41
monitor 43

view 22
scroll file 32

stack frame 118
stacks 78

(See also data stack, return stack)
notation used 215
space allocated 80

standalone application (See turnkey)
StartDoc 171
start-up word 131
status bar 21

modify 152
strands 84
strings 62–64

additional functions 64
ASCIIZ 62
convert to number 53
counted 64
in assembler 103
special characters 62–63
Unicode 62
when interpreting 62
zero-terminated 62

structure words
branches 105
high level vs. assembler 105
limited branch distance 105
syntax 106
use stack 107

styles
color 174

subroutine stack 78
subroutine threading 75
superclass 162

handle 164
switches 66–68

callbacks 124
extend list 66
in SWOOP 167
menus 144
performance 66
strings in 62
system messages 125

SWOOP 155
system clock 92
240 Index

SwiftForth Reference Manual
system messages 125

T task 114
(See also user variables)
default 80
definition in dictionary 118
floating-point stack 177
instantiate 118
inter-task control 118
may require message loop 121
message queue 119, 121
persistent vs. transitory 118
relinquish CPU 118
resources 114, 118

shared 115, 116–117
return stack size 118
sleep interval 92
suspend for x ms. 60
suspend/resume 118
Task Control Block 118
uninterrupted operation 117
unique resources 113
user area 115

TEXTMETRIC 172
THEN, assembler version 107
threads 113, 114, 214
THROW

configurable response 71
THROW

in assembler 99
THROW

named codes 71
THROW

switches used with 66
time 171
time-of-day 56

input format 57–58
timers 92
timing

accuracy under Windows 60
measure elapsed time 60

TO
local variables 69
vs. IS 68

toolbar 21
button appearance 27

Tools menu 28
transfers 105
turnkey 49–50, 140–141

and license agreement 17
behavior of, vs. development environment 130
example 140–141
message loop 130
start-up word 130–131
to save SwiftForth configuration 31
Index 241

SwiftForth Reference Manual
twip 175
alternate units 175

U U<, assembler version 108
U<=, assembler version 108
U>, assembler version 108
U>=, assembler version 108
Unicode 62
UNTIL, assembler version 107
user area 115

address of 115
user variables 113, 114, 114–116

and callbacks 124
define 115
get address 115
in SWOOP 167
task communication 118
used by system 115

V variables
facility 116
global 114
user 113, 114, 114–116

define 115
get address 115
task communication 118

vectored execution 68
version-control program 28
virtual machine 75, 78
virtual memory

allocation 81
vocabularies 83–84

(See also wordlists)
and assembler macros 110–111

W W 77
WAIT 95, 186
warnings

configure display of 27
WHERE 34–35
WHILE, assembler version 107
wid (wordlist identifier) 83
WIN32_FIND_DATA 172
window 214

callback parameters 122
class 214
close and release resources 132–133
create and display 129–130
create and manage 122
define behavior 131–133
defined 121
handle 121, 150
procedure ("WinProc") 214
repaint 132
required callback 124
242 Index

SwiftForth Reference Manual
requirements for 126
visible components 143–153

WindowProc 113, 121, 124
Windows

API help 215
callback 121

define 124
calls

and tasks 118
class definition 128–129
class registration 126–127, 129
constants 86, 126
dialog boxes 145, 145–151

controls 148–150
events 150–151
handle 150
instantiate 150

exception handler 72
menus 143–145
messages 66

keyboard 90–91
multitasking 113
named constants 90
objects to support functions 173
printer support 91
progress bars 151–152
protected mode 93
registry 138
stack frame 118
system callbacks 124–125
system messages 125
timers 92

WinProc 214
parameter order 134

WM_NOTIFY 172
WNDCLASS 172
word names

length 78
wordlists 83

(See also vocabularies)
and packages 84
CC-WORDS 165, 167
class definitions 168
class-member constructors 167
during class compilation 168
in SWOOP 164, 167
link new definition to 83
linked in strands 84
MEMBERS 164, 167
search order and objects 164
unnamed 83
wid 83

words
delimited list 33–34
delimited search 33
Index 243

SwiftForth Reference Manual
find if unused 34
find where used 34
name conflicts 51
re-defining/restoring 49

X xt (See execution token)
244 Index

	Contents
	Welcome!
	What is SwiftForth?
	Scope of this Manual
	Audience
	How to Proceed
	Typographic Conventions
	Support

	Section 1: Getting Started
	1.1 Components of SwiftForth
	1.2 SwiftForth System Requirements
	1.3 Installation Instructions
	1.3.1 Installing the Host Software
	1.3.2 Linking to a Text Editor

	1.4 Development Procedures
	1.4.1 Exploring SwiftForth
	1.4.2 Running the Sample Programs
	1.4.3 Developing and Testing New Software

	1.5 Licensing Issues
	1.5.1 Use of the Run-time Kernel
	1.5.2 Use of the SwiftForth Development System

	Section 2: Using SwiftForth
	2.1 SwiftForth Programming
	2.2 System Organization
	2.3 IDE Quick Tour
	2.3.1 The Command Window
	2.3.2 File Menu
	2.3.3 Edit Menu
	2.3.4 View Menu
	2.3.5 Options Menu
	2.3.6 Tools Menu
	2.3.7 Help Menu

	2.4 Interactive Programming Aids
	2.4.1 Interacting With Program Source
	2.4.2 Listing Defined Words
	2.4.3 Cross-references
	2.4.4 Disassembler
	2.4.5 Viewing Regions of Memory
	2.4.6 Single-Step Debugger
	2.4.7 Console Debugging Tool
	2.4.8 Managing the Command Window

	Section 3: Source Management
	3.1 Interpreting Source Files
	3.2 Extended Comments
	3.3 File-related Debugging Aids

	Section 4: Programming in SwiftForth
	4.1 Programming Procedures
	4.1.1 Dictionary Management
	4.1.2 Preparing a Turnkey Image

	4.2 Compiler Control
	4.2.1 Case-Sensitivity
	4.2.2 Detecting Name Conflicts
	4.2.3 Conditional Compilation

	4.3 Input-Number Conversions
	4.4 Timing Functions
	4.4.1 Date and Time of Day Functions
	4.4.2 Interval Timing

	4.5 Specialized Program and Data Structures
	4.5.1 String Buffers
	4.5.2 String Data Structures
	4.5.3 Linked Lists
	4.5.4 Switches
	4.5.5 Execution Vectors
	4.5.6 Local Variables

	4.6 Convenient Extensions
	4.7 Exceptions and Error Handling
	4.8 Standard Forth Compatibility

	Section 5: SwiftForth Implementation
	5.1 Implementation Overview
	5.1.1 Execution model
	5.1.2 Code Optimization
	5.1.3 Register usage
	5.1.4 Memory Model and Address Management
	5.1.5 Stack Implementation and Rules of Use
	5.1.6 Dictionary Features

	5.2 Memory Organization
	5.3 Control Structure Balance Checking
	5.4 Dynamic Memory Allocation
	5.5 Dictionary Management
	5.5.1 Dictionary Structure
	5.5.2 Wordlists and Vocabularies
	5.5.3 Packages
	5.5.4 Automatic Resolution of References to Windows Constants
	5.5.5 Dictionary Search Extensions

	5.6 Terminal-type Devices
	5.6.1 Device Personalities
	5.6.2 Keyboard Events
	5.6.3 Printer Support
	5.6.4 Serial Port Support

	5.7 Timer Support
	5.8 Custom I/O Drivers

	Section 6: i386 Assembler
	6.1 SwiftForth Assembler Principles
	6.2 Code Definitions
	6.3 Registers
	6.4 Instruction Components
	6.5 Instruction Operands
	6.5.1 Implicit Operands
	6.5.2 Register Operands
	6.5.3 Immediate Operands
	6.5.4 I/O Operands
	6.5.5 Memory Reference Operands

	6.6 Instruction Mode Specifiers
	6.6.1 Size Specifiers
	6.6.2 Repeat Prefixes

	6.7 Direct Branches
	6.8 Assembler Structures
	6.9 Writing Assembly Language Macros

	Section 7: Multitasking and Windows
	7.1 Basic Concepts
	7.1.1 Definitions
	7.1.2 Forth Reentrancy and Multitasking

	7.2 SwiftForth Tasks
	7.2.1 User Variables
	7.2.2 Sharing Resources
	7.2.3 Task Definition and Control

	Section 8: Windows Programming in SwiftForth
	8.1 Basic Window Management
	8.1.1 Parameter Handling
	8.1.2 System Callbacks
	8.1.3 System Messages
	8.1.4 Class Registration
	8.1.5 Building a Windows Program

	8.2 SwiftForth and DLLs
	8.2.1 Importing DLL functions
	8.2.2 Creating a DLL

	8.3 Dynamic Data Exchange (DDE)
	8.4 Managing Configuration Parameters
	8.5 Command-line Arguments
	8.6 Environment Queries
	8.7 A Self-Contained Windows Application

	Section 9: Defining and Managing Windows Features
	9.1 Menus
	9.2 Dialog Boxes
	9.2.1 Defining a Dialog Box
	9.2.2 Dialog Box Styles
	9.2.3 Dialog Box Controls
	9.2.4 Dialog Box Events

	9.3 Progress Bars
	9.4 SwiftForth’s Status Bar

	Section 10: SwiftForth Object-Oriented Programming (SWOOP)
	10.1 Basic Components
	10.1.1 A Simple Example
	10.1.2 Static Instances of a Class
	10.1.3 Dynamic Objects
	10.1.4 Embedded Objects
	10.1.5 Information Hiding
	10.1.6 Inheritance and Polymorphism
	10.1.7 Numeric Messages
	10.1.8 Early and Late Binding

	10.2 Data Structures
	10.2.1 Classes
	10.2.2 Members
	10.2.3 Instance Structures

	10.3 Implementation Strategies
	10.3.1 Global State Information
	10.3.2 Compilation Strategy
	10.3.3 Self

	10.4 Tools

	Section 11: Windows Objects
	11.1 Standard Windows Data Structures
	11.2 Example: File-Handling Dialogs
	11.3 Color Management
	11.4 Rich Edit Controls
	11.5 Other Available Resources

	Section 12: Floating-Point Math Library
	12.1 The Intel FPU
	12.2 Use of the Math Co-processor Option
	12.2.1 Configuring the Floating-Point Options
	12.2.2 Input Number Conversion
	12.2.3 Output Formats
	12.2.4 Real Literals
	12.2.5 Floating-Point Constants and Variables
	12.2.6 Memory Access

	12.3 FPU Assembler
	12.3.1 FPU Hardware Stack
	12.3.2 CPU Synchronization
	12.3.3 Addressing Modes

	Section 13: Recompiling SwiftForth
	13.1 Recompiling the SwiftForth Turnkey
	13.2 Recompiling the Kernel

	Appendix A: Block File Support
	A.1 Managing Disk Blocks
	A.2 Source Block Editor
	A.2.1 Block Display
	A.2.2 String Buffer Management
	A.2.3 Line Display
	A.2.4 Line Replacement
	A.2.5 Line Insertion or Move
	A.2.6 Line Deletion
	A.2.7 Character Editing

	Appendix B: Standard Forth Documentation Requirements
	B.1 System documentation
	B.2 Block Wordset Documentation
	B.3 Double Number Wordset Documentation
	B.4 Exception Wordset Documentation
	B.5 Facility Wordset Documentation
	B.6 File-access Wordset Documentation
	B.7 Floating Point Wordset Documentation
	B.8 Local Variables Wordset Documentation
	B.9 Memory Allocation Wordset Documentation
	B.10 Programming Tools Wordset Documentation
	B.11 Search-order Wordset Documentation

	Appendix C: Glossary of Windows Terms
	Appendix D: Forth Words Index
	Index

